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Abstract: Pine wilt disease is a highly contagious forest quarantine ailment that spreads rapidly. In
this study, we designed a new Pine-YOLO model for pine wilt disease detection by incorporating
Dynamic Snake Convolution (DSConv), the Multidimensional Collaborative Attention Mechanism
(MCA), and Wise-IoU v3 (WIoUv3) into a YOLOv8 network. Firstly, we collected UAV images from
Beihai Forest and Linhai Park in Weihai City to construct a dataset via a sliding window method.
Then, we used this dataset to train and test Pine-YOLO. We found that DSConv adaptively focuses
on fragile and curved local features and then enhances the perception of delicate tubular structures in
discolored pine branches. MCA strengthens the attention to the specific features of pine trees, helps
to enhance the representational capability, and improves the generalization to diseased pine tree
recognition in variable natural environments. The bounding box loss function has been optimized
to WIoUv3, thereby improving the overall recognition accuracy and robustness of the model. The
experimental results reveal that our Pine-YOLO model achieved the following values across various
evaluation metrics: MAP@0.5 at 90.69%, mAP@0.5:0.95 at 49.72%, precision at 91.31%, recall at 85.72%,
and F1-score at 88.43%. These outcomes underscore the high effectiveness of our model. Therefore,
our newly designed Pine-YOLO perfectly addresses the disadvantages of the original YOLO network,
which helps to maintain the health and stability of the ecological environment.

Keywords: UAV remote sensing image; pine wilt disease detection; Pine-YOLO; Dynamic Snake
Convolution; Wise-IoU v3; Multidimensional Collaborative Attention Mechanism

1. Introduction

Pine trees are widely distributed worldwide and primarily grow in the temperate
regions of the Northern Hemisphere, such as Russia, Canada, the United States, China,
Japan, and Sweden. Pine trees are highly significant arboreal species inside the forest,
fulfilling a crucial function in safeguarding the ecosystem and upholding the equilibrium
of carbon levels. Nevertheless, pine trees are always vulnerable to infestations and illnesses.
Pine wilt disease is a highly contagious forest quarantine ailment that spreads rapidly and
causes significant mortality [1]. This disease is transmitted both artificially and naturally.
Artificial transmission refers to the movement of contaminated wood and its products,
as well as the utilization of infected wood as packaging in commercial transactions [2].
Natural transmission is mainly generated by the spread of the infection to new pine trees
by monochamus and other insect vectors [3]. This vector is native to North America,
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but its distribution and damage range have been expanded dramatically to many countries
such as China, Japan, Korea, Portugal, and Spain [4]. The pine wood nematode has been
spreading in China as an invasive species since 1982, resulting in the mortality of significant
numbers of pine trees [5]. This reduces forest carbon sinks continuously and thus brings
huge economic losses to the world [6]. The primary strategies to prevent the further
dissemination of the pine wood nematode include physical control, chemical control, and
biological control. The first two methods are the most efficient but are harmful to the
ecological environment, and biological control takes too long a time to achieve efficient
control. Most importantly, all these three methods need precise surveillance of infected
trees to treat them effectively and promptly.

There are three main means to monitor the pine wilt disease, namely, manual inspec-
tion, satellite or aerial remote sensing monitoring, and unmanned aerial vehicle (UAV)
monitoring. Manual inspections are labor-intensive, inefficient, and costly, and are further
constrained by the uneven geographical distribution of pine trees and the complex and
variable environments in which they are situated [7,8]. Satellite or aerial remote sensing
monitoring can achieve large-area spatial coverage, but they are limited by sensor reso-
lution and satellite operation cycles. UAV remote sensing has been increasingly used in
agriculture and forestry with advantages such as higher flexibility, lower cost, and higher
resolution relative to satellite remote sensing, etc. [9,10]. Remote sensing plays a crucial
role in the detection of forest health.

To process the massive remote-sensing images of pine trees acquired by satellites or
UAV, machine learning has been extensively used and developed. Syifa et al. [11] divided
the images based on GPS into classes such as PWD-indicated trees, normal pine, buildings,
roads. Their study has enhanced the ability to distinguish buildings or roads with similar
colors to PWD-indicated trees. Oide et al. [12] combined visible color imagery and ML
algorithms, but were not concerned with detecting the infection stages of individual trees.
In order to detect PWD earlier, Iordache et al. [13] and Yu et al. [14] assigned infected trees
to different classes and distinguished early infections from other stages. Wu et al. [15]
proposed the green attack stage as the key issue for early monitoring and compared the
differences in detection accuracy across different dates. Traditional machine learning must
construct data features manually with high separability and select appropriate classifiers,
which are not suitable for large-scale data training. Machine learning also struggles to
adapt to diverse and complex scenarios, resulting in limited practicality. For instance,
overlapping tree canopies make it difficult to distinguish the target from surrounding trees,
and similar-colored backgrounds and other dead trees cause detection confusion.

Unlike traditional machine learning, deep learning algorithms are adapted to training
on large-scale raw datasets and various complex scenarios. Therefore, it has been applied
to remote sensing more widely due to its powerful automatic feature learning without
human intervention. It is a common practice to employ diverse methods to enhance remote
sensing images, such as mirroring, flipping, adding noise, rotating, scaling, etc. [16–18]. Cai
et al. [19] proposed an effective data augmentation method based on Sentinel-2 satellite data
and UAV images to efficiently detect PWD. Zhang et al. [20] corrected 5-band multi-spectral
images and visualized them as heat maps to propose a patch-based deep classification.
Many researchers also engage in evaluating [21,22] or improving models [23–28], such
as optimizing neural networks. Deng et al. [29] improved Faster-RCNN based on RPN
and added a geographic location module. Li et al. [30] proposed YOLOv4-Tiny-3Layers
to filter uninterested and irrelevant images. Abdollahnejad et al. [31] innovatively used
UAV images as reference data and combines high-resolution satellite platforms with time
series data to evaluate and predict forest health status. Ren et al. [32] proposed a Global
Multi-Scale Channel Adaptation Network based on circle sampling to better match the
circular shape of the diseased trees. Zhang et al. [33] improved YOLOv5 by four attention
mechanism modules to detect smaller infected wood in images that covers a large area.
Qin et al. [34] designed SCANet (spatial-context-attention network) and Han et al. [35]
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proposed multi-scale spatial supervision convolutional network (MSSCN) to reduce the
loss of spatial information and detect trees in complex backgrounds.

In comparison, YOLO has greatly enhanced the speed of detection. Additionally, it
excels in learning generalized features of detection targets, thereby reducing background
recognition errors. While extensive researches have been conducted to apply YOLO in
identification of pine wilt disease, challenges still remain, including accurate detection
in complex backgrounds, identifying subtle tubular structures in pine tree branches, etc.
Inspired by previous research, we adopted the highly precise and adaptable YOLOv8
model as our benchmark network and developed a new detection model named Pine-
YOLO. This model integrates DSConv (Dynamic Snake Convolution) and incorporates
MCA (Multidimensional Collaborative Attention Mechanism) along with WIoUv3 (Wise-
IoU v3). We acquired images of pine forests in the Weihai area via the UAV remote sensing
technique, then used these data to train and evaluate the new Pine-YOLO model. Finally,
we found this new model can effectively extract fine and curved structures in a complex
natural environment, so it can reach an extreme high accuracy of ~90%.

2. Materials and Methods
2.1. Image Acquisition

In this work, we utilized images from Beihai Forest and Linhai Park, located in Weihai
City (37◦30′ N, 122◦6′ E), Shandong Province, China. More than 70% of the vegetation in
this area is made up of pine trees, and some of them are already nematode-infected, which
is depicted in Figure 1.
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Figure 1. Detailed geographical location of the investigated area in this work with corresponding
remote sensing images.

The research area boasts an extensive coastline, is situated in the north temperate
zone, and is characterized by a monsoon continental climate, with black pine being the
predominant species. The research area exhibits a rich age structure, encompassing various
growth stages from seedlings to mature trees. Vertically, the forest can be divided into three
main layers: the uppermost layer consists of mature, tall pine trees forming the canopy; the
middle layer is primarily composed of mid-height pine trees and a few other tree species,
adding to the forest’s vertical complexity; the ground layer is dominated by shrubs and
herbaceous plants. Horizontally, the distribution of trees within the forest is not uniform
but rather presents a pattern of dense areas and open spaces alternating, indicating a high
level of structural complexity in the forest.

A DaJiang UAV outfitted with a DG2pro CMOS was employed as a flying platform in
the data gathering procedure, conducting six flights at altitudes ranging from 180 m to 240 m.
The sizes of these orthorectified images are 128,601 × 62,669 pixels, 126,365 × 90,989 pixels,
48,236 × 47,168 pixels, and 57,653 × 48,979 pixels, respectively, amounting to a total coverage
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area of approximately 22.19 km2. Using a custom program which we developed and compiled
in PyCharm, the original images are segmented into 43,095 image slices in 1024 × 1024 pixels
by a sliding window method with 20% overlapping area, which is demonstrated in Figure 2b.
The geographic coordinates of all diseased pine tree samples are individually labeled and
verified on-site. During the training process, the image dataset containing diseased pine
trees is randomly divided into a training dataset and a validation dataset in a ratio of 8:2.
The dataset collection was conducted between 27 September–8 October 2022, during which
the weather was predominantly cloudy, with two days of rainfall. The strategic selection of
this period aimed to mitigate the confounding effects of drought stress and discoloration
observed in deciduous broad-leaved trees. This timing not only avoids the phenotypic
variations commonly induced by environmental stressors, but also ensures the specificity
of the phenotypic features associated with pine wilt disease (PWD) in our study. Careful
selection of the dataset during this period further helped in minimizing the inclusion of
tubular, locally elongated, and curved branch structures that might arise from conditions
other than PWD, thereby enhancing the detection accuracy of our improved method focusing
on tubular structural enhancements.
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2.2. Image Pre-Processing

In this study, we adopt the mosaic data pre-processing technique integrated within the
YOLOv8 framework to augment the variety of the training dataset, thereby strengthening
the generalization ability of this model. This technique randomly combines four different
photos into a unified image by stochastic scaling, cropping, and alignment processes, as
illustrated in Figure 3. This approach not only adds new variations to the small-sized
targets in the training sample, but also helps to achieve a balanced distribution for the
labeled diseased and unlabeled diseased pine trees in the dataset.
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2.3. Detection Networks
2.3.1. Pine-YOLO Network Structure

YOLOv8 shows excellent detection speed and accuracy, and it is composed of four key
components: the Input module, Backbone module, Neck module, and Head module. The
Input module primarily utilizes techniques like mosaic data augmentation, dynamic anchor
box computation and grayscale augmentation, etc. The Backbone module includes Conv,
C2f, and SPPF, etc., where C2f learns residual features and expands the model gradient
flow by branching across layer connections. The Neck module still uses the PAN-FPN idea
to enhance the fusion of object features in different dimensions. The Head module adopts a
decoupled head structure that calculates the confidence and location of the final detected
target based on the enhanced features [36].

In detection of pine wilt disease, the morphologic features of the dataset are a critical
factor to obtain perfect recognition results. However, images of diseased pine trees taken
via UAV remote sensing are particularly sensitive to variations in lighting and shadow
conditions; some infected pine trees also have color and texture differences. Therefore,
when the standard YOLOv8 network is employed to perform the detection of pine wilt
disease using UAV remote sensing images, it usually outputs a significant number of false
negative and false positive results. To address these disadvantages, we integrated the
DSConv module into the YOLOv8 network in this study, along with the MCA module and
the WIoUv3 loss function, thus developing a new Pine-YOLO model. This newly designed
model improves the ability of feature extraction from pine trees and image recognition
amidst background interference, thereby reducing the false negatives and false positives in
the whole training and testing processes. The network structure of Pine-YOLO is shown
in Figure 4.
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2.3.2. Dynamic Snake Convolution (DSConv)

In the overhead view of the UAV remote sensing images, we noted that in addition to
the obvious color features, the branches of diseased pine trees are topologically tubular,
locally elongated, and curved.

As shown in Figure 5, YOLOv8 is able to learn geometric variations freely by the addi-
tion of DSConv, because the perception of geometric structures is improved by adaptively
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focusing on the fragile and curved local features of the tubular structure. On fine tubular
structures, this approach can consider the serpentine morphology of the tubular structure
and use constraints to complement the free learning process to enhance the perception of
fine tubular structures in discolored pine branches [37].
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DSConv enhances target recognition using deformation offsets. This allows the convo-
lutional kernel to flexibly focus on the complex and variable geometric features of the target.
Additionally, an iterative strategy is employed in this model to prevent the perceptual field
from drifting away from the target during the free learning of these deformation offsets.
This strategy involves selecting the subsequent target for observation in the processing
sequence, which ensures continuity of attention while not extending the perceptual range
further, due to the excessive deformation offsets.

DSConv, introduced here, defines a convolution kernel G with size 9 in the x-axis and
y-axis directions, and the distinct portrayal of each network in G is Gi±a = (xi±a, yi±a),
where a = {0, 1, 2, 3, 4} represents the horizontal distance between the grid and the
central location, whereas the choice of each grid point Gi±a in the convolution kernel Gi is an
accumulative procedure. Starting from Gi, the position away from the center grid depends
on the position of the previous grid: Gi±a has an additional offset ∆ = {δ | δ ∈ [−1, 1]}
compared to Gi. Therefore, the offset needs to be Σ in order to ensure that the convolution
kernel adheres to a linear structural shape. As shown in Figure 6, Gi±a in the x-axis
direction becomes:

Gi±a =

{
(xi+a, yi+a) =

(
xi + a, yi + Σi+a

i ∆y
)

(xi−a, yi−a) =
(
xi − a, yi + Σi

i−a∆y
) (1)

Gi±a in the y-axis direction becomes:

Gj±a =


(
xj+a, yj+a

)
=

(
xj + Σj+a

j ∆x, yj + a
)

(
xj−a, yj−a

)
=

(
xj + Σj

j−a∆x, yj − a
) (2)

The bilinear interpolation formula is written as follows:

G = ΣG′D
(
G′, G

)
· G′ (3)

where G is the fractional portion of Equations (1) and (2), G′ enumerates all integral
space positions, and D is a bilinear interpolation kernel being divided into two one-
dimensional kernels:

D
(
G, G′) = d(Gx, G′x) · d

(
Gy, G′

y
)

(4)
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Figure 6. Illustration depicting (a) the coordinate calculation process of DSConv and (b) visualization
of the receptive field of DSConv.

As shown in Figure 6, due to the two-dimensional (x-axis, y-axis) variations, DSConv
covers a 9 × 9 range during deformation to acquire better adaptability to the slender tubular
structures on top of the dynamic structure, improving the perception of key features.

2.3.3. Multidimensional Collaborative Attention Mechanism

The multidimensional collaborative attention mechanism (MCA) successfully captures
the spatial dimension and feature interdependence between channels through its parallel
branching structure, and thus enhances the comprehension of the YOLOv8 model of the
spatial properties of pine trees and their representations in images. At the same time,
MCA also strengthens the attention on the specific features of pine trees by fine-tuning the
input feature maps. This can raise the accuracy of recognition, specifically in cases where
the background is complex or the pine tree features are not obvious. This attention can
also provide efficient performance gains by enhancement of the network representation,
improving the generalization of the model for pine tree recognition, which is valuable in
variable natural environments.

As shown in Figure 7, the MCA module we used comprises three branches. Each
branch is dedicated to a separate attentional model in the channel, width, and height
dimensions. The squeeze transformation employs global mean and standard deviation
pooling to consolidate cross-dimensional feature responses. It also employs a combinatorial
technique to intelligently blend mean and standard deviation pool information, hence im-
proving the representation of feature descriptors. The excitation transformation structure of
MCA effectively resolves the dilemma between detection performance and computational
overhead trade-offs by dynamically capturing local feature interactions.
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The uppermost branch is utilized to record the interconnections among character-
istics in the spatial dimension W. Similarly, the middle branch is utilized to record the
relationships between features in the spatial dimension H. The lower branch obtains the
exchanges among channels. The MCA utilizes substitution procedures to capture the
long-term dependencies between the channel dimension and either of the spatial dimen-
sions in the first two branches. Ultimately, the results from each of the three branches are
combined by a straightforward averaging process during the integration step. The symbol
⊗ in Figure 7 denotes broadcast element multiplication, and ⊕ denotes broadcast element
summation. The overall design intends to convert input features into fine outputs of the
same dimensions.

MCA can also be viewed as a computational unit that performs specific transforma-
tions to refine the input tensor into an output tensor of the same shape. Specifically, let F
denote the outcome of the convolutional layer and functions as the input feature mapping
for the MCA module; then, the shape of F can be described as C × H × W, where C, H, and
W refer to the number of channels (filters), the height and width of the spatial feature map,
respectively. The purpose of the MCA module is to feed F into each branch to enhance
its refining feature. F performs Ttrans on three branches separately. We should note that F
is rotated 90◦ anticlockwise along both the H-axis and W-axis in the first branch and the
second branch, while the original features are maintained after Ttrans in the third branch,
generating the feature map denoted as

>
F. Then,

>
F is input into the squeeze transformation

to obtain the aggregated feature map F̂. Then, F̂ is passed into the excitation transformation
to capture the spatial dimensions and inter-channel feature interactions, producing F̃ ac-
cordingly. Next, F̃ is passed through the sigmoid activation function and A is applied to

>
F

via element-by-element multiplication to obtain the enhanced feature map F′. Finally, F′ is
inverted by Ttrans to obtain F′′ . This process can be summarized in the following equations:

>
F = Ttrans(F) (5)

F̂ = Tsq

(>
F
)

, F̃ = Tex

(
F̂
)

(6)

A = σ
(
F̃
)
, F′ = A⊗>

F, F′′ = T−1
trans

(
F′) (7)

where Ttrans(·) denotes the transformation of the input feature map, while T−1
trans(·) denotes

the inverse transformation process, σ(·) represents the sigmoid activation function, Tsq(·)
and Tex(·) denote the squeezing and excitation transforms, respectively.

(1) Squeeze: A method for adaptively combining dual interaction information

In the Squeeze module, effective interaction of features in the spatial and channel
dimensions is achieved by combining mean pooling and standard deviation pooling [38].
High performance is maintained while the computational overhead is controlled. The
process of the squeezing transformation is shown in Figure 8.

Figure 8 illustrates that the input
>
F is the spatial information of the feature map, which

is combined of global average and standard deviation pooling. This process produces two

distinct channel feature statistics, i.e.,
>
F

avg
and

>
F

std
, representing the average pooled and

standard deviation pooled feature descriptors, respectively. More precisely, the two pooling
processes for these channels can be represented individually in the following equations:

>
f

avg
m =

1
H × W

H

Σ
i=1

W

Σ
j=1

>
f m(i, j) (8)

>
f

std
m =

√√√√ 1
H × W

H

Σ
i=1

W

Σ
j=1

(>
f m(i, j)−>

f
avg
m

)2
(9)

Among them,
>
f m is the feature map of the m-th channel for the input

>
F, which is in the

shape of 1 × H × W, where H and W refer to the height and width of the spatial feature
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map, respectively.
>
F ·>f avg

m and
>
f

std
m are used to distinct output feature descriptors, each

associated with the m-th channel. Subsequently, the inputs
>
F

avg
and

>
F

std
are sent to the

adaptive combination mechanism to generate the channel feature descriptor F̂. This process
can be expressed as:

F̂ = Tsq

(>
F
)
=

1
2
⊗

(>
F

avg
m ⊕>

F
std
m

)
⊕ α ⊗>

F
avg
m ⊕ β ⊗>

F
std

(10)Forests 2024, 15, 737 9 of 20 
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The optimized trainable floating-point parameters α and β must have values between
zero and one. Simultaneously, the input-dependent dynamics have the capacity to allocate
varying weights to the mean pooled and standard deviation pooled features throughout
different stages of image feature extraction. This promotes the distinctiveness of the output
feature descriptors.

(2) Motivation: A method for adaptively combining the capture of local feature interactions

The excitation transformation method is employed to capture the local interactions
of features between channels, which are further transformed to maximize the usage of
dimensionally relevant feature descriptors produced by the squeezing transform [38].

As shown in Figure 9, we can obtain the channel feature weight by taking the channel
feature descriptor F̂ as an input via Equation (6). In this process, we only take the interaction
with its KC neighbors for m-th channel. The channel feature weight f̃m can be computed by
the following equation:

f̃m =
KC
Σ

ξ=1
wξ f̂ ξ

m, f̂ ξ
m ∈ ΘKC

m (11)

ΘKC
m represents the collection of feature descriptors from KC adjacent channels con-

nected to the initial m-th channel, whereas wξ represents the learnable parameters that are
common and not unique to any one channel. The implementation of this transformation
can be achieved by a 2D convolution technique using a kernel size of (1, KC), which can be
expressed as:

C = φ(KC) = 2(λ×KC+γ) (12)
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Then, KC can be approximately acquired if C is given.

KC = ϑ(c) =
[

log2(c)− 1
1.5

]
odd

(13)

(3) Integration: Triple focus collaboration

The augmented feature map F′′ can be refined in three branches represented as F′′
W ,

F′′
H , and F′′

C, respectively. This refinement process eventually produces the final refined
feature map F′′′ . It is achieved by a simple average summation in the integration stage with
the following equation:

F′′′ =
1
3
⊗

(
F′′

W ⊕ F′′
H ⊕ F′′

C
)

(14)

2.3.4. WIoUv3 Loss Function

During the training process of our newly designed Pine-YOLO model, it is crucial
to utilize a bounding box loss function to guide the regression, and thus to reduce the
bias between the predicted frame and the true frame, which increases the efficiency of the
detection model. The loss function of YOLOv8 is described as:

L = LDFL + Lcls + Lbox (15)

where LDFL, Lcls, and Lbox represent the focal point loss, the class loss, and the bounding
box regression loss, respectively.

The bounding box regression loss for YOLOv8 employs the CioU function with the
following formula:

LCIOU = 1 − IoU +
ρ2(b, bgt)

c2 + αv (16)

α =
v

1 − IoU + v
(17)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(18)

where wgt, hgt, w, and h define the width and height of the real frame and the predicted
frame, respectively. α refers to the weight function, v represents the similarity of the width-
to-height ratio, and IoU is the intersection ratio of the real frame and the predicted frame.
bgt and b denote the central points of the boundaries of the real frame and the predicted
frame, respectively. ρ is the Euclidean distance between bgt and b. c refers to the length
of the diagonal of the smallest outer rectangle of the real frame and the predicted frame.
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wc and hc represent the dimensions of the smallest possible rectangle that can encompass
both the real frame and the predicted frame, respectively.

c =
√
(wc)2 + (hc)2 (19)

The CioU loss function has an obvious advantage over the traditional IoU in bounding
box regression, which considers the variations in the geographical position, size, and shape
of the predicted frame and the real frame. For instance, the distance of the bounding box
regression, the centroid offset, the overlap area, and other factors make the bounding box
regression converge better. However, from the formula calculating CioU in Equation (16),
the parameter v only evaluates the similarity of the aspect ratio and does not accurately
represent the actual relationship between the width and height of the real frame and the
predicted frame. This would worsen the penalty for low-quality samples, weakening the
generalization ability accordingly.

To address the disadvantages of CioU, we adopted WioUv3 (Wise-IoUv3) to deal with
the loss function in this study, which incorporates a weighting coefficient to modify the
correlation between each predicted frame and the real frame. It also considers the quality of
the samples in relation to the CioU loss function. Additionally, it evaluates the standard of
the anchor frames through a dynamic non-monotonic focusing mechanism [39]. WioUv3 is
built upon the foundation of WioUv1. The formula to describe WioUv1 is presented below:

LWIoUv1 = RWIoU LIoU (20)

RWIoU = exp

(
x − xgt

)2
+

(
y − ygt

)2(
Wg

2 + Hg
2
)∗

 (21)

LIoU = 1 − IoU (22)

Here, RWIoU is the normalized length of the centroid connection representing the loss
of a high-quality anchor frame. As shown in Figure 10, the blue and green rectangles repre-
sent the anchor frame and the target frame, respectively. Wg and Hg refer to the width and
height of the smallest outer rectangle of the anchor frame and the target frame, respectively.
x and y represent the coordinates of the centroid of the anchor frame, respectively, while
xgt and ygt are the coordinates of the centroid of the target frame, respectively.

WioUv3 introduces a gradient gain distribution method to reduce the influence of harm-
ful gradients as compared to WioUv1. This ensures the effect of high-quality anchor frames
and strengthens the generalizability of the Pine-YOLO model. The WioUv3 formulas are:

LWIoUv3 = r × LWIoUv1 (23)

r =
β

δαβ−δ
(24)

β =
L∗

IoU

LIoU
∈ [0,+∞] (25)

where β refers to the measured quality of the anchor frame by considering the presence of
outliers, for which a smaller outlier suggests a better anchor frame. r is a non-monotonic
focusing factor that successfully mitigates the occurrence of bigger damaging gradients
caused by low-quality samples. L∗

IoU is a monotonic focusing factor, while LIoU is a sliding
average of LIoU with the momentum equalling to m. α and δ are the hyper-parameters.
When β = δ, r = 1. When β is equal to the specific value of C, the anchor frame will have
higher gradient gain.

β follows the change of LIoU , so the gradient gain of the anchor frame can be continu-
ously adjusted. According to the current quality of the anchor frame, the loss function can
dynamically adjust the gradient gain allocation strategy.
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2.4. Parameter Settings and Evaluation Metrics

With our newly designed Pine-YOLO, we carried out series of detection on pine wilt
disease using our UAV images collected from Weihai. The experiments are performed with
the NVIDIA GeForce RTX 3060 GPU and the Windows 10 operating system. PyTorch is
employed for the deep learning framework. An automatic optimizer is employed with
the following parameters: an initial learning rate of 0.01, a learning rate decay factor of
0.01, a batch size of 16, a momentum value of 0.937, a weight decay coefficient of 0.0005,
a non-maximum suppression threshold of 0.5, a patience value of 50, and a pre-trained
YOLOv8 model.

The employed assessment measures for the detection and classification outcomes are
mAP@0.5, mAP@0.5:0.95, Precision, Recall, and F1-score. The formulas to calculate these
metrics are given below:

Precision =
TP

TP + FP
× 100% (26)

Precision denotes the probability that the prediction target is correct. TP means that a
diseased tree is correctly detected. FP means that a healthy pine tree is detected as diseased.

Recall =
TP

TP + FN
× 100% (27)

Recall denotes the probability of a diseased pine tree being truthfully predicted. FN
means that the diseased tree is incorrectly predicted to be healthy.

mAP =

i=1

Σ
n

AiP

n
(28)

mAP represents the Precision accuracy of the detection process. mAP@0.5 represents
the average Precision at an intersection over the IoU criterion of 0.5. mAP@0.5:0.95 refers
to the average mAP value with IoU from 0.5 to 0.95 with a step size of 0.05.

F1 =
2Precision ∗ Recall
Precision + Recall

× 100% (29)

F1-score provides a consistent metric to measure the balance between Precision and Recall.

3. Results and Discussions
3.1. Detection Results from Alternative Methods

Figure 11a shows five images containing diseased trees and disease annotations in
the testing dataset, and each image is taken under different conditions, such as different



Forests 2024, 15, 737 13 of 19

lighting and shading conditions. These various conditions directly affect the brightness
and contrast of the images, and may mask or emphasize certain features of the pine trees,
thus affecting the recognition results. In addition, the diversity of ground conditions, such
as bare soil, grass, rocks, and other surface features, may also interfere with the target
detection of pine trees. Particularly, in cases where the ground color is similar to that of
a diseased pine tree, it is difficult for the detection algorithm to distinguish the pine tree
from the background. At the same time, the presence of other background factors, such as
vegetation, may confuse pine trees with the background, further increasing the likelihood
of detection errors.

Forests 2024, 15, 737 14 of 20 
 

 

 
Figure 11. (a) Test images with labels. Detection results by (b) Faster-R CNN, (c) RetinaNet, and (d) 
Pine-YOLO algorithms. Among these images, the yellow, red, and blue rectangles represent true 
positives (TPs), false negatives (FNs), and false positives (FPs), respectively. 

To address these problems, we performed detection by our newly designed Pine-
YOLO model, and show the detection results in Figure 11d. Table 1 summarizes the quan-
titative detection results of Pine-YOLO methods applied to testing images. We can find 
that the Pine-YOLO model exhibits exceptional performance, particularly in terms of 
mAP@0.5 (90.69%) and Precision (91.31%). This demonstrates its high reliability in locat-
ing and predicting pine trees accurately. Pine-YOLO also presents a notable Recall of 
85.72%, indicating its effectiveness in identifying the most diseased pine trees. As an av-
erage of Precision and Recall, F1-score reaches a relative high value of 88.43%, further 
confirming the superiority of Pine-YOLO in striking a balance between detection accuracy 
and coverage. 

  

Figure 11. (a) Test images with labels. Detection results by (b) Faster-R CNN, (c) RetinaNet, and
(d) Pine-YOLO algorithms. Among these images, the yellow, red, and blue rectangles represent true
positives (TPs), false negatives (FNs), and false positives (FPs), respectively.

To address these problems, we performed detection by our newly designed Pine-
YOLO model, and show the detection results in Figure 11d. Table 1 summarizes the
quantitative detection results of Pine-YOLO methods applied to testing images. We can
find that the Pine-YOLO model exhibits exceptional performance, particularly in terms
of mAP@0.5 (90.69%) and Precision (91.31%). This demonstrates its high reliability in
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locating and predicting pine trees accurately. Pine-YOLO also presents a notable Recall
of 85.72%, indicating its effectiveness in identifying the most diseased pine trees. As an
average of Precision and Recall, F1-score reaches a relative high value of 88.43%, further
confirming the superiority of Pine-YOLO in striking a balance between detection accuracy
and coverage.

Table 1. Detection results obtained from different deep learning algorithms.

Detection Models mAP@0.5 mAP@0.5:0.95 Precision Recall F1-Score

Faster-RCNN 76.00% 38.50% 68.42% 79.59% 73.58%
RetinaNet 70.80% 38.60% 67.80% 81.63% 74.08%
YOLOv5 82.72% 47.16% 68.81% 82.84% 74.76%
YOLOX 73.10% 46.40% 77.08% 75.51% 76.29%
DETR 81.92% 45.00% 80.39% 83.67% 82.00%

MA-Unet * - - 57.45% 50.56% 46.78%
YOLOv5-PWD * 84.5% - 87.8% 76.8% 81.93%

Pine-YOLO 90.69% 49.72% 91.31% 85.72% 88.43%
The symbol “*” denotes that the model and its data are sourced from other references in the same research field.

To make a clear comparison between our results and other deep learning algorithms,
we also carried out detections using Faster R-CNN, RetinaNet, YOLOv5, YOLOX, and
DETR, respectively. The detection results for all these algorithms are also listed in Table 1,
Figure 12, and Figure S1 in Supplementary Materials. We can see from these data that the
other algorithms also exhibit good performances in some metrics, for example YOLOv5
provides a relatively high mAP@0.5 of 82.72%. However, as a whole, they showed a consid-
erable number of missed detections and false detections, resulting in the low evaluation
parameters. Moreover, Pine-YOLO also demonstrated superior performance in the more
stringent metric of mAP@0.5:0.95 (49.72%), indicating its higher efficiency across different
IoU thresholds. That is, Pine-YOLO demonstrated an overall superior ability to identify
diseased pine trees correctly, confirming the strong accuracy and robustness of this model
under varying lighting conditions.

To further validate our research findings, we compared the performance of Pine-
YOLO with other previous methods mentioned in the literature within the same field,
MA-Unet [40] and YOLOv5-PWD [41]. The data presented in the Table 1 clearly illustrate
that Pine-YOLO in this work surpasses both MA-Unet and YOLOv5-PWD in terms of
precision and recall, thereby also exhibiting a marked superiority in the F1 score. This com-
parison showcases the outstanding performance of Pine-YOLO in accurately identifying
and classifying diseased pine trees.

3.2. Ablation Experiment

In this study, we introduced DSConv, MCA, and WIoUv3 into the YOLOv8 network to
form the Pine-YOLO model. DSConv enhances the perception of the fine tubular structure
of discolored pine branches by adaptively focusing on the fragile and curved local features
of the tubular structure. MCA helps the model better understand the spatial properties
of the pine trees and their representation in the image. It strengthens the attention of the
model to the specific features of pine trees, and thus improves recognition accuracy and
the generalization ability of the model for diseased pine tree recognition in variable natural
environments. WIoUv3 uses a dynamic non-monotonic focusing mechanism (FM) to make
the most realistic gradient gain allocation decision at each moment based on the current
situation, improving the overall recognition accuracy and robustness.

The quantitative findings of ablation experiments are presented in Table 2. All models
used on the testing dataset show significant performance improvements. The imple-
mentation of DSConv increases the mAP@0.5 from 78.46% to 85.34%. This substantial
enhancement indicates that DSConv can augment the Precision effectively in locating pine
trees. The introduction of the MCA module independently boosts the Recall to 85.71%,
underscoring its crucial role in capturing pine tree features. WIoUv3 achieves a competi-
tive edge under the more comprehensive mAP@0.5:0.95 evaluation parameter with mAP
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reaching 50.61%, demonstrating a robust capability. When these three components are
integrated into the YOLOv8 network to construct the Pine-YOLO model, it achieves the best
detection results, which are shown in Table 2 and Figure 12 in detail. The data in Table 2
show that Pine-YOLO attains peak performance across all key metrics, especially achieving
a high mAP@0.5 of 90.69% and an F1-score of 88.43%, which verifies the significant superi-
ority of DSConv, MCA, and WIoUv3 synergy in detection of pine wilt disease. In Figure 12,
all types of algorithm combination do not show any missed detection in the testing images,
while the false detection still remains. With the successive addition of these modules, the
false detection rate gradually decreases. These phenomena prove that the newly designed
Pine-YOLO model can extract the target features effectively and thus significantly improves
recognition accuracy and reliability. Specifically, with the combined application of differ-
ent modules in the Pine-YOLO algorithm, the superposition effect enables the model to
distinguish the target from the background more accurately when it encounters complex
image content. That is, in scenes with complex or similar features, Pine-YOLO effectively
reduces false recognition and ensures highly accurate target detection. Additional ablation
experimental results are included in Figure S2 in Supplementary Materials.
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rectangles represent true positives (TPs) and false positives (FPs), respectively.
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Table 2. Detection results obtained from quantitative ablation experiments. YOLOv8 serves as the
benchmark network.

DSConv. MCA WIoUv3 mAP@0.5 mAP@0.5:0.95 Precision Recall F1-Score

- - - 78.46% 47.55% 74.42% 83.67% 78.77%√
- - 85.34% 43.11% 88.74% 83.67% 86.13%

-
√

- 85.56% 47.17% 82.90% 85.71% 84.28%
- -

√
82.65% 50.61% 75.71% 82.64% 79.02%√ √

- 88.70% 48.91% 93.64% 83.67% 88.37%√
-

√
86.56% 49.06% 85.94% 87.64% 86.78%

-
√ √

87.76% 46.99% 89.82% 85.71% 87.72%√ √ √
90.69% 49.72% 91.31% 85.72% 88.43%

The symbol “
√

” denotes the inclusion of a module or classification network in the baseline network, whereas the
symbol “-“ signifies its absence.

3.3. Pine-YOLO Composite Indicator Assessment and Discussion

The validation losses of Pine-YOLO, which are depicted in Figure 13a, are also ana-
lyzed thoroughly in this study. The gradual decrease in different loss metrics highlights the
progress in learning how to identify pine trees more accurately. A significant decrease in
Validation Box Loss is found in Figure 13a, which reveals the increasing accuracy in locating
the bounding box of a diseased pine tree, which is critical for fine-tuning target detection in
complex images. The continued decrease in Validation Class Loss in Figure 13a indicates
the increased accuracy of Pine-YOLO in identifying the class of the targeted pine tree. In
addition, the decrease in Validation Distribution-Focused Loss (DFL) further confirms the
continued efforts of Pine-YOLO to improve localization details, particularly for accuracy on
the edge of pine trees. As a consequence, these results demonstrate the effectiveness of the
design and training strategy for Pine-YOLO in improving the accuracy of diseased pine tree
detection results. Meanwhile, when the Pine-YOLO model deals with new and different
data, it shows a smooth Validation Loss curve, indicating better consistency, reliability, and
thus the generalization of this newly designed model.
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The convergence curves of the performance metrics for Pine-YOLO reveal the detection
exhibition at each training stage, which are shown in Figure 13b. Although these values,
e.g., the Precision, Recall, mAP@0.5, and mAP@0.5:0.95, can reach a relatively high level,
the volatility of the Precision and Recall values in this model reminds us that we need to
balance the ability to recognize positive and negative samples during the training process.

Beyond the detailed analyses of the accuracy and detection performance improvements
highlighted above, it is also noteworthy to mention the distinct advantage of the model
in terms of size. In our specific experimental environment configuration, compared to
the Pine-YOLO model optimized to a compact size of 6.7 Mb, standard YOLOv5 models
typically require around 18.0 Mb. The enhanced versions of YOLOv5, exemplified by
Zhang et al. [33] with YOLOv5s-CA and YOLOv5s-ECA, showcase model sizes of 16.0 Mb



Forests 2024, 15, 737 17 of 19

and 14.4 Mb, respectively. These models demonstrate valuable improvements in detection
accuracy through the integration of advanced attention mechanisms. This compact size
of Pine-YOLO not only eases deployment but also indirectly boosts operational efficiency
and processing speed, vital for real-time applications on resource-constrained platforms.
Future research efforts can focus on more effective picture pre-processing techniques and
refine the model structure to enhance the robustness and Precision of the model across
various contexts.

4. Conclusions

In this paper, we incorporated DSConv, MCA, and WIoUv3 into a YOLOv8 network
to construct a newly designed Pine-YOLO model for pine wilt disease detection. We
utilized images exclusively captured in Weihai City to construct a dataset via a sliding
window method, among which all diseased pine tree samples were individually labeled
and verified on-site. Then, we used this dataset to train and test the detection performance
of Pine-YOLOv8. The results show that the F1-score of this model is 88.43%, which is
14.85%, 14.35%, 13.67%, 12.14%, and 6.43% higher than that of Faster-RCNN, RetinaNet,
YOLOv5, YOLOX, and DETR, respectively, suggesting excellent performance of our detec-
tion model. We also performed the ablation experiment to analyze the exact interactions
of each new modules we introduced into the Pine-YOLO model. DSConv enhances the
perception of geometrical structures by adaptively focusing on the fragile and curved local
features of tubular structures in diseased pine tree branches. MCA strengthens the model’s
attention to pine tree-specific features in complex and changing natural environments.
This mechanism efficiently captures feature interdependencies between spatial dimensions
and channels through parallel branching structures. Moreover, the squeezing transform
adaptively aggregates bi-dimensional feature responses, alongside an excitation transform
that adaptively captures local feature interactions, allowing for fine-tuning of the input
feature map. WIoUv3 focuses on the common quality anchor frames and promote the
overall recognition accuracy and robustness of the detector. Therefore, the newly designed
Pine-YOLO model overcomes some disadvantages of normal deep learning algorithms
in the field of pine wilt disease detection. Hence, it can be used by forestry managers for
rapid detection of pine wilt disease, which helps to maintain the health and stability of the
ecological environment.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/f15050737/s1, Figure S1: Detection results by (a) YOLOv5, (b) YOLOX,
and (c) DETR algorithms, respectively. Among these images, the yellow, red, and blue rectangles
represent true positives (TPs), false negatives (FNs), and false positives (FPs), respectively; Figure S2:
Ablation experiment results with (a) YOLOv8 + DSConv + MCA, (b) YOLOv8 + DSConv + WIoUv3,
and (c) YOLOv8 + MCA + WIoUv3, respectively. Among these images, the yellow and blue rectangles
represent true positives (TPs) and false positives (FPs), respectively.
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