Greenspace Exposure with Chronic Obstructive Pulmonary Disease: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Evaluation
3. Results
3.1. Identification of Studies
3.2. Study Characteristics
3.3. Greenspace Indicators
3.3.1. Overall Greenness or Vegetation—NDVI
3.3.2. Canopy Cover, Greenspace Cover (Percentage of Greenspace) and Land Cover
3.3.3. Other Greenness Measures
3.4. Associations between Greenspace Exposure and COPD Outcomes
3.4.1. COPD Prevalence
3.4.2. COPD Incidence and Exacerbations
3.4.3. COPD Mortality
3.4.4. Indicators of Lung Function with COPD
3.5. Quality Assessment and Risk of Bias
4. Discussion
4.1. Assessment of Greenness
4.2. Possible Causes of Heterogeneity in Greenspace Exposure Impact Outcomes
4.3. Impact Pathways
4.4. Strengths and Limitations
4.5. Recommendations for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Health Estimates: Life Expectancy and Leading Causes of Death and Disability; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (accessed on 23 November 2023).
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef]
- Wang, X.; Meng, X.; Yu, Z.; Zhang, Y.; Li, Y.; Yu, X.; He, J.; Zhang, J.; Wang, L. Pulmonary rehabilitation assessment in COPD based on the ICF brief core set: A latent profile analysis. Ann. Med. 2023, 55, 2231843. [Google Scholar] [CrossRef]
- GOLD. Global Strategy for Prevention, Diagnosis and Management of COPD: 2024 Report. 2024. Available online: https://goldcopd.org/2024-gold-report/ (accessed on 25 December 2023).
- Lin, H.; Qian, Z.M.; Guo, Y.; Zheng, Y.; Ai, S.; Hang, J.; Wang, X.; Zhang, L.; Liu, T.; Guan, W. The attributable risk of chronic obstructive pulmonary disease due to ambient fine particulate pollution among older adults. Environ. Int. 2018, 113, 143–148. [Google Scholar] [CrossRef]
- Salvi, S. Tobacco smoking and environmental risk factors for chronic obstructive pulmonary disease. Clin. Chest Med. 2014, 35, 17–27. [Google Scholar] [CrossRef]
- Soriano, J.B.; Abajobir, A.A.; Abate, K.H.; Abera, S.F.; Agrawal, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Alam, K.J.T.L.R.M. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017, 5, 691–706. [Google Scholar] [CrossRef]
- Lee, H.W.; Park, J.; Jo, J.; Jang, E.J.; Lee, C.-H. Comparisons of exacerbations and mortality among regular inhaled therapies for patients with stable chronic obstructive pulmonary disease: Systematic review and Bayesian network meta-analysis. PLoS Med. 2019, 16, e1002958. [Google Scholar] [CrossRef]
- Hwang, B.-F.; Chen, Y.-H.; Lin, Y.-T.; Wu, X.-T.; Lee, Y.L. Relationship between exposure to fine particulates and ozone and reduced lung function in children. Environ. Res. 2015, 137, 382–390. [Google Scholar] [CrossRef]
- Thacher, J.D.; Schultz, E.S.; Hallberg, J.; Hellberg, U.; Kull, I.; Thunqvist, P.; Pershagen, G.; Gustafsson, P.M.; Melén, E.; Bergström, A. Tobacco smoke exposure in early life and adolescence in relation to lung function. Eur. Respir. J. 2018, 51, 1702111. [Google Scholar] [CrossRef]
- Depledge, M.H.; Stone, R.J.; Bird, W. Can natural and virtual environments be used to promote improved human health and wellbeing? Environ. Sci. Technol. 2011, 45, 4660–4665. [Google Scholar] [CrossRef]
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Rojas-Rueda, D.; Plasència, A.; Nieuwenhuijsen, M.J. Residential green spaces and mortality: A systematic review. Environ. Int. 2016, 86, 60–67. [Google Scholar] [CrossRef] [PubMed]
- van Dorn, A. Urban planning and respiratory health. Lancet Respir. Med. 2017, 5, 781–782. [Google Scholar] [CrossRef] [PubMed]
- Astell-Burt, T.; Mitchell, R.; Hartig, T. The association between green space and mental health varies across the lifecourse. A longitudinal study. J. Epidemiol. Community Health 2014, 68, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Grigsby-Toussaint, D.S.; Chi, S.-H.; Fiese, B.H. Where they live, how they play: Neighborhood greenness and outdoor physical activity among preschoolers. Int. J. Health Geogr. 2011, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Maas, J.; Verheij, R.A.; Groenewegen, P.P.; De Vries, S.; Spreeuwenberg, P. Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health 2006, 60, 587. [Google Scholar] [CrossRef] [PubMed]
- Jakubowski, B.; Frumkin, H. Peer reviewed: Environmental metrics for community health improvement. Prev. Chronic Dis. 2010, 7, A76. [Google Scholar] [PubMed]
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A review of the health benefits of greenness. Curr. Epidemiol. Rep. 2015, 2, 131–142. [Google Scholar] [CrossRef]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; De Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, S.; Xia, T.; Yin, Y.; Wang, X.; Cheng, Y.; Mao, Y.; Zhao, B. Residential greenspace exposure, particularly green window-views, is associated with improved sleep quality among older adults: Evidence from a high-density city. Build. Environ. 2024, 253, 111315. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Forssén, J.; Attenborough, K.; Jean, P.; Defrance, J.; Hornikx, M.; Kang, J. Using natural means to reduce surface transport noise during propagation outdoors. Appl. Acoust. 2015, 92, 86–101. [Google Scholar] [CrossRef]
- Venter, Z.S.; Krog, N.H.; Barton, D.N. Linking green infrastructure to urban heat and human health risk mitigation in Oslo, Norway. Sci. Total Environ. 2020, 709, 136193. [Google Scholar] [CrossRef] [PubMed]
- McMorris, O.; Villeneuve, P.J.; Su, J.; Jerrett, M. Urban greenness and physical activity in a national survey of Canadians. Environ. Res. 2015, 137, 94–100. [Google Scholar] [CrossRef]
- Weeland, J.; Laceulle, O.M.; Nederhof, E.; Overbeek, G.; Reijneveld, S.A. The greener the better? Does neighborhood greenness buffer the effects of stressful life events on externalizing behavior in late adolescence? Health Place 2019, 58, 102163. [Google Scholar] [CrossRef]
- Van den Berg, A.E.; Hartig, T.; Staats, H. Preference for nature in urbanized societies: Stress, restoration, and the pursuit of sustainability. J. Soc. Issues 2007, 63, 79–96. [Google Scholar] [CrossRef]
- Roscoe, C.; Mackay, C.; Gulliver, J.; Hodgson, S.; Cai, Y.; Vineis, P.; Fecht, D. Associations of private residential gardens versus other greenspace types with cardiovascular and respiratory disease mortality: Observational evidence from UK Biobank. Environ. Int. 2022, 167, 107427. [Google Scholar] [CrossRef] [PubMed]
- Bauwelinck, M.; Casas, L.; Nawrot, T.S.; Nemery, B.; Trabelsi, S.; Thomas, I.; Aerts, R.; Lefebvre, W.; Vanpoucke, C.; Van Nieuwenhuyse, A.; et al. Residing in urban areas with higher green space is associated with lower mortality risk: A census-based cohort study with ten years of follow-up. Environ. Int. 2021, 148, 106365. [Google Scholar] [CrossRef] [PubMed]
- Maas, J.; Verheij, R.A.; de Vries, S.; Spreeuwenberg, P.; Schellevis, F.G.; Groenewegen, P.P. Morbidity is related to a green living environment. J. Epidemiol. Community Health 2009, 63, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, C.; Zhang, B.; Ni, M.; Kumari, S.; Bauermeister, S.; Gallacher, J.; Webster, C. Environmental correlates of chronic obstructive pulmonary disease in 96 779 participants from the UK Biobank: A cross-sectional, observational study. Lancet Planet. Health 2019, 3, e478–e490. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Sarkar, C.; Kumari, S.; James, P.; Cao, W.; Lee, R.S.-y.; Tian, L.; Webster, C. Air pollution associated respiratory mortality risk alleviated by residential greenness in the Chinese Elderly Health Service Cohort. Environ. Res. 2020, 183, 109139. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Guo, Y.; Cao, Z.; Cong, S.; Wang, N.; Lin, H.; Wang, C.; Bao, H.; Lv, X.; Wang, B.; et al. Neighborhood greenness associated with chronic obstructive pulmonary disease: A nationwide cross-sectional study in China. Environ. Int. 2020, 144, 106042. [Google Scholar] [CrossRef]
- Servadio, J.L.; Lawal, A.S.; Davis, T.; Bates, J.; Russell, A.G.; Ramaswami, A.; Convertino, M.; Botchwey, N. Demographic Inequities in Health Outcomes and Air Pollution Exposure in the Atlanta Area and its Relationship to Urban Infrastructure. J. Urban Health 2018, 96, 219–234. [Google Scholar] [CrossRef]
- Lambert, K.A.; Bowatte, G.; Tham, R.; Lodge, C.; Prendergast, L.; Heinrich, J.; Abramson, M.J.; Dharmage, S.C.; Erbas, B. Residential greenness and allergic respiratory diseases in children and adolescents—A systematic review and meta-analysis. Environ. Res. 2017, 159, 212–221. [Google Scholar] [CrossRef]
- Mueller, W.; Milner, J.; Loh, M.; Vardoulakis, S.; Wilkinson, P. Exposure to urban greenspace and pathways to respiratory health: An exploratory systematic review. Sci. Total Environ. 2022, 829, 154447. [Google Scholar] [CrossRef]
- Tang, M.; Liu, W.; Li, H.; Li, F. Greenness and chronic respiratory health issues: A systematic review and meta-analysis. Front. Public Health 2023, 11, 1279322. [Google Scholar] [CrossRef]
- Liu, X.-X.; Ma, X.-L.; Huang, W.-Z.; Luo, Y.-N.; He, C.-J.; Zhong, X.-M.; Dadvand, P.; Browning, M.H.; Li, L.; Zou, X.-G. Green space and cardiovascular disease: A systematic review with meta-analysis. Environ. Pollut. 2022, 301, 118990. [Google Scholar] [CrossRef]
- Lachowycz, K.; Jones, A.P. Greenspace and obesity: A systematic review of the evidence. Obes. Rev. 2011, 12, e183–e189. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, B. Green spaces in highly urbanized tracts tied to lower prevalence of chronic respiratory diseases: A nationwide study across levels of urbanicity. Urban For. Urban Green. 2023, 90, 128149. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Forns, J.; Plasència, A.; Nieuwenhuijsen, M.J. Mental health benefits of long-term exposure to residential green and blue spaces: A systematic review. Int. J. Environ. Res. Public Health 2015, 12, 4354–4379. [Google Scholar] [CrossRef]
- de Keijzer, C.; Bauwelinck, M.; Dadvand, P. Long-term exposure to residential greenspace and healthy ageing: A systematic review. Curr. Environ. Health Rep. 2020, 7, 65–88. [Google Scholar] [CrossRef]
- Xiao, Y.; Gu, X.; Niu, H.; Meng, X.; Zhang, L.; Xu, J.; Yang, L.; Zhao, J.; Zhang, X.; Bai, C.; et al. Associations of residential greenness with lung function and chronic obstructive pulmonary disease in China. Environ. Res. 2022, 209, 112877. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, W.; Cai, J.; Jiang, Y.; Zhou, C.; Zha, Z.; Mi, J. Residential surrounding greenness is associated with improved lung function in adults: A cross-sectional study in eastern China. BMC Public Health 2023, 23, 632. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Kosiek, K.; Godycki-Cwirko, M.; Zakowska, I. Community determinants of COPD exacerbations in elderly patients in Lodz province, Poland: A retrospective observational Big Data cohort study. BMJ Open 2022, 12, e060247. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, W.; Wen, H.; Huang, Z.; Wang, X.; Jiao, K.; Chen, Q.; Feng, H.; Wang, Y.; Liao, J.; et al. Effects of green spaces on alleviating mortality attributable to PM2.5 in China. Environ. Sci. Pollut. Res. 2022, 30, 14402–14412. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, Q.; Meng, X.; Zhang, L.; Kan, H.; Chen, R. Association of residential greenness with incident chronic obstructive pulmonary disease: A prospective cohort study in the UK Biobank. Environ. Int. 2023, 171, 107654. [Google Scholar] [CrossRef]
- Gou, A.; Tan, G.; Ding, X.; Wang, J.; Jiao, Y.; Gou, C.; Tan, Q. Spatial association between green space and COPD mortality: A township-level ecological study in Chongqing, China. BMC Pulm. Med. 2023, 23, 89. [Google Scholar] [CrossRef]
- Kasdagli, M.-I.; Katsouyanni, K.; de Hoogh, K.; Lagiou, P.; Samoli, E. Investigating the association between long-term exposure to air pollution and greenness with mortality from neurological, cardio-metabolic and chronic obstructive pulmonary diseases in Greece. Environ. Pollut. 2022, 292, 118372. [Google Scholar] [CrossRef]
- Jia, B.B.; Yang, Z.X.; Mao, G.X.; Lyu, Y.D.; Wen, X.L.; Xu, W.H.; Lyu, X.L.; Cao, Y.B.; Wang, G.F. Health effect of forest bathing trip on elderly patients with chronic obstructive pulmonary disease. Biomed. Environ. Sci. 2016, 29, 212–218. [Google Scholar] [CrossRef]
- Janik, H.; Kraft, K.; Trabandt, A. Efficacy of healing forest therapy for patients with chronic obstructive pulmonary disease (COPD). Eur. J. Integr. Med. 2021, 48, 101944. [Google Scholar] [CrossRef]
- Rhew, I.C.; Vander Stoep, A.; Kearney, A.; Smith, N.L.; Dunbar, M.D. Validation of the normalized difference vegetation index as a measure of neighborhood greenness. Ann. Epidemiol. 2011, 21, 946–952. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Jennings, S.; Brown, N.; Sheil, D. Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and other measures. Forestry 1999, 72, 59–74. [Google Scholar] [CrossRef]
- Hansen, J.E.; Porszasz, J.; Casaburi, R.; Stringer, W.W. Re-defining lower limit of normal for FEV1/FEV6, FEV1/FVC, FEV3/FEV6 and FEV3/FVC to improve detection of airway obstruction. Chronic Obstr. Pulm. Dis. 2015, 2, 94. [Google Scholar] [CrossRef]
- Kuiper, I.N.; Svanes, C.; Markevych, I.; Accordini, S.; Bertelsen, R.J.; Bråbäck, L.; Christensen, J.H.; Forsberg, B.; Halvorsen, T.; Heinrich, J. Lifelong exposure to air pollution and greenness in relation to asthma, rhinitis and lung function in adulthood. Environ. Int. 2021, 146, 106219. [Google Scholar] [CrossRef]
- Lin, Z.; Gu, Y.; Liu, C.; Song, Y.; Bai, C.; Chen, R.; Chen, S.; Kan, H. Effects of ambient temperature on lung function in patients with chronic obstructive pulmonary disease: A time-series panel study. Sci. Total Environ. 2018, 619, 360–365. [Google Scholar] [CrossRef]
- Fuertes, E.; Markevych, I.; Thomas, R.; Boyd, A.; Granell, R.; Mahmoud, O.; Heinrich, J.; Garcia-Aymerich, J.; Roda, C.; Henderson, J. Residential greenspace and lung function up to 24 years of age: The ALSPAC birth cohort. Environ. Int. 2020, 140, 105749. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, H.; Zheng, T. Association between green space structure and the prevalence of asthma: A case study of Toronto. Int. J. Environ. Res. Public Health 2021, 18, 5852. [Google Scholar] [CrossRef]
- Donovan, G.H.; Gatziolis, D.; Longley, I.; Douwes, J. Vegetation diversity protects against childhood asthma: Results from a large New Zealand birth cohort. Nat. Plants 2018, 4, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Zhao, B.; Yu, J.; Gao, Y.; Wang, X.; Mao, Y.; Zhang, J. Making residential green space exposure evaluation more accurate: A composite assessment framework that integrates objective and subjective indicators. Urban For. Urban Green. 2024, 95, 128290. [Google Scholar] [CrossRef]
- Coppel, G.; Wüstemann, H.J.L. The impact of urban green space on health in Berlin, Germany: Empirical findings and implications for urban planning. Landsc. Urban Plan. 2017, 167, 410–418. [Google Scholar] [CrossRef]
- De Vries, S.; Van Dillen, S.M.; Groenewegen, P.P.; Spreeuwenberg, P. Streetscape greenery and health: Stress, social cohesion and physical activity as mediators. Soc. Sci. Med. 2013, 94, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, T.; Leslie, E.; Giles-Corti, B.; Owen, N. Associations of neighbourhood greenness with physical and mental health: Do walking, social coherence and local social interaction explain the relationships? J. Epidemiol. Community Health 2008, 62, e9. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.; Gustafsson, P. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Albert, P.; Agusti, A.; Edwards, L.; Tal-Singer, R.; Yates, J.; Bakke, P.; Celli, B.R.; Coxson, H.O.; Crim, C.; Lomas, D.A. Bronchodilator responsiveness as a phenotypic characteristic of established chronic obstructive pulmonary disease. Thorax 2012, 67, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.C.; Hart, J.E.; James, P. A review of epidemiologic studies on greenness and health: Updated literature through 2017. Curr. Environ. Health Rep. 2018, 5, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; de Nazelle, A.; Triguero-Mas, M.; Schembari, A.; Cirach, M.; Amoly, E.; Figueras, F.; Basagaña, X.; Ostro, B.; Nieuwenhuijsen, M. Surrounding greenness and exposure to air pollution during pregnancy: An analysis of personal monitoring data. Environ. Health Perspect. 2012, 120, 1286–1290. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-S.; Lung, S.-C.C. Mediation pathways and effects of green structures on respiratory mortality via reducing air pollution. Sci. Rep. 2017, 7, 42854. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Ke, X.; Xue, B.; Ni, J. The relationships between the surface arboreal pollen and the plants of the vegetation in China. Rev. Palaeobot. Palynol. 2004, 129, 187–198. [Google Scholar] [CrossRef]
- Lambert, A.K.; Katelaris, C.; Burton, P.; Cowie, C.; Lodge, C.; Garden, F.L.; Prendergast, A.L.; Toelle, B.G.; Erbas, B. Tree pollen exposure is associated with reduced lung function in children. Clin. Exp. Allergy 2020, 50, 1176–1183. [Google Scholar] [CrossRef]
- Bishan, C.; Bing, L.; Chixin, C.; Junxia, S.; Shulin, Z.; Cailang, L.; Siqiao, Y.; Chuanxiu, L. Relationship between airborne pollen assemblages and major meteorological parameters in Zhanjiang, South China. PLoS ONE 2020, 15, e0240160. [Google Scholar] [CrossRef]
- de Keijzer, C.; Agis, D.; Ambrós, A.; Arévalo, G.; Baldasano, J.M.; Bande, S.; Barrera-Gómez, J.; Benach, J.; Cirach, M.; Dadvand, P. The association of air pollution and greenness with mortality and life expectancy in Spain: A small-area study. Environ. Int. 2017, 99, 170–176. [Google Scholar] [CrossRef]
- Orioli, R.; Antonucci, C.; Scortichini, M.; Cerza, F.; Marando, F.; Ancona, C.; Manes, F.; Davoli, M.; Michelozzi, P.; Forastiere, F. Exposure to residential greenness as a predictor of cause-specific mortality and stroke incidence in the Rome longitudinal study. Environ. Health Perspect. 2019, 127, 027002. [Google Scholar] [CrossRef] [PubMed]
- Krekel, C.; Kolbe, J.; Wüstemann, H. The greener, the happier? The effect of urban land use on residential well-being. Ecol. Econ. 2016, 121, 117–127. [Google Scholar] [CrossRef]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef]
- Wilkinson, R.G.; Marmot, M. Social Determinants of Health: The Solid Facts; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Crouse, D.L.; Pinault, L.; Balram, A.; Brauer, M.; Burnett, R.T.; Martin, R.V.; Van Donkelaar, A.; Villeneuve, P.J.; Weichenthal, S. Complex relationships between greenness, air pollution, and mortality in a population-based Canadian cohort. Environ. Int. 2019, 128, 292–300. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Yeager, R.; Riggs, D.W.; DeJarnett, N.; Tollerud, D.J.; Wilson, J.; Conklin, D.J.; O’Toole, T.E.; McCracken, J.; Lorkiewicz, P.; Xie, Z. Association between residential greenness and cardiovascular disease risk. J. Am. Heart Assoc. 2018, 7, e009117. [Google Scholar] [CrossRef] [PubMed]
- Kirkham, P.A.; Barnes, P.J. Oxidative stress in COPD. Chest 2013, 144, 266–273. [Google Scholar] [CrossRef]
- Roda, C.; Mahmoud, O.; Peralta, G.P.; Fuertes, E.; Granell, R.; Serra, I.; Henderson, J.; Jarvis, D.; Garcia-Aymerich, J. Physical-activity trajectories during childhood and lung function at 15 years: Findings from the ALSPAC cohort. Int. J. Epidemiol. 2020, 49, 131–141. [Google Scholar] [CrossRef]
- Mao, Y.; Xia, T.; Hu, F.; Chen, D.; He, Y.; Bi, X.; Zhang, Y.; Cao, L.; Yan, J.; Hu, J.; et al. The greener the living environment, the better the health? Examining the effects of multiple green exposure metrics on physical activity and health among young students. Environ. Res. 2024, 250, 118520. [Google Scholar] [CrossRef]
- Aerts, R.; Honnay, O.; Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 2018, 127, 5–22. [Google Scholar] [CrossRef]
- Rook, G.A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci. USA 2013, 110, 18360–18367. [Google Scholar] [CrossRef]
- Vivaldo, G.; Masi, E.; Taiti, C.; Caldarelli, G.; Mancuso, S. The network of plants volatile organic compounds. Sci. Rep. 2017, 7, 11050. [Google Scholar] [CrossRef]
- Maesano, C.N.; Caillaud, D.; Youssouf, H.; Banerjee, S.; Prud’Homme, J.; Audi, C.; Horo, K.; Toloba, Y.; Ramousse, O.; Annesi-Maesano, I. Indoor exposure to particulate matter and volatile organic compounds in dwellings and workplaces and respiratory health in French farmers. Multidiscip. Respir. Med. 2019, 14, 33. [Google Scholar] [CrossRef]
- Yoon, H.-I.; Hong, Y.-C.; Cho, S.-H.; Kim, H.; Kim, Y.H.; Sohn, J.R.; Kwon, M.; Park, S.-H.; Cho, M.-H.; Cheong, H.-K. Exposure to volatile organic compounds and loss of pulmonary function in the elderly. Eur. Respir. J. 2010, 36, 1270–1276. [Google Scholar] [CrossRef]
- Hanigan, I.; Johnston, F.H. Respiratory hospital admissions were associated with ambient airborne pollen in Darwin, Australia, 2004–2005. Clin. Exp. Allergy 2007, 37, 1556–1565. [Google Scholar] [CrossRef]
- Brunekreef, B.; Hoek, G.; Fischer, P.; Spieksma, F.T.M. Relation between airborne pollen concentrations and daily cardiovascular and respiratory-disease mortality. Lancet 2000, 355, 1517–1518. [Google Scholar] [CrossRef] [PubMed]
Observational Studies | |||||||||
---|---|---|---|---|---|---|---|---|---|
Author, Year | Study Location and Period | Study Type | Sample Size (n) | Age (Mean ± SD, Years) | COPD Outcomes | Greenspace Measurement Methods | Greenspace Exposure | Outcome Estimation | |
(1) | Sarkar et al. (2019) [30] | UK 1 2006–2010 | Cross-sectional | 96,779 (77,679 in analysis) | ≥39 (56.2 ± 7.8) | COPD prevalence | NDVI 8 in a 500 m residential buffer | OR 11 per IQR 12 increase in NDVI | (−) 16 OR = 0.89 (95% CI: 0.84, 0.93) p < 0.001 |
(2) | Fan et al. (2020) [32] | China | Cross-sectional | 66,752 (9134 adults were classified as COPD 3) | ≥40 (61.59 ± 13.63) | COPD prevalence | NDVI in a 100, 300, 500, 1000, 2000, 3000, and 5000 m residential buffer | OR per IQR increase in NDVI | (+) 17 OR = 1.08 (95% CI: 1.01, 1.15) p < 0.05 (100 m buffer) |
(3) | Xiao et al. (2022) [43] | China | Cross-sectional | 50,991 | 20–89 (49.38 ± 13.86) | COPD prevalence; Full-spectrum lung function indicators | NDVI in a 250, 500, 1000, and 1250 m residential buffer | OR per IQR increase in NDVI | (−) age < 65: OR = 0.90 (95% CI: 0.82, 0.99) p < 0.001 (500 m buffer); age ≥ 65: OR = 0.92 (95% CI: 0.79, 0.95) p < 0.001 (500 m buffer) |
(4) | Maas et al. (2009) [29] | The Netherlands | Cross-sectional | 345,143 (12,813 were classified as asthma, COPD) | >12 | COPD morbidity | Green land cover | OR for 10% increase in greenspace within 1 km | (−) OR = 0.97 (95% CI: 0.96, 0.98) p < 0.01 (1 km radius) |
(5) | Servadio et al. (2018) [33] | Atlanta | Cross-sectional | 169 census tracts 1000–5000 (per census tract) | >65 | COPD prevalence | Tree canopy cover | NA | (+) Pearson correlation coefficients: tree canopy: r = 0.015 |
(6) | Zhang et al. (2023) [44] | Anhui, China | Cross-sectional | 2768 | ≥40 | Full-spectrum lung function indicators | NDVI with a distance of 1000-m buffer; EVI 9 | Indicators per IQR increase in NDVI | (−) FVC 18 p = 0.011; FEV1 19 p = 0.012; FEV3 20 p = 0.011; FEV6 21 p = 0.011 |
(7) | Kowalczyk et al. (2022) [45] | Lodz province, Poland | Case-control | 2984 | ≥65 | COPD exacerbations | Forest cover | Forest cover: High (>20.60%) vs. low (<7.00%); Medium <7.00%–20.60%> vs. low (<7.00%); low (<7.00%) | (NS) 22 high vs. low: OR = 0.897 (95% CI: 0.605, 1.331); medium vs low: OR = 0.925 (95% CI: 0.648, 1.322) |
(8) | Bauwelinck et al. (2021) [28] | Belgian 2001–2011 | Cohort | 2,185,170 | median (IQR) 51.14 (24.85) | COPD mortality | NDVI and MSAVI2 10 in a 300 m, 500 m, and 1000 m residential buffer; Perceived greenspace | HR 13 per IQR increase in NDVI (IQR: 0.24) | (−) NDVI 500 m: HR = 0.96 (95% CI: 0.93–1.00); Perceived neighborhood greenspace: HR = 0.94 (95% CI: 0.89–0.99) |
(9) | Roscoe et al. (2022) [27] | England 2006–31 July 2020 | Cohort | 472,314 (383 COPD cause death) | 40–69 years (56 ± 8.5) | COPD mortality | Percentage cover for each type of greenspace in circular distance buffers | HR per IQR increase in greenspace cover | (−) Total greenspace: HR = 0.85 (95% CI: 0.76–0.95); Private residential garden: HR = 0.78 (95% CI: 0.66–0.93) |
(10) | Sun et al. (2020) [31] | Hong Kong, China 1998–31 December 2011 | Cohort | 66,820 (947 COPD cause death) | ≥65 (84.3 ± 6.6) | COPD mortality | NDVI in a 250, 500 m residential buffer | ER 14 per IQR increase in greenness by NDVI 250 m | (NS) No quantitative results for GS indicators |
(11) | Zhao et al. (2022) [46] | China 2015–2018 | Cohort | Western region: 31.29 ± 0.30 Central region: 54.15 ± 0.29 Eastern region: 52.29 ± 0.47 * | NA 4 | COPD mortality | Coverage of greenspace; Three-dimensional greenspace | Estimates were scaled to a 1-unit (100 km2) increase in greenspaces and a 1-unit (1/105) decrease in mortality | (−) lag3 β 23 = −0.284 (95% CI: −0.388, −0.180) |
(12) | Yu et al. (2023) [47] | UK 2006–31 March 2021 | Cohort | 363,212 | 38–70 years (56.2 ± 8.1) | COPD incidence | NDVI in a 500, 1000 m residential buffer | HR per IQR increase in NDVI | (−) HR = 0.92 (95% CI: 0.89, 0.95) p < 0.001 (500 m buffer) |
(13) | Gou et al. (2023) [48] | Chongqing, China 2012–2020 | Ecological | 313,013 | NA | COPD mortality | NDVI | Parameters of GWR results | (±) 24 +(%) = 63.0, −(%) = 37.0; p < 0.001 |
(14) | Kasdagli et al. (2022) [49] | Greece | Ecological | 1035 municipal units | NA | COPD mortality | Mean NDVI in May per municipal unit | RR 15 per IQR increase in NDVI | (−) RR = 0.90 (95% CI: 0.83, 0.97) |
Experimental Studies | |||||||||
Author, Year | Study Location and Period | Study Type | Sample Size | Age (Mean ± SD, Years) | COPD Outcomes | Greenspace Type | Greenspace Exposure | Outcome Estimation | |
(15) | Jia et al. (2016) [50] | Hangzhou, China From 6 to 9 August 2013 | randomized control | 18 (forest: 10; city: 8) | forest: 70.1 (67–77); city: 70 (61–79) | Inflammation level; Flow cytometry; ELISA; POMS 5 evaluation | Forest | NA | (−) |
(16) | Janik et al. (2021) [51] | Germany PR 2 program for 21 days | non-randomized control | intervention group: 22; control group: 32 | 40–80 years | Body plethysmography, 6MWD 6, COPD Assessment Test, BMI 7, and peak flow. | Healing Forest | NA | (−) |
Criterion | Number of Studies (%) | Study Reference Numbers * |
---|---|---|
Study type | ||
Cross-sectional | 6 (38%) | [1,2,3,4,5,6] |
Case-control | 1 (6%) | [7] |
Cohort | 5 (31%) | [8,9,10,11,12] |
Ecological | 2 (13%) | [13,14] |
Randomized control | 1 (6%) | [15] |
Non-randomized control | 1 (6%) | [16] |
Study location | ||
United Kingdom | 3 (19%) | [1,9,12] |
China | 7 (45%) | [2,3,6,10,11,13,15] |
The Netherlands | 1 (6%) | [4] |
Atlanta | 1 (6%) | [5] |
Poland | 1 (6%) | [7] |
Belgian | 1 (6%) | [8] |
Greece | 1 (6%) | [14] |
Germany | 1 (6%) | [16] |
Study period | ||
<5 years | 11 (69%) | [1,2,3,4,5,6,7,11,14,15,16] |
5–9 years | 1 (6%) | [13] |
10–14 years | 4 (25%) | [8,9,10,12] |
Publication year | ||
2009–2015 | 1 (6%) | [4] |
2016–2020 | 5 (31%) | [1,2,5,10,15] |
≥2021 | 10 (63%) | [3,6,7,8,9,11,12,13,14,16] |
Criterion | Number of Studies (%) | Study Reference Numbers * |
---|---|---|
Greenspace indicator | ||
Used a single indicator | 10 (63%) | [1,2,3,4,7,12,13,14,15,16] |
Used multiple indicators | 6 (37%) | [5,6,8,9,10,11] |
Measurement methods | ||
NDVI 1 | 9 | [1,2,3,6,8,10,12,13,14] |
Amount of greenspace/land coverage | 4 | [4,8,9,11] |
Amount of tree canopy/forest coverage | 2 | [5,7] |
Three-dimensional greenspace | 1 | [11] |
Park access | 1 | [5] |
EVI 2 | 1 | [6] |
MSAVI2 3 | 1 | [8] |
Perceived greenspace | 1 | [8] |
Forest bathing | 2 | [15,16] |
Data source for greenspace | ||
Multispectral CIR 4 | 1 | [1] |
Landsat 5 or ETM 5 or OLI 6 | 3 | [2,8,10] |
MODIS 7 | 4 | [3,6,12,14] |
Land cover/Greenspace database | 4 | [4,8,9,11] |
CGIS 8 | 1 | [5] |
Other 9 | 3 | [7,8,13] |
Spatial resolution and buffer | ||
500 m buffer | 1 | [1] |
Multiple buffers (from 100 m to 5000 m) | 5 | [2,3,8,10,12] |
Postal code coordinates | 1 | [4] |
Census block group level | 2 | [5,8] |
1000 m buffer around each local community or village | 1 | [6] |
Provincial level | 2 | [7,11] |
Geocoded residential addresses | 1 | [9] |
MU 10 level | 2 | [13,14] |
COPD 1 Outcomes | Impact Correlation | Number of Studies (%) | Study Reference Numbers * |
---|---|---|---|
COPD prevalence | (−) 2 | 2 (13%) | [1,3] |
(+) 3 | 2 (13%) | [2,5] | |
COPD incidence and exacerbations | (−) | 2 (13%) | [4,12] |
(NS) 4 | 1 (6%) | [7] | |
COPD mortality | (−) | 4 (25%) | [8,9,11,14] |
(NS) | 1 (6%) | [10] | |
(±) 5 | 1 (6%) | [13] | |
Indicators of lung function with COPD | (−) | 4 | [3,6,15,16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Pan, K.; Li, H.; Zhao, B. Greenspace Exposure with Chronic Obstructive Pulmonary Disease: A Systematic Review. Forests 2024, 15, 634. https://doi.org/10.3390/f15040634
Gao Y, Pan K, Li H, Zhao B. Greenspace Exposure with Chronic Obstructive Pulmonary Disease: A Systematic Review. Forests. 2024; 15(4):634. https://doi.org/10.3390/f15040634
Chicago/Turabian StyleGao, Yijie, Kunhao Pan, Hongyi Li, and Bing Zhao. 2024. "Greenspace Exposure with Chronic Obstructive Pulmonary Disease: A Systematic Review" Forests 15, no. 4: 634. https://doi.org/10.3390/f15040634
APA StyleGao, Y., Pan, K., Li, H., & Zhao, B. (2024). Greenspace Exposure with Chronic Obstructive Pulmonary Disease: A Systematic Review. Forests, 15(4), 634. https://doi.org/10.3390/f15040634