Decrease in Inorganic Nitrogen and Net Nitrogen Transformation Rates with Biochar Application in a Warm-Temperate Broadleaved Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Design
2.3. Net N Transformation Rates in the Field
2.3.1. Installation and Recovery of Resin Cores
2.3.2. Quantification of NH4+ and NO3− in Soil and Resin
2.3.3. Calculation of Net N Mineralization and Nitrification
2.4. Soil Analyses
2.5. Statistical Analysis
3. Results
3.1. Soil Environment
3.2. Net N Transformation Rates
3.2.1. Mineralization
3.2.2. Nitrification
3.2.3. Nitrification Ratio
3.3. Pool Sizes of Extractable NH4+ and NO3−
3.4. Microbial Biomass
4. Discussion
4.1. Net N Transformation Rates
- Acceleration of immobilization
- 2.
- Changes in microbial communities
- 3.
- Adsorption of substrate by biochar
4.2. Pool Sizes of NH4+ and NO3−
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-Char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Sohi, S.; Thies, J.E.; Skjemstad, J.O.; Luizão, F.J.; Engelhard, M.H.; Neves, E.G.; Wirick, S. Stability of Biomass-Derived Black Carbon in Soils. Geochim. Cosmochim. Acta 2008, 72, 6069–6078. [Google Scholar] [CrossRef]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Lehmann, J. A Handful of Carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Biederman, L.A.; Harpole, W.S. Biochar and Its Effects on Plant Productivity and Nutrient Cycling: A Meta-Analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How Strongly Can Forest Management Influence Soil Carbon Sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Li, Y.; Hu, S.; Chen, J.; Müller, K.; Li, Y.; Fu, W.; Lin, Z.; Wang, H. Effects of Biochar Application in Forest Ecosystems on Soil Properties and Greenhouse Gas Emissions: A Review. J. Soils Sediments 2018, 18, 546–563. [Google Scholar] [CrossRef]
- Johanis, H.; Lehejček, J.; Tejneckỳ, V. An Insight into Long-Term Effects of Biochar Application on Forest Soils. Eur. J. For. Res. 2022, 141, 213–224. [Google Scholar] [CrossRef]
- Zhao, P.; Palviainen, M.; Köster, K.; Berninger, F.; Bruckman, V.J.; Pumpanen, J. Effects of Biochar on Fluxes and Turnover of Carbon in Boreal Forest Soils. Soil Sci. Soc. Am. J. 2019, 83, 126–136. [Google Scholar] [CrossRef]
- Zhu, X.; Zhu, T.; Pumpanen, J.; Palviainen, M.; Zhou, X.; Kulmala, L.; Bruckman, V.J.; Köster, E.; Köster, K.; Aaltonen, H. Short-Term Effects of Biochar on Soil CO2 Efflux in Boreal Scots Pine Forests. Ann. For. Sci. 2020, 77, 59. [Google Scholar] [CrossRef]
- Ge, X.; Cao, Y.; Zhou, B.; Xiao, W.; Tian, X.; Li, M.-H. Combined Application of Biochar and N Increased Temperature Sensitivity of Soil Respiration but Still Decreased the Soil CO2 Emissions in Moso Bamboo Plantations. Sci. Total Environ. 2020, 730, 139003. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Fang, H.; Deng, X.; Ying, J.; Lv, W.; Shi, Y.; Zhou, G.; Zhou, Y. Biochar Application Increased Ecosystem Carbon Sequestration Capacity in a Moso Bamboo Forest. For. Ecol. Manag. 2020, 475, 118447. [Google Scholar] [CrossRef]
- Ohtsuka, T.; Tomotsune, M.; Ando, M.; Tsukimori, Y.; Koizumi, H.; Yoshitake, S. Effects of the Application of Biochar to Plant Growth and Net Primary Production in an Oak Forest. Forests 2021, 12, 152. [Google Scholar] [CrossRef]
- Tanazawa, Y.; Tomotsune, M.; Suzuki, T.; Koizumi, H.; Yoshitake, S. Photosynthetic Response of Young Oaks to Biochar Amendment in Field Conditions over 3 Years. J. For. Res. 2021, 26, 116–126. [Google Scholar] [CrossRef]
- Berglund, L.M.; DeLuca, T.H.; Zackrisson, O. Activated Carbon Amendments to Soil Alters Nitrification Rates in Scots Pine Forests. Soil Biol. Biochem. 2004, 36, 2067–2073. [Google Scholar] [CrossRef]
- Noyce, G.L.; Basiliko, N.; Fulthorpe, R.; Sackett, T.E.; Thomas, S.C. Soil Microbial Responses over 2 Years Following Biochar Addition to a North Temperate Forest. Biol. Fertil. Soils 2015, 51, 649–659. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Howarth, R.W. Nitrogen Limitation on Land and in the Sea: How Can It Occur? Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- Gurmesa, G.A.; Wang, A.; Li, S.; Peng, S.; de Vries, W.; Gundersen, P.; Ciais, P.; Phillips, O.L.; Hobbie, E.A.; Zhu, W.; et al. Retention of Deposited Ammonium and Nitrate and Its Impact on the Global Forest Carbon Sink. Nat. Commun. 2022, 13, 880. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen Limitation of Net Primary Productivity in Terrestrial Ecosystems Is Globally Distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Burton, A.J.; Zak, D.R.; Talhelm, A.F. Simulated Chronic Nitrogen Deposition Increases Carbon Storage in Northern Temperate Forests. Glob. Chang. Biol. 2008, 14, 142–153. [Google Scholar] [CrossRef]
- Gogoi, L.; Narzari, R.; Gogoi, N.; Farooq, M.; Kataki, R. Biochar Production and Application in Forest Soils—A Critical Review. Phyton 2019, 88, 349–365. [Google Scholar] [CrossRef]
- Gundale, M.J.; Nilsson, M.-C.; Pluchon, N.; Wardle, D.A. The Effect of Biochar Management on Soil and Plant Community Properties in a Boreal Forest. GCB Bioenergy 2016, 8, 777–789. [Google Scholar] [CrossRef]
- Palviainen, M.; Berninger, F.; Bruckman, V.J.; Köster, K.; de Assumpção, C.R.M.; Aaltonen, H.; Makita, N.; Mishra, A.; Kulmala, L.; Adamczyk, B. Effects of Biochar on Carbon and Nitrogen Fluxes in Boreal Forest Soil. Plant Soil 2018, 425, 71–85. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; Cai, Y.; Fu, S.; Luo, Y.; Wang, H.; Liang, C.; Lin, Z.; Hu, S.; Li, Y. Biochar Decreases Soil N2O Emissions in Moso Bamboo Plantations through Decreasing Labile N Concentrations, N-Cycling Enzyme Activities and Nitrification/Denitrification Rates. Geoderma 2019, 348, 135–145. [Google Scholar] [CrossRef]
- DiStefano, J.F.; Gholz, H.L. A Proposed Use of Ion Exchange Resins to Measure Nitrogen Mineralization and Nitrification in Intact Soil Cores. Commun. Soil Sci. Plant Anal. 1986, 17, 989–998. [Google Scholar] [CrossRef]
- Scheiner, D. Determination of Ammonia and Kjeldahl Nitrogen by Indophenol Method. Water Res. 1976, 10, 31–36. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid Colorimetric Determination of Nitrate in Plant Tissue by Nitration of Salicylic Acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Oades, J.M. A Method for Measuring Adenosine Triphosphate in Soil. Soil Biol. Biochem. 1979, 11, 193–199. [Google Scholar] [CrossRef]
- Nakatsubo, T.; Yoshitake, S.; Uchida, M.; Uchida, M.; Shibata, Y.; Koizumi, H. Organic Carbon and Microbial Biomass in a Raised Beach Deposit under Terrestrial Vegetation in the High Arctic, Ny-Ålesund, Svalbard. Polar Res. 2008, 27, 23–27. [Google Scholar] [CrossRef]
- R Development Core Team. A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2018. [Google Scholar]
- Zhang, L.; Jing, Y.; Chen, C.; Xiang, Y.; Rezaei Rashti, M.; Li, Y.; Deng, Q.; Zhang, R. Effects of Biochar Application on Soil Nitrogen Transformation, Microbial Functional Genes, Enzyme Activity, and Plant Nitrogen Uptake: A Meta-Analysis of Field Studies. GCB Bioenergy 2021, 13, 1859–1873. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Xu, C.-Y.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of Biochar on Soil Available Inorganic Nitrogen: A Review and Meta-Analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Dempster, D.N.; Gleeson, D.B.; Solaiman, Z.M.; Jones, D.L.; Murphy, D.V. Decreased Soil Microbial Biomass and Nitrogen Mineralisation with Eucalyptus Biochar Addition to a Coarse Textured Soil. Plant Soil 2012, 354, 311–324. [Google Scholar] [CrossRef]
- Prommer, J.; Wanek, W.; Hofhansl, F.; Trojan, D.; Offre, P.; Urich, T.; Schleper, C.; Sassmann, S.; Kitzler, B.; Soja, G. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial. PLoS ONE 2014, 9, e86388. [Google Scholar] [CrossRef] [PubMed]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-Chemical Properties and Microbial Responses in Biochar-Amended Soils: Mechanisms and Future Directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Ge, Y.; Li, X.; Palviainen, M.; Zhou, X.; Heinonsalo, J.; Berninger, F.; Pumpanen, J.; Köster, K.; Sun, H. Response of Soil Bacterial Community to Biochar Application in a Boreal Pine Forest. J. For. Res. 2022, 34, 749–759. [Google Scholar] [CrossRef]
- Wang, C.; Chen, D.; Shen, J.; Yuan, Q.; Fan, F.; Wei, W.; Li, Y.; Wu, J. Biochar alters soil microbial communities and potential functions 3–4 years after amendment in a double rice cropping system. Agric. Ecosyst. Environ. 2021, 311, 107291. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Simpson, A.J.; Soong, R.; Schurman, J.S.; Thomas, S.C.; Simpson, M.J. Biochar amendment and phosphorus fertilization altered forest soil microbial community and native soil organic matter molecular composition. Biogeochemistry 2016, 130, 227–245. [Google Scholar] [CrossRef]
- Soares, M.; Rousk, J. Microbial Growth and Carbon Use Efficiency in Soil: Links to Fungal-Bacterial Dominance, SOC-Quality and Stoichiometry. Soil Biol. Biochem. 2019, 131, 195–205. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.-Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Aciego Pietri, J.C.; Brookes, P.C. Relationships between Soil pH and Microbial Properties in a UK Arable Soil. Soil Biol. Biochem. 2008, 40, 1856–1861. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M. Biochar and the Nitrogen Cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential Role of Biochars in Decreasing Soil Acidification—A Critical Review. Sci. Total Environ. 2017, 581–582, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A Review of Biochar and Soil Nitrogen Dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An overview on engineering the surface area and porosity of biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Alberti, G.; Panzacchi, P.; Vedove, G.D.; Miglietta, F.; Tonon, G. Biochar Mineralization and Priming Effect in a Poplar Short Rotation Coppice from a 3-Year Field Experiment. Biol. Fertil. Soils 2019, 55, 67–78. [Google Scholar] [CrossRef]
Treatment | Soil Temperature (°C) | Water Content (%) | pH | Total Carbon (mg g−1) | Total Nitrogen (mg g−1) | Soil C/N |
---|---|---|---|---|---|---|
C0 | 17.9 ± 5.86 a | 21.6 ± 4.06 a | 4.67 ± 0.07 a | 76.8 ± 15.2 a | 4.75 ± 0.89 a | 16.2 ± 0.13 a |
C05 | 18.0 ± 5.93 a | 22.5 ± 3.99 a | 4.80 ± 0.08 b | 78.7 ± 20.0 a | 4.83 ± 1.15 a | 16.3 ± 0.27 a |
C10 | 18.2 ± 5.85 a | 23.1 ± 3.85 a | 4.82 ± 0.13 b | 87.7 ± 20.7 a | 5.25 ± 1.23 a | 16.7 ± 0.16 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasuki, N.; Saso, W.; Koizumi, H.; Iimura, Y.; Ohtsuka, T.; Yoshitake, S. Decrease in Inorganic Nitrogen and Net Nitrogen Transformation Rates with Biochar Application in a Warm-Temperate Broadleaved Forest. Forests 2024, 15, 572. https://doi.org/10.3390/f15030572
Yasuki N, Saso W, Koizumi H, Iimura Y, Ohtsuka T, Yoshitake S. Decrease in Inorganic Nitrogen and Net Nitrogen Transformation Rates with Biochar Application in a Warm-Temperate Broadleaved Forest. Forests. 2024; 15(3):572. https://doi.org/10.3390/f15030572
Chicago/Turabian StyleYasuki, Natsumi, Wakana Saso, Hiroshi Koizumi, Yasuo Iimura, Toshiyuki Ohtsuka, and Shinpei Yoshitake. 2024. "Decrease in Inorganic Nitrogen and Net Nitrogen Transformation Rates with Biochar Application in a Warm-Temperate Broadleaved Forest" Forests 15, no. 3: 572. https://doi.org/10.3390/f15030572
APA StyleYasuki, N., Saso, W., Koizumi, H., Iimura, Y., Ohtsuka, T., & Yoshitake, S. (2024). Decrease in Inorganic Nitrogen and Net Nitrogen Transformation Rates with Biochar Application in a Warm-Temperate Broadleaved Forest. Forests, 15(3), 572. https://doi.org/10.3390/f15030572