Applying an Optimum Bucking Method to Comparing the Volume and Value Recovery of Cut-to-Length and Tree-Length Merchandizing Systems in Piedmont and the Coastal Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Markets and Products
2.2. Tree Data
2.3. Bucking
Algorithm 1: Encoding of the bucking algorithm using VBA to maximize the value recovery |
where |
nArcs = number of bucking options (arcs) over the length of the tree |
begnode(i) = the start of an arc (log) |
endnode(i) = the end of an arc (log) |
bestvalue(i) = the current highest value at point (i) |
value(i) = the log value from the begnode(i) to the endnode(i) |
prednode(i) = the predecessor node used for tracing back the optimal path |
Algorithm 2: Algorithm to trace back over the optimal path to identify logs to be cut in the optimal solution |
where |
L = the merchantable length of the tree |
prednode(L) = the arc that presents the highest value for the desired tree |
prednode(K) = the predecessor arc used to execute the optimal bucking |
3. Results
3.1. Markets and Products
3.2. Bucking
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haynes, R.W. An Analysis of the Timber Situation in the United States: 1952 to 2050; General Technical Report PNW-GTR-560; USDA Forest Service: Washington, DC, USA, 2003; 254p. [Google Scholar]
- Howard, J.L.; Westby, R.M. U.S. Timber Production, Trade, Consumption and Price Statistics 1965–2011; Research Paper FPL-RP-676; USDA Forest Service: Washington, DC, USA, 2013; 91p. [Google Scholar]
- Oswalt, S.N.; Smith, W.B.; Miles, P.D.; Pugh, S.A. Forest Resources of the United States, 2012: A Technical Document Supporting the Forest Service 2015 Update of the RPA Assessment; General Technical Report WO-91; USDA Forest Service: Washington, DC, USA, 2014; 218p. [Google Scholar]
- Conrad, J.L., IV; Greene, W.D.; Hiesl, P. A review of changes in US logging businesses 1980s–present. J. For. 2018, 116, 291–303. [Google Scholar] [CrossRef]
- Greene, W.D.; Marchman, S.C.; Baker, S.A. Changes in logging firm demographics and logging capacity in the U.S. South. In Proceedings of the 36th Annual Council on Forest Engineering Meeting, Missoula, MT, USA, 8–10 July 2013. 7p. [Google Scholar]
- Bolding, M.C.; Barrett, S.M.; Munsell, J.F.; Groover, M.C. Characteristics of Virginia’s logging businesses in a changing timber market. For. Prod. J. 2010, 60, 86–93. [Google Scholar] [CrossRef]
- Cubbage, F.W.; Carter, D. Productivity and cost changes in southern pulpwood harvesting, 1979 to 1987. South. J. Appl. For. 1994, 18, 83–90. [Google Scholar] [CrossRef]
- Cubbage, F.W.; Granskog, J.E. Harvesting systems and costs for southern pine in the 1980s. For. Prod. J. 1982, 32, 37–43. [Google Scholar]
- Gellerstedt, S.; Dahlin, B. Cut-to-length: The next decade. J. For. Eng. 1999, 10, 17–24. [Google Scholar]
- Lanford, B.L.; Stokes, B.J. Comparison of two thinning systems. Part 2. Productivity and costs. For. Prod. J. 1996, 46, 47–53. [Google Scholar]
- Gingras, J.F. The Cost of Product Sorting during Harvesting; Technical Note TN-245; Forest Engineering Research Institute of Canada: Pointe-Claire, QC, Canada, 1996. [Google Scholar]
- Gingras, J.F.; Soucy, M. Sorting of Multiple Products with a Cut-to-Length System; Technical Note TN-296; Forest Engineering Research Institute of Canada: Pointe-Claire, QC, Canada, 1999. [Google Scholar]
- Boston, K.; Murphy, G. Value recovery from two mechanized bucking operations in the southeastern United States. South. J. Appl. For. 2003, 27, 259–263. [Google Scholar] [CrossRef]
- Hamsley, A.K.; Greene, W.D.; Baker, S.A. Comparison of value harvested by modified and conventional tree-length systems in the Southeastern United States. For. Prod. J. 2009, 59, 29–34. [Google Scholar]
- Cass, R.D.; Baker, S.A.; Greene, W.D. Cost and productivity impacts of product sorting on conventional ground-based timber harvesting operations. For. Prod. J. 2009, 59, 108–114. [Google Scholar] [CrossRef]
- Faaland, B.; Briggs, D. Log bucking and lumber manufacturing using dynamic programming. Manag. Sci. 1984, 30, 245–257. [Google Scholar] [CrossRef]
- Grove, P.M.; Conrad, J.L., IV; Dahlen, J. Volume and value recovery comparison of processor and conventional systems in pine stands of the U.S. S. Int. J. For. Eng. 2020, 31, 29–36. [Google Scholar] [CrossRef]
- Daniel, M.J.; Gallagher, T.; Mitchell, D.; McDonald, T.; Via, B. Differences in total stem value when merchandizing with a tracked processor versus a knuckle-boom loader in Pinus taeda. For. Res. Eng. Int. J. 2019, 2, 184–187. [Google Scholar]
- Conrad, J.L., IV; Dahlen, J. Productivity and cost of processors in whole-tree harvesting systems in southern pine stands. For. Sci. 2019, 65, 767–775. [Google Scholar] [CrossRef]
- Akay, A.E. Potential contribution of optmum bucking method to forest products industry. Eur. J. For. Eng. 2017, 3, 61–65. [Google Scholar]
- Sessions, J. Making better tree bucking decisions in the woods: An introduction to optimal bucking. J. For. 1988, 86, 43–45. [Google Scholar]
- Murphy, G. Determining stand value and log product yields using terrestrial lidar and optimal bucking: A case study. J. For. 2008, 106, 317–324. [Google Scholar] [CrossRef]
- Akay, A.E.; Sessions, J.; Serin, H.; Pak, M.; Yenilmez, N. Applying optimum bucking method in producing taurus fir (Abies cilicica) logs in Mediterranean region of Turkey. Balt. For. 2010, 16, 273–279. [Google Scholar]
- Akay, A.E.; Serin, H.; Pak, M. How stem defects affect the capability of optimum bucking method? J. Fac. For. Istanb. Univ. 2015, 65, 38–45. [Google Scholar]
- Laroze, A. A linear programming, tabu search method for solving forest-level bucking optimization problems. For. Sci. 1999, 45, 108–116. [Google Scholar]
- Laroze, A.J.; Greber, B.J. Using Tabu Search to Generate Stand-Level, Rule-Based Bucking Patterns. For. Sci. 1997, 43, 367–379. [Google Scholar]
- Serin, H.; Akay, A.E.; Pak, M. Estimating the effects of optimum bucking on the economic value of brutain pine (Pinus brutia) logs extracted in mediterranean region of Turkey. Afr. J. Agric. Res. 2010, 5, 916–921. [Google Scholar]
- Sessions, J.; Garland, J.; Olsen, E. BUCK: A computer program for optimal tree bucking. Compiler 1988, 6, 10–13. [Google Scholar]
- Garland, J.; Sessions, J.; Olsen, E. Manufacturing logs with computer aided bucking at the stump. For. Prod. J. 1989, 39, 62–66. [Google Scholar]
- Wang, J.; LeDoux, C.B.; McNeel, J. Optimal tree stem bucking of northeastern species of China. For. Prod. J. 2004, 52, 45–52. [Google Scholar]
- Sessions, J.; Olsen, E.; Garland, J. Tree Bucking for Optimal Stand Value with Log Allocation Constraints. For. Sci. 1989, 35, 271–276. [Google Scholar]
- Kivinen, V.P. A genetic algorithm approach to tree bucking optimization. For. Sci. 2004, 50, 696–710. [Google Scholar]
- Ackerman, S.A.; Talbot, B.; Astrup, R. The effect of tree and harvester size on productivity and harvester investment decisions. Int. J. For. Eng. 2022, 33, 22–32. [Google Scholar] [CrossRef]
- Arlinger, J.; Möller, J.J.; Räsänen, T. StanForD 2010—Modern Communications with Forest Machines. Skogforsk, 2021. Available online: https://www.skogforsk.se/english/projects/stanford/stanford-2010/ (accessed on 14 July 2023).
- Sessions, J.; Layton, R.; Guangda, L. Improving tree bucking decisions: A network approach. Compiler 1988, 6, 5–9. [Google Scholar]
- Lang, A.H.; Baker, S.A.; Greene, W.D.; Murphy, G.E. Individual stem value recovery of modified and conventional tree-length systems in the Southeastern United States. Int. J. For. Eng. 2010, 21, 7–11. [Google Scholar] [CrossRef]
- Greber, B.J.; Smith, H.D. An analysis of multiple product merchandising strategies for loblolly pine stumpage. South. J. Appl. For. 1986, 10, 137–141. [Google Scholar] [CrossRef]
- Conradie, I.P.; Greene, W.D.; Murphy, G.E. Value recovery with harvesters in southeastern U.S. pine stands. For. Prod. J. 2004, 54, 80–84. [Google Scholar]
- Murphy, G.E.; Acuna, M.A.; Dumbrell, I. Tree value and log product yield determination in radiata pine (Pinus radiata) plantations in Australia: Comparisons of terrestrial laser scanning with a forest inventory system and manual measurements. Can. J. For. Res. 2010, 40, 2223–2233. [Google Scholar] [CrossRef]
- Pyörälä, J.; Kankare, V.; Liang, X.; Saarinen, N.; Rikala, J.; Kivinen, V.P.; Sipi, M.; Holopainen, M.; Hyyppä, J.; Vastaranta, M. Assessing log geometry and wood quality in standing timber using terrestrial laser-scanning point clouds. Forestry 2019, 92, 177–187. [Google Scholar] [CrossRef]
- Prendes, C.; Acuna, M.; Canga, E.; Ordoñez, C.; Cabo, C. Optimal bucking of stems from terrestrial laser scanning data to maximize forest value. Scand. J. For. Res. 2023, 38, 174–188. [Google Scholar] [CrossRef]
- Wall, D.J.; Bentley, J.W.; Gray, J.A.; Cooper, J.A. Georgia Harvest and Utilization Study, 2015; e-Res. Bull. SRS-217; USDA Forest Service, Southern Research Station: Asheville, NC, USA, 2018. [Google Scholar] [CrossRef]
- Geerts, J.M.P.; Twaddle, A.A. A method to assess log value loss caused by cross-cutting practice on the skid-site. N. Z. J. For. 1984, 29, 173–184. [Google Scholar]
- Marshall, H.; Murphy, G. Economic evaluation of implementing improved stem scanning systems on mechanical harvesters/processors. N. Z. J. For. Sci. 2004, 34, 158–174. [Google Scholar]
- Murphy, G.; Acuna, M.; Amishev, D. Adaptive control of bucking on harvesters: Target and timing effects. For. Prod. J. 2006, 56, 79–83. [Google Scholar]
- Diniz, C.; Smidt, M.; Cooper, J.; Zhang, Y. Logging crew attributes by region in the Southeast USA. Croat. J. For. Eng. 2023, 44, 431–439. [Google Scholar] [CrossRef]
Region | System | Product | Length (m) | LED (cm) | SED (cm) | Value ($/m3) |
---|---|---|---|---|---|---|
Piedmont | CTL | Sawtimber | 3.8 | 35 | 20 | 43.39 |
CTL | Sawtimber | 5.0 | 35 | 20 | 43.39 | |
Both | Sawtimber | 8.2 | 35 | 15 | 43.39 | |
TL | Sawtimber | >8.2 | 35 | 15 | 43.39 | |
CTL | Chip-n-saw | 2.4 | 20 | 10 | 36.15 | |
CTL | Chip-n-saw | 3.6 | 20 | 10 | 36.15 | |
CTL | Chip-n-saw | 4.9 | 20 | 10 | 36.15 | |
Both | Chip-n-saw | 6.1 | 20 | 10 | 36.15 | |
TL | Chip-n-saw | >6.1 | 20 | 10 | 36.15 | |
CTL | Pulpwood | 3.0 | 10 | 2.5 | 30.24 | |
Both | Pulpwood | 6.0 | 10 | 2.5 | 30.24 | |
TL | Pulpwood | >6.0 | 10 | 2.5 | 30.24 | |
Coastal Plain | CTL | Sawtimber | 3.8 | 35 | 20 | 43.99 |
CTL | Sawtimber | 5.0 | 35 | 20 | 43.99 | |
Both | Sawtimber | 7.6 | 35 | 15 | 43.99 | |
TL | Sawtimber | >7.6 | 35 | 15 | 43.99 | |
CTL | Chip-n-saw | 4.6 | 20 | 10 | 36.35 | |
CTL | Chip-n-saw | 6.1 | 20 | 10 | 36.35 | |
Both | Chip-n-saw | 7.6 | 20 | 10 | 36.35 | |
TL | Chip-n-saw | >7.6 | 20 | 10 | 36.35 | |
CTL | Pulpwood | 4.3 | 10 | 3.0 | 32.40 | |
Both | Pulpwood | 6.1 | 10 | 3.0 | 32.40 | |
TL | Pulpwood | >6.1 | 10 | 3.0 | 32.40 |
Region | DSH (mm) | CTL | TL | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean (m3) | SD (m3) | Mean ($) | SD ($) | Mean (m3) | SD (m3) | Mean ($) | SD ($) | ||
Piedmont | 40 | 0.008 | 0.001 | 0.26 | 0.01 | 0.010 | 0.001 | 0.33 | 0.01 |
60 | 0.014 | 0.002 | 0.47 | 0.07 | 0.017 | 0.002 | 0.55 | 0.05 | |
80 | 0.033 | 0.007 | 1.08 | 0.22 | 0.036 | 0.005 | 1.16 | 0.17 | |
100 | 0.037 | 0.006 | 1.20 | 0.18 | 0.042 | 0.007 | 1.36 | 0.24 | |
120 | 0.055 | 0.015 | 1.86 | 0.60 | 0.060 | 0.013 | 1.94 | 0.42 | |
140 | 0.107 | 0.034 | 3.81 | 1.22 | 0.111 | 0.036 | 3.86 | 1.37 | |
160 | 0.135 | 0.028 | 4.75 | 1.01 | 0.141 | 0.028 | 4.86 | 1.17 | |
180 | 0.177 | 0.009 | 6.35 | 0.45 | 0.179 | 0.010 | 6.51 | 0.37 | |
200 | 0.211 | 0.058 | 7.62 | 2.14 | 0.200 | 0.043 | 7.28 | 1.55 | |
220 | 0.270 | 0.031 | 10.3 | 2.19 | 0.268 | 0.039 | 9.73 | 1.40 | |
240 | 0.302 | 0.040 | 12.2 | 2.47 | 0.303 | 0.039 | 11.6 | 1.65 | |
260 | 0.328 | 0.141 | 13.8 | 5.65 | 0.344 | 0.132 | 12.8 | 5.81 | |
280 | 0.375 | 0.233 | 15.1 | 10.2 | 0.358 | 0.225 | 14.5 | 9.92 | |
300 | 0.478 | 0.060 | 20.6 | 3.33 | 0.480 | 0.112 | 21.1 | 4.91 | |
320 | 0.614 | 0.146 | 26.4 | 6.38 | 0.613 | 0.146 | 25.7 | 6.12 | |
340 | 0.764 | 0.173 | 33.1 | 7.93 | 0.757 | 0.168 | 33.0 | 7.91 | |
360 | 0.392 | 0.321 | 16.6 | 14.1 | 0.388 | 0.295 | 16.4 | 13.7 | |
380 | 0.677 | 0.209 | 29.5 | 9.03 | 0.690 | 0.166 | 29.1 | 9.49 | |
>400 | 0.745 | 0.478 | 31.8 | 22.5 | 0.812 | 0.530 | 31.3 | 24.6 | |
Coastal Plain | 40 | 0.010 | 0.001 | 0.33 | 0.01 | 0.010 | 0.001 | 0.33 | 0.01 |
60 | 0.015 | 0.003 | 0.49 | 0.11 | 0.017 | 0.002 | 0.55 | 0.05 | |
80 | 0.031 | 0.006 | 1.00 | 0.19 | 0.036 | 0.005 | 1.16 | 0.17 | |
100 | 0.035 | 0.009 | 1.12 | 0.28 | 0.042 | 0.007 | 1.36 | 0.24 | |
120 | 0.058 | 0.014 | 2.01 | 0.49 | 0.060 | 0.013 | 1.94 | 0.42 | |
140 | 0.109 | 0.036 | 3.86 | 1.27 | 0.111 | 0.036 | 3.82 | 1.34 | |
160 | 0.139 | 0.029 | 4.94 | 1.05 | 0.141 | 0.028 | 4.92 | 0.96 | |
180 | 0.178 | 0.013 | 6.46 | 0.48 | 0.181 | 0.007 | 6.52 | 0.34 | |
200 | 0.200 | 0.036 | 7.23 | 1.36 | 0.203 | 0.040 | 7.32 | 1.50 | |
220 | 0.268 | 0.027 | 10.30 | 2.05 | 0.275 | 0.033 | 10.4 | 2.38 | |
240 | 0.301 | 0.037 | 12.29 | 2.44 | 0.303 | 0.039 | 11.6 | 1.69 | |
260 | 0.333 | 0.146 | 14.15 | 5.96 | 0.344 | 0.132 | 13.6 | 6.38 | |
280 | 0.351 | 0.224 | 14.82 | 10.05 | 0.360 | 0.227 | 14.4 | 9.70 | |
300 | 0.473 | 0.091 | 20.54 | 3.72 | 0.477 | 0.068 | 21.0 | 2.99 | |
320 | 0.616 | 0.143 | 26.01 | 6.36 | 0.616 | 0.143 | 25.7 | 6.15 | |
340 | 0.770 | 0.179 | 33.49 | 8.26 | 0.769 | 0.177 | 32.1 | 6.94 | |
360 | 0.409 | 0.309 | 16.50 | 14.00 | 0.400 | 0.289 | 16.2 | 13.9 | |
380 | 0.691 | 0.177 | 29.64 | 7.90 | 0.690 | 0.166 | 29.1 | 9.49 | |
>400 | 0.741 | 0.484 | 32.00 | 22.24 | 0.812 | 0.530 | 31.3 | 24.6 |
Region | Product | Cut-to-Length | Tree-Length | ||
---|---|---|---|---|---|
Volume (m3) | Value ($) | Volume (m3) | Value ($) | ||
Piedmont | Pulpwood | 1.33 | 43.01 | 2.74 | 88.90 |
Chip-n-saw | 3.87 | 140.73 | 4.77 | 173.38 | |
Sawtimber | 11.97 | 526.75 | 9.91 | 436.13 | |
Total | 17.17 | 710.50 | 17.43 | 698.41 | |
Coastal Plain | Pulpwood | 0.62 | 20.10 | 3.10 | 100.32 |
Chip-n-saw | 5.05 | 183.39 | 4.67 | 169.35 | |
Sawtimber | 11.52 | 508.04 | 9.77 | 429.95 | |
Total | 17.18 | 711.53 | 17.54 | 699.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diniz, C.; Smidt, M.; Sessions, J. Applying an Optimum Bucking Method to Comparing the Volume and Value Recovery of Cut-to-Length and Tree-Length Merchandizing Systems in Piedmont and the Coastal Plain. Forests 2024, 15, 550. https://doi.org/10.3390/f15030550
Diniz C, Smidt M, Sessions J. Applying an Optimum Bucking Method to Comparing the Volume and Value Recovery of Cut-to-Length and Tree-Length Merchandizing Systems in Piedmont and the Coastal Plain. Forests. 2024; 15(3):550. https://doi.org/10.3390/f15030550
Chicago/Turabian StyleDiniz, Carlos, Mathew Smidt, and John Sessions. 2024. "Applying an Optimum Bucking Method to Comparing the Volume and Value Recovery of Cut-to-Length and Tree-Length Merchandizing Systems in Piedmont and the Coastal Plain" Forests 15, no. 3: 550. https://doi.org/10.3390/f15030550
APA StyleDiniz, C., Smidt, M., & Sessions, J. (2024). Applying an Optimum Bucking Method to Comparing the Volume and Value Recovery of Cut-to-Length and Tree-Length Merchandizing Systems in Piedmont and the Coastal Plain. Forests, 15(3), 550. https://doi.org/10.3390/f15030550