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Abstract: In the current context of carbon neutrality, afforestation is an effective means of absorbing
carbon dioxide. Stock can be used not only as an economic value index of forest wood resources but
also as an important index of biomass and carbon storage estimation in forest emission reduction
project evaluation. In this paper, we propose a data-driven machine learning framework and method
for predicting plantation stock based on airborne LiDAR + satellite remote sensing, and carried out ex-
perimental verification at the site of the National Forest emission reduction project in Southern China.
We used step-up regression and random forest (RF) to screen LiDAR and Landsat 8 OLI multispectral
indicators suitable for the prediction of plantation stock, and constructed a plantation stock model
based on machine learning (support vector machine regression, RF regression). Our method is com-
pared with traditional statistical methods (stepwise regression and partial least squares regression).
Through the verification of 57 plantation field survey data, the accuracy of the stand estimation model
constructed using the RF method is generally better (∆R2 = 0.01~0.27, ∆RMSE = 1.88~13.77 m3·hm−2,
∆MAE = 1.17~13.57 m3·hm−2). The model evaluation accuracy based on machine learning is higher
than that of the traditional statistical method, and the fitting R2 is greater than 0.91, while the fit-
ting R2 of the traditional statistical method is 0.85. The best fitting models were all support vector
regression models. The combination of UAV point clouds and satellite multi-spectral images has
the best modeling effect, followed by LiDAR point clouds and Landsat 8. At present, this method is
only applicable to artificial forests; further verification is needed for natural forests. In the future, the
density and quality of higher clouds could be increased. The validity and accuracy of the method
were further verified. This paper provides a method for predicting the accumulation of typical
Chinese plantations at the forest farm scale based on the “airborne LiDAR + satellite remote sensing”
data-driven machine learning modeling, which has potential application value for the current carbon
neutrality goal of the southern plantation forest emission reduction project.

Keywords: plantation forest; wood value; storage resources; carbon sequestration value; artificial
intelligence; remote sensing

1. Introduction

Forests have received a lot of attention from researchers and policymakers as a nature-
based solution to climate change mitigation. Plantations account for approximately 7% of
the world’s forest area (about 294 million hectares) and play a key role in supplying wood
products and absorbing carbon dioxide. Many countries and regions around the world have
made major declarations to achieve carbon peak and carbon neutrality, and forest carbon
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sequestration has become a hotspot of CCER with huge market potential [1,2]. Forest
abatement schemes typically convert stock into biomass and, combined with expansion
factors, into carbon stocks again [3]. Plantation forests provide a growing forest stock
that is directly linked to existing renewable wood resources and biomass energy under
intensive management practices [4]. Forest stock is the total volume of a stand or growing
population per unit area, which is an important index to calculate the economic value of
forests, and can directly reflect the quantity and quality of forest resources [5]. Therefore,
the establishment of effective methods and technical means to accurately estimate the stock
of plantation is crucial for forest managers to find a balance between plantation timber
production and carbon sink trading [6,7].

Existing forest stock estimation methods usually rely on labor-intensive field measure-
ments to obtain the necessary parameters, such as DBH and tree height obtained through
field surveys after sampling the target forest, which can incur expensive human resources
and economic costs [8,9]. The sites selected may not accurately represent the entire project
area [10,11]. Low-frequency estimation may lead to delays in detecting changes in forest
growth conditions [12]. Therefore, the previous estimation methods have some limitations,
such as time and effort, limited investigation area, etc. [13,14]. In the context of carbon
neutrality, people urgently need a more efficient and intelligent method to timely and
accurately quantify forest stock and better balance the relationship between the economic
value of renewable plantation and the value of carbon sink [15,16].

With the increasing maturity of ML, unmanned aerial vehicle and satellite remote
sensing technology, its intelligent and high spatiotemporal resolution characteristics pro-
vide a new technology for forest stock estimation. At present, Light Detection and Ranging
(LiDAR) is considered as an effective means to acquire forest 3D structure information at a
regional or landscape scale [17,18]. Zeng Weisheng built a stock estimation model based
on airborne LiDAR point clouds with a multiple regression method, which demonstrated
the effectiveness of the forest stock multiple regression model based on point clouds [19].
Dalla established four machine learning methods based on LiDAR to estimate forest pa-
rameters, among which the support vector regression algorithm performed best [20]. Jiang
Diexuan built a machine learning model based on the height and density of airborne point
clouds in two periods to achieve dynamic storage estimation. Airborne LiDAR, unmanned
aerial vehicles and satellite remote sensing technologies can provide high spatio-temporal
resolution data, but obtaining these data is often costly and limited by weather conditions
and geographical location. This can result in limited time and space coverage for data
acquisition [21]. Remote sensing technology solves the problem of stock estimation at
the stand or regional scale, and stock estimation at the forest farm, provincial or national
scale requires satellite remote sensing [22,23]. Remarkable progress has been made in
forest stock estimation based on satellite remote sensing, and forest parameters are con-
structed to estimate stock by extracting spectral and texture features [24]. By developing
or improving data preprocessing methods and machine learning methods, people try to
integrate multiple data sources to improve the estimation accuracy [25,26]. While machine
learning models perform well on specific data sets, their ability to generalize remains a
challenge. The data sets on which the model is trained are often geographically limited,
and the prediction accuracy of the model may decline when applied to different regions or
different forest types. Naik conducted generalized linear modeling based on Sentinel-2,
Rapid Eye and other multi-spectral data to evaluate the impact of time, spectrum and
spatial capabilities of multi-spectral satellites on forest stock prediction, and the results
showed that the model built based on multi-temporal data was more effective than the
single temporal model [27].

To improve the precision and spatial scale of forest resource estimation, more and
more attention has been paid to research methods such as the combination of unmanned
aerial vehicle and satellite remote sensing, LiDAR feature fusion and spectral feature
fusion [28,29]. Using Sentinel-2 multispectral, Resource-3 stereo imaging and airborne
LiDAR data, Wenke Lin studied the ability of multi-source remote sensing to estimate
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forest stock in the north subtropical region, and pointed out the advantages of the Bayesian
model in forest stock estimation in the case of small samples [30]. Campbell combined
airborne point clouds and multi-spectral images to jointly retrieve forest biomass, and
pointed out that combined multi-data sources are conducive to large-scale forest parameter
estimation [31]. Yu proposed a method that combined multi-spectral satellite images and
airborne laser scanning data to estimate the forest stock of larch in China, and used the
random forest model for estimation, which proved that the method had certain applicability
and high accuracy. In addition, the fusion of hyperspectral remote sensing and other data
sources has also achieved some results in forest stock estimation [32]. Gao combined
airborne point clouds and hyperspectral data, adopted a random forest screening method
and constructed multiple stepwise regression to estimate forest above-ground biomass,
and the results showed that the fusion of multi-source data could significantly improve
the estimation accuracy of the model [33]. The RF model was used to estimate the forest
stock, and the verification showed that the method had certain applicability and high
accuracy [34,35]. Although multi-source data fusion has been proved to improve the
estimation accuracy of the model, the fusion processing between different data sources is
a complex process, which needs to solve the problems of spatial, temporal and spectral
resolution mismatch. In future studies, addressing these limitations will be the key to
improving the accuracy and reliability of forest stock estimation [36]. There is a need to
further explore more cost-effective data acquisition methods, improve model generalization,
simplify and optimize multi-source data fusion processes, enhance model transparency
and interpretability, and develop model training strategies for limited sample sizes.

Data sources and types, modeling methods and forest types affect the accuracy and
stability of stock estimation [37,38]. This paper proposes an accurate forest stock estimation
method based on “ML + LiDAR + satellite”, and a research experiment of “sky and
ground integration” was carried out at the site of a national plantation emission reduction
project in southern China [39]. The results show that the ML method combined with
multi-source remote sensing can enhance the modeling of forest stock resources [40]. The
research objectives of this paper are as follows: (1) a high-precision estimation method
of eucalyptus plantation stock based on airborne point clouds combined with Landsat
8 images was proposed. This method aims to enhance the accuracy of eucalyptus stock
estimation beyond the capabilities of existing techniques. (2) The estimation parameters
and non-parametric models of eucalyptus plantation stock at the forest farm scale were
established. These models are expected to provide a robust framework for accurate stock
estimation, facilitating better forest management and resource allocation. (3) A scheme
for estimating the stock of eucalyptus plantation with multi-source data is provided. This
scheme is intended to leverage the complementary strengths of various data sources,
thereby improving the reliability and precision of the stock estimation process.

2. Materials and Methods

Our workflow mainly includes data acquisition and processing, remote sensing feature
variable screening, accumulation model construction and evaluation analysis (Figure 1).
The first step is data collection and processing, which involved performing a plantation plot
survey. The average height, average DBH, etc., of the sample were counted and converted
to obtain the stock volume of the sample. Airborne LiDAR scanning and processing.
The characteristic variables of point clouds are extracted through preprocessing such
as original point clouds splicing and de-noising. In Landsat 8 OLI multispectral image
processing, multi-spectral characteristic variables are extracted via radiometric calibration
and atmospheric correction. The second step is feature variable screening. The variable
characteristics after pretreatment were screened using the stepwise method and RF method,
respectively, and the combination of selected variables was used as the accumulation
modeling parameter. The third step is the accumulation model construction and evaluation.
Four methods including stepwise regression, partial least squares regression, RF regression
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and support vector regression were used to construct the model, and the accuracy of the
model was analyzed and evaluated by combining the field investigation data.
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Figure 1. Technology roadmap. COLL1–6 represent variable combinations 1 to 6.

2.1. Study Area

The study area is located in a state-owned high-peak forest farm (108◦06′–108◦31′ E,
22◦51′–23◦02′ N) in Xingning District, Nanning City, Guangxi Zhuang Autonomous Region,
a typical subtropical plantation (Figure 2). The average annual temperature is about 21 ◦C,
the average annual precipitation is 1200–1500 mm, and the relative humidity is 79%. It is a
hilly landform with an elevation of 100–460 m and a slope of 6–35◦. It has thick red soil,
suitable for the growth of subtropical and tropical tree species, with a forest coverage rate
of 87%. The main tree species are Cunninghamia lanceolata, Eucalyptus grandis × urophylla,
Pinus massoniana, and so on. Among them, Cunninghamia lanceolata is a tall tree belonging
to the Cupressaceae family. Eucalyptus grandis × urophylla is an evergreen tree of the
genus Myrtaceae. It is a hybrid of Eucalyptus grandis and urophylla developed in Brazil.
Pinus massoniana is an arboreal plant of the genus Pinaceae with reddish-brown bark and
grayish-brown underparts.
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2.2. Data Collection
2.2.1. Plot Data

In January–February 2018, we set up 71 eucalyptus plots in the study area, of which
57 plots were within the airborne LiDAR coverage range, including 20 m × 20 m, 25 m × 25 m,
and 25 m × 50 m. By calculating the storage quantity of different scale plots, we can obtain
the storage quantity of each plot. It is measured in m3/hm2, a value that represents the
amount of stock grown per square hectare of land. Real-time Kinematic (RTK) technology
was used to accurately locate the specimen and record the central and corner coordinates of
the specimen. We measured the DBH and height of eucalyptus trees in the plot by means of
DBH, laser height measuring instrument and tape, and calculated the average height, DBH,
number of trees and total area of the plot. According to the allometric growth equation
of eucalyptus in Guangxi, the volume of single timber was calculated, and the value of
hectare stock at the sample plot scale was obtained [41]. The formula is as follows:

VPlot =
VHectare·SPlot

10, 000
.

In the formula, VPlot is the hectare reserve of the sample land, VHectare is the hectare
reserve calculated by the binary volume formula, and SPlot is the plot area.

2.2.2. LiDAR Data

In this paper, LiDAR data acquisition was carried out in January 2018 using an airborne
LiDAR scanner.

We used LiDAR360 software (https://www.lidar360.com/ (accessed on 18 March
2024), Beijing GreenValley Technology Co., Ltd., Beijing, China) to splice, de-noise, classify
ground points and normalize the collected point clouds (Figure A1). According to the
longitude and latitude of the measured sample, the whole point clouds are cut into the
sample site cloud. A total of 48 plot height and density variables were extracted based on
point clouds (Table A1).

2.2.3. Landsat 8 Data

In this paper, multispectral images of Landsat 8 OLI, with track number P125/44
and a resolution of 30 m, were selected from the Gaofeng Forest farm area of Guangxi
Province in February 2018. The image consists of 11 bands, bands 1 to 9 in the OLI Land
Imager and bands 10 and 11 in the TIRS thermal infrared sensor. ENVI 5.31 software was
used for radiometric calibration, atmospheric correction, image cropping, and so on. The
FLASH atmospheric correction module was used for atmospheric correction of images after

https://www.lidar360.com/
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radiation calibration to eliminate the influence of atmospheric scattering and absorption.
The image after radiometric calibration and atmospheric correction was cropped to obtain
the image of the study area. Twenty-two band variables were extracted from the images in
the study area, including 11 original band variables and 11 combined band variables. The
original band feature variable factor was selected from band 1 to band 11 to highlight the
rich image information and spectral characteristics. Based on the original band variable, 11
band combination variables were extracted (Table A2). Information of 13 remote sensing
vegetation index variables in the study area was extracted.

2.3. Feature Variable Screening
2.3.1. Stepwise Screening

(1) Point clouds characteristic variables

The partial F-test was set for the point clouds features, and the threshold F-value
(Fin) of the rejection domain was set to be greater than the rejection F-value (Fout). We
set the critical value of Fin as 0.10 and its significance level as 90%, corresponding to the
quantile of F distribution as F (1, n−2, 0.90), and n was the sample size, indicating that
in the current variable set, the newly added variable is added to the feature set when the
significance level of the linear relationship between the newly added variable and the
dependent variable is less than 0.1. The critical value of Fout was 0.11, the significance level
was 89%, and the quantile of its F distribution was (1, n−2, 0.89), which represents the
quantile of the corresponding F distribution under 1 and N-2 degrees of freedom and the
significance level of 0.89. When a variable is deleted from the feature set, the significance
level of the linear relationship between the residual variable and the dependent variable
is greater than the significance level corresponding to 0.11, and the variable is deleted.
The set of retained characteristic variables was D9, HP95, Hmax and Hkurtosis, including 1
density variable and 3 height variables. Multicollinearity testing was carried out on the
combination of the aforementioned variables, and the Variance Inflation Factor (VIF) value
between the two variables was calculated, respectively. The combination of variables with
a VIF value greater than 10 was selected and the combination of variables was preferred.
The VIF value between Hmax and HP95 was 250.25, much higher than the set threshold of
10, indicating a high degree of collinearity between the two variables (Table A3).

Two multivariate linear models, Y1 and Y2, were constructed with D9, Hmax, and
Hkurtosis and D9, HP95, and Hkurtosis as modeling factors, respectively. The evaluation
results are shown in Table A4; SE represents the standard estimation error. A better
combination of variables was selected, and D9, Hmax, and Hkurtosis were finally selected as
the screening results of the point clouds stepwise screening method. The coefficients of the
parameters in the following equation are the fitting coefficients of the regression model in
MATLAB 2023.

Y1 = 470.232D9 + 4.897Hp95 + 1.453Hkurtosis − 56.903 (1)

Y2 = 482.214D9 + 4.855Hmax + 1.461Hkurtosis − 65.01 (2)

(2) Multispectral image feature variables

If the image resolution is lower than that of the point clouds, the feature variables
cannot be screened if the Fin threshold is the same as that of the point clouds. To avoid the
exclusion of potentially useful feature variables due to screening conditions, the critical
value of Fin is set as 0.20, Fout as 0.21, and its significance level as 80%, corresponding to
the quantile of F distribution as F (1, n−2, 0.80), and n is the sample size. In the current
set of variables, only when the significance level of the linear relationship between the
newly added variable and the dependent variable is less than 0.2 will it be added to the
feature set. The critical value of Fout is 0.21, its significance level is 79%, and the quantile of
its F distribution is (1, n−2, 0.79), that is, the quantile corresponding to the F distribution
under 1 and N-2 degrees of freedom and the significance level of 0.79; in other words, when
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a variable is deleted from the feature set, the significance level of the linear relationship
between the residual variable and the dependent variable is greater than that corresponding
to 0.21. The feature variable set contains 7 band variables, namely B2, B6, B10, B11, B47, B452,
and B457. Bivariate correlation analysis was performed on the selected set of characteristic
variables, and correlation coefficient R and VIF were calculated (Table A5). The VIF of
variables B10 and B11 was 12.16, greater than the set threshold of 10, indicating a high
degree of collinearity between the two.

To avoid the negative effect of multicollinearity on modeling, the screening set was
divided into two groups, using B2, B6, B10, B47, B452, and B457 and B2, B6, B11, B47, B452, and
B457 as modeling factors to construct two multivariate linear models, Y3 and Y4. The better
combination of the two variables was selected to compare the performance of the model
constructed using the two component module factors (Table A6). Finally, B2, B6, B11, B47,
B452, and B457 were selected as the screening results of multispectral images based on the
stepwise screening method.

Y3 = 674.932B47 − 0.051B6 + 0.870B2 + 4193.472B452 − 2425.697B457 + 0.018B10 − 10517.673 (3)

Y4 = −2349.941B47 − 0.054B6 + 0.831B2 − 4142.719B452 − 2349.941B457 + 0.054B11 − 10834.272 (4)

2.3.2. Random Forest Screening

(1) Point clouds characteristic variables

When the cumulative variance contribution of variables screened using the random
screening method is greater than 90%, it is representative enough. We use MATLAB to
obtain the importance ranking of 48 feature variables of point clouds and the proportion of
cumulative feature contribution. When the cumulative feature contribution ratio is greater
than 90%, a total of 29 feature variables are selected, and a large number of variables are
retained as candidate factors. The threshold of feature variance contribution was set as 0.25,
which showed good performance in multiple tests. Features larger than this threshold was
selected as the screening results of the RF screening method (Figure A2), and Hcurt_m, D8,
Hp30, and HA50 were selected as modeling factors.

(2) Image feature variables

The importance of 35 feature variables of the image was sorted, the cumulative feature
contribution ratio of the feature variables was calculated according to the ranking, and the
threshold value of contribution ratio greater than 90% was set.

When the cumulative feature contribution ratio reached 90%, four image features
were selected, namely B6, B7, GNDVI, and B5 (Figure A3). In the random forest screening
method, these variables already contain 96% of the remote sensing information, so these
variables are used for stock modeling.

The feature variables of point clouds and image were screened using SS and RFFS.
The screening results of different methods are correlated to a certain extent. The screening
results of point clouds features all contain 1 density variable and 3 height variables, and
the top 2 variables are the canopy height variable and density variable. Both of the image
screening results contain B6. The two data sources underwent variable screening through
different screening methods, and the screening results were used as modeling factors
for the subsequent construction of the accumulation model. To distinguish filter results
for different data sources and different filtering methods, they have been renamed (see
Table A7).

2.4. Accumulation Modeling Based on Point Clouds and Multispectral Images

Based on point clouds and multi-spectral images, we used parametric methods (step-
wise regression, partial least squares regression) and non-parametric methods (support
vector regression, RF regression) to construct a prediction model of eucalyptus plantation
stock. The leave-one method cross-validation was used to assess and estimate the forest
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stock of the plot. Finally, the accuracy of the model was evaluated and analyzed with the
field survey data of 57 eucalyptus plantations.

2.4.1. Stepwise Regression Modeling

To construct a stepwise regression model, it is not necessary to screen the feature
variables repeatedly, and the selected variables are directly added to the stepwise regression
model for multiple linear fitting. The point clouds variable combinations COLL1 and
COLL2 were divided into training samples and verification samples according to the ratio
of 9:1 using the leave-one method, respectively.

For the Landsat 8 image variable combinations COLL3 and COLL4 that have been
screened out by us, a step-up regression model was constructed via cross-validation using
the one-leave method, respectively.

Point clouds variable combination COLL5 and remote sensing image variable combi-
nation COLL6 were used to construct stepwise regression models using leave-one cross-
validation, respectively.

2.4.2. Partial Least Squares Regression Modeling

The condition for extracting principal components was the measurement factor Q2h ≥ 0.975;
that is, the principal components whose cumulative contribution rate was greater than 97.5%
were retained until the extraction of principal components was stopped. After counting
the number of principal components, the linear expression of independent variables and
dependent variables is established, and the PLSR model is obtained using the established
principal components. The PLSR model was constructed using the idea of leave-one-
method cross-validation. The fitting parameter coefficients, constant terms and extracted
principal component numbers of point clouds variable combinations COLL1 and COLL2
and Landsat 8 remote sensing image variable combinations COLL3 and COLL4 were
calculated.

The fitting parameter coefficients and constant terms of Landsat 8 remote sensing
image variable combinations COLL3 and COLL4 and the extracted number of principal
components were calculated.

The results of fitting parameter coefficients and constant terms of COLL5 and COLL6
and the number of extracted principal components were obtained.

2.4.3. Random Forest Regression Modeling

In this paper, an RF regression model is constructed based on Baggerer (ensemble
learning method). To determine the optimal parameter combination of the model, the
grid search method was used to optimize the number of decision trees and the minimum
number of leaf points. The number of decision trees ranged from 50 to 500 and the step
size was 50. The minimum leaf count ranged from 2 to 10, with a step size of 1. By cross-
verifying and evaluating each parameter combination, the mean square error (MSE) of the
corresponding out-of-pocket error (OOB) for each parameter combination is calculated
as follows:

MSEOOB =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

where yi is the true response value of the i th sample, ŷi is the response value predicted on
the out-of-pocket dataset using the RF regression model, and n is the number of samples in
the out-of-pocket dataset.

2.4.4. Support Vector Regression Modeling

SVR includes linear, polynomial, RBF, sigmoid and other common kernel functions.
We use the RBF kernel function to deal with complex nonlinear fitting between characteristic
variable and accumulation. The grid search method is used to optimize the parameters
of penalty coefficients C and gamma in the model. The values of C and gamma are
2i, i ∈ [−4, 4], respectively. The parameter combination with the highest average accuracy
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of model fitting is selected, and the stability and generalization ability of the model are
further guaranteed using leave-one method cross-validation. According to the results of
parameter optimization, the optimal penalty coefficient and gamma value were selected to
construct the RBF-SVR model. The prediction results were compared with the measured
accumulation in the plot to compare the goodness of fit of the model (as shown in Table A8).

2.5. Evaluation Index

In this study, R2, RMSE and MAE were used to quantitatively verify and evaluate
the accuracy of the stand stock estimation model. R2 assesses the quality of the model’s
fitted data, with values ranging from 0 to 1, with a value closer to 1 indicating better
fitting of the model. RMSE can be used to measure the average difference between the
model predicted value and the true value, where the smaller the MSE value, the smaller
the dispersion degree between the true value and the model predicted value. MAE is a
measure of the average absolute difference between the predicted value and the true value,
where the smaller the MAE value, the smaller the error between the true value and the
model predicted value.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (6)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(7)

MAE =
1
n∑n

i=1|(yi − ŷi)| (8)

where yi, yi, and ŷi are the measured stock value, the average measured stock value, and
the model predicted stock value, respectively, and n is the number of verification samples.

3. Results

According to the results of the stepwise screening method (SS) and random forest
screening method (RFFS), the parameters of stepwise regression (SS), partial least squares
regression (PLSR), random forest regression (RFR) and support vector regression (SVR)
were optimized, and the leave-one method was used for cross-validation. The results of
accumulation modeling under multi-data sources and multi-modeling methods were eval-
uated comprehensively by comparing the sample survey data with the model prediction.

3.1. Point Clouds Model Evaluation and Analysis

The results are shown in Figures 3 and 4. The solid line is the fitting line between the
real value and the predicted value, and the dotted line is the 1:1 auxiliary judgment line.
The blue line is the fitting line.

To comprehensively evaluate the model, R2, RMSE and MAE were used to compre-
hensively evaluate the above eight models; the results are shown in Table 1.

Table 1. Evaluation table of LiDAR point clouds data storage estimation model.

Screening Method Model Name R2 RMSE (m3·hm−2) MAE (m3·hm−2)

Stepwise screening

SR 0.83 25.79 19.31
PLSR 0.75 30.72 20.83
RFR 0.90 27.55 20.47
SVR 0.89 31.89 25.95

Random forest screening

SR 0.76 30.03 21.40
PLSR 0.82 26.39 18.79
RFR 0.91 25.67 17.69
SVR 0.93 25.78 18.70
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Based on the evaluation results of the above model, the following conclusions can
be drawn:

(1) The fitting accuracy of COLL2 optimized using random forest screening is generally
better than that of COLL1 with stepwise regression. In addition to the stepwise
regression method, other modeling methods can achieve better prediction results
when using the random forest screening method. Among them, partial least squares
regression, random forest regression and support vector regression can achieve bet-
ter prediction results when using the random forest screening method. Compared
with the stepwise screening method, R2 increased by 0.01~0.07, RMSE decreased
by 1.88~6.11 m3·hm−2, MAE decreased by 2.04~7.25 m3·hm−2, and the SVR model
had the most significant reduction in prediction error. R2 increased by 0.04, RMSE
decreased by 6.11 m3·hm−2, MAE decreased by 7.25 m3·hm−2, and the stepwise
regression method was more suitable for the COLL1 selected using the stepwise
screening method.

(2) The fitting effect of the non-parametric method is better than that of the parametric
method. In this chapter, two non-parametric methods, random forest regression
and support vector regression, constructed based on laser point clouds, have R2

values greater than or close to 0.9, and their RMSE and MAE evaluation indexes are
small. In contrast, both partial least squares regression and stepwise regression in
the parametric method have R2 values lower than 0.8, while the optimal parametric
method model has an R2 values of only 0.83, and the corresponding RMSE and MAE
indexes are relatively high.

It can be seen that when constructing a forest stock estimation model based on airborne
LiDAR point clouds, using a random forest screening method and a constructing non-
parametric method has the best model effect compared with other methods.

3.2. Evaluation and Analysis of Optical Remote Sensing Models

Figures 5 and 6 show image-based forest stock modeling; the solid line is the fitting
line between the true value and the predicted value, and the dashed line is the 1:1 auxiliary
judgment line.
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Table 2 shows the comprehensive evaluation of the eight models.

Table 2. Evaluation table of remote sensing data stock estimation model.

Screening Method Model Name R2 RMSE (m3·hm−2) MAE (m3·hm−2)

Stepwise screening

SR 0.39 49.53 34.95
PLSR 0.40 49.02 34.29
RFR 0.53 52.00 39.25
SVR 0.62 60.86 46.20

Random forest screening

SR 0.66 35.76 29.01
PLSR 0.53 42.50 33.12
RFR 0.56 43.24 34.34
SVR 0.67 54.64 32.63

The specific model construction is as follows: support vector regression algorithms
constructed based on different screening methods have high fitting accuracy, with the R2

reaching 0.62 and 0.67, respectively, but RMSE and MAE are also relatively high, with
values of 60.86 m3·hm−2 and 46.20 m3·hm−2 and 54.64 m3·hm−2 and 32.63 m3·hm−2,
respectively. Among the parametric methods, the model estimation error of the stepwise
regression algorithm based on the COLL3 variable combination is the smallest, with an R2

of 0.66, RMSE of 35.76 m3·hm−2 and MAE of 29.01 m3·hm−2.
From the perspective of screening methods, when the COLL4 variable combination

selected using the random forest screening method is used in the four modeling methods,
compared with the COLL3 variable combination selected by the stepwise screening method,
the model fitting accuracy is improved to a certain extent. The R2 increased by 0.03~0.27,
RMSE decreased by 6.22~13.77 m3·hm−2, and MAE decreased by 1.17~13.57 m3·hm−2,
among which the stepwise regression algorithm improved the best fit. It can be seen that
the selection of random forest as a remote sensing feature variable is more reliable.

From the perspective of modeling methods, when the COLL3 variable combination is
used as the model modeling factor, the fitting accuracy of parametric methods (stepwise
regression and partial least squares regression) is smaller than that of non-parametric
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methods (support vector regression and random forest regression), and the R2 of the
optimal performance model PLSR is only 0.4, while that of non-parametric methods reaches
at least 0.53. When the COLL4 variable combination is used as the model modeling factor,
the fitting accuracies of the parametric method and non-parametric method only slightly
differ, but SVR is still the model with the highest fitting accuracy. It can be seen that the non-
parametric method (machine learning method) has certain advantages when constructing
the storage estimation model based on remote sensing sources.

3.3. Model Evaluation and Analysis of Combined Point Clouds and Optical Remote Sensing

Forest stock modeling of point clouds combined with images is shown in Figures 7 and 8.

(1) According to the accuracy evaluation indexes of each model, it can be seen that the
support vector regression model constructed based on the COLL6 variable combina-
tion of random forest screening method has the best prediction performance, with an
R2 of 0.94, RMSE of 24.14 m3·hm−2 and MAE of 17.74 m3·hm−2. The results show that
the combination of point clouds and optical remote sensing for forest stock inversion
is feasible and can obtain better prediction results.

(2) The modeling results based on the random forest screening method are better than the
those obtained using the stepwise regression method. By comparing the model evalu-
ation results when variable combination COLL5 and variable combination COLL6
were used in each modeling method, we can see that when variable combination
COLL6 with the random forest screening method is used as the modeling factor, the
overall prediction accuracy of each model is higher than that when COLL5 is used
as the modeling factor, and the partial least squares model has the most significant
improvement. The R2 increased by 0.08, the RMSE was 4.49 m3·hm−2, and the MAE
was 2.69 m3·hm−2. Combined with the model evaluation results, it can be seen that
when constructing forest stock estimation models based on single or multiple data
sources, the random forest screening method is more reliable than the stepwise screen-
ing method as the feature variable screening method, and the combination of selected
variables can better reflect the forest parameter information. The interpretation rate of
the model after modeling can be improved more effectively.

(3) The accuracy of non-parametric models (random forest regression and support vector
regression) is better than that of parametric methods (stepwise regression and the
partial least squares method). As can be seen from Table 3, among the eight models
constructed by combining point clouds and optical remote sensing, the accuracy
ranking of the models based on the combination of variables COLL5 and COLL6
is in the order of support vector regression, random forest regression, stepwise re-
gression and partial least squares, and the top two are non-parametric methods. The
fitting degree R2 values of the non-parametric methods established in this section
are all greater than 0.91, while the best fitting result of the parametric methods is
stepwise regression, whose fitting degree R2 is only 0.85, which is relatively low.
According to the evaluation results of the model in Sections 3.1 and 3.2, considering
that the prediction of forest stock usually has certain nonlinear characteristics, the
non-parametric method can capture these nonlinear relationships more flexibly, thus
improving the prediction accuracy of the model. On the other hand, non-parametric
methods can better deal with high-dimensional data and missing data problems. In
the face of high dimensional data, non-parametric methods such as random forest
regression can reduce the complexity of the model by constructing multiple decision
trees, and at the same time have a good ability to deal with missing data. Therefore,
the non-parametric method for retrieving forest stock has certain advantages over the
parametric method.

(4) Compared with the previous model using only a single data source, the prediction
accuracy of the model combined with multiple data sources has been significantly
improved. From the perspective of the dimensional evaluation model accuracy of
the same screening method and the same modeling method, compared with only
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using point clouds, the model fit R2 increased by 0.01~0.09, RMSE decreased by
0.47~6.41 m3·hm−2, MAE decreased by 0.15~6.09 m3·hm−2, and the model accuracy
improved more significantly than that using only optical remote sensing. The fit R2

increased by 0.19~0.46, RMSE decreased by 12.15~33.39 m3·hm−2, and MAE decreased
by 10.55~26.34 m3·hm−2. According to the experimental results, combining multi-
source data to build a forest stock model for forest stock inversion can significantly
improve the prediction accuracy of the model. Under sufficient conditions, multi-data
sources will be the first choice for modeling data sources.
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When the parameter combination corresponding to the minimum MSE of the out-
of-pocket error is obtained during the optimization process, the value of the parameter
combination is output to ensure the optimal prediction performance of the RF regression
model. The model based on different data sources is cross-validated using the leave-one
method. The results based on the combination of point clouds variables COLL1 and
COLL2 are shown in Figure 9a,b. The optimal parameter combination is 2 and 250 and
2 and 150 as input parameters for modeling, respectively. The combination of spectral
characteristic variables COLL3 and COLL4 is shown in Figure 9c,d, and the optimal
parameter combination is 2 and 300 and 2 and 150, respectively. The modeling results of
COLL5 and COLL6 are shown in Figure 9e,f, and the optimal parameter combinations are
2 and 500 and 2 and 150, respectively.
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Table 3. Data on combined data storage estimation models.

Screening Method Model Name R2 RMSE (m3·hm−2) MAE (m3·hm−2)

Stepwise screening

SR 0.85 23.88 17.98
PLSR 0.76 30.25 21.33
RFR 0.91 26.16 17.90
SVR 0.93 27.47 19.86

Random forest screening

SR 0.85 23.61 18.46
PLSR 0.84 25.76 18.64
RFR 0.93 26.07 18.99
SVR 0.94 24.14 17.74

4. Discussion
4.1. Comparison of Parametric and Non-Parametric Methods in Modeling Plantation Stock

A forest stock estimation method based on “ML + LiDAR + satellite” was proposed
in this paper. Based on the sample field survey data, LiDAR point clouds and satellite
Landsat 8 OLI multi-spectral images, a modeling scheme combining single data source
and multi-source data was constructed, respectively, and two screening methods (the
step-up screening method and RF screening method) were used to screen the feature
variables [42,43]. Based on parametric classical statistical methods (stepwise regression
and partial least squares regression) and non-parametric ML methods (support vector
regression and RF regression), a estimation model of eucalyptus plantation stock was
constructed. Eight stock estimation models based on different variable screening methods
and different modeling methods were constructed, respectively; and the accuracy of the
methods ranged from high to low, as follows: support vector regression, RF regression,
stepwise regression and partial least squares method. In terms of model construction meth-
ods, non-parametric methods have higher prediction accuracy than parametric methods
do. In terms of evaluation indexes such as R2, RMSE and MAE, the non-parametric method
showed a better prediction effect. It can be seen that the parametric method can better
describe the complexity of forest ecosystem, and the parametric method can better deal
with the noise in the data set and the nonlinear relationship of remote sensing. Thus, the
generalization ability and stability of the model are improved. The results showed that
support vector regression performed best among the four models, with an R2 of 0.94, RMSE
of 24.14 m3·hm−2, and MAE of 17.74 m3·hm−2. Compared with the modeling of a single
data source, the accuracy of the model based on multi-source data is significantly improved,
with R2 increased by 0.01~0.09, RMSE decreased by 0.47~6.41 m3·hm−2, and MAE de-
creased by 0.15~6.09 m3·hm−2 compared with the point-cloud-based accumulation model.
Therefore, in the case of sufficient conditions, selecting multiple data sources as modeling
data sources will be the preferred choice to improve the prediction accuracy of forest stock
inversion model. Compared with the model based on multispectral images, the accuracy of
the model is improved more significantly, the fitting R2 is improved by 0.19~0.46, the RMSE
is reduced by 12.15~33.39 m3·hm−2, and the MAE is reduced by 10.55~26.34 m3·hm−2.
The model constructed with LiDAR point clouds can directly reflect the three-dimensional
structural features such as the stand height and density, which is helpful to excavate the
relationship between forest stock and characteristic variables. Whether it is UAV remote
sensing or satellite remote sensing, the evaluation index shows considerable improvement.
The estimation area of this paper is the forest farm scale. In the future, the research scope
can be expanded to a regional or even global scale, and the forest stock estimation model
under different time scales can be discussed [44,45]. In any case, under sufficient conditions,
“ML + LiDAR + satellite” is the preferred method to estimate stock of eucalyptus plantation
at the scale of forest farm.

4.2. Versatility of the Best Combination of Image and Point Clouds Features

According to the screening results of characteristic variables, it is shown that the
point clouds height and density variables of forest canopy and the B6 band in multispectral
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images have significant effects on the estimation of forest stock. Secondly, by optimizing the
parameters of the four regression models one by one, the estimation accuracy of different
models is better. Finally, cross-validation of different storage estimation models is carried
out by reserving one method, which makes the results more stable and reliable [46,47].
In terms of R2, RMSE, MAE and other evaluation indicators, ML methods (SVR, RF)
have better prediction effect than statistical analysis methods (SS and PLSR) and can better
describe the noise and nonlinear relations in the data set. When the random forest screening
method is used to select modeling factors, the four models show better prediction accuracy,
and can deal with high-dimensional data and nonlinear relations more effectively than the
stepwise screening method. The prediction performance of the SVR model based on the
COLL6 variable combination of the random forest screening method is the best, with an
R2 of 0.94, RMSE of 24.14 m3·hm−2 and MAE of 17.74 m3·hm−2, indicating that airborne
LiDAR and satellite remote sensing based on SVR can effectively estimate forest stock.
When COLL6, the variable combination of random forest screening method, is used as
the modeling factor, the overall prediction accuracy of all models is higher than that of
COLL5, and the partial least squares model has the most significant improvement, with
an increase of 0.08 in R2, 4.49 m3·hm−2 in RMSE and 2.69 m3·hm−2 in MAE. Wang used
the CNN-LSTM-Attention model to predict forest stock, and its RMSE of 26.15 m3·hm−2

was slightly lower than our model [48]. Therefore, whether focused on a single-source
or multi-source data, ML methods such as SVR and RF can more effectively improve the
interpretation rate of the model.

4.3. Non-Parametric Approaches and Combined Data Oriented towards Carbon Neutrality Goals
Can Improve Forest Volume Resource Modeling

Among the eight models constructed by combining point clouds and multi-spectral
images, the accuracy of methods in COLL5 or COLL6 variable combination is, from high
to low: support vector regression, random forest regression, stepwise regression and
partial least squares; the first two are non-parametric ML methods. The fitting degree
R2 of the non-parametric method is greater than 0.91, while the best fitting result of the
parametric statistical analysis method is stepwise regression, whose fitting degree R2 is
0.85. The current problem of forest stock estimation has nonlinear characteristics, and the
ML method can capture the nonlinear relationship more flexibly [49]. Non-parametric
methods can better deal with the problem of missing high-dimensional data. For example,
random forest regression can reduce the complexity of the model by constructing multiple
decision trees. When constructing the accumulation model based on different data sources,
the ML method represented by the SVR model performs best. The results show that the
point clouds combined with Landsat 8 image is the best, followed by LiDAR point clouds,
and Landsat 8 is the last. Multi-source data and non-parametric methods can improve
the accuracy and stability of forest stock estimation model, have significant advantages in
predicting forest stock, and can better deal with the noise in data sets and the nonlinear
relationship of remote sensing.

4.4. Limitations and Future Directions

In this study, a machine learning framework combining airborne LiDAR and satellite
remote sensing data is proposed for predicting plantation stock in southern China. The
method has shown high accuracy and reliability in experimental verification. However,
there are some limitations to the study. Firstly, the current method is mainly aimed at the
application of planted forests. For natural forests, due to the complexity and diversity
of their structures, the applicability and accuracy of this method need to be further veri-
fied. Secondly, airborne LiDAR has certain limitations in obtaining point clouds data of
understory vegetation, which may affect the accuracy of estimation of understory biomass.
Thirdly, although the machine learning model used in this study is based on traditional
statistical methods, its universality and applicability under different stand conditions need
to be further explored.
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Considering the above limitations, future research could be carried out in the following
directions. The scope of this study could be extended to natural forests. Different stand
types and understory vegetation were considered to enhance the universality and applica-
bility of the model. Moreover, the application of deep learning in forest stock estimation
could be explored as deep learning models such as convolutional neural networks may
have higher accuracy and efficiency in processing spatial data. The fusion of CNNs with
LiDAR data and multispectral satellite images could be optimized for better forest analysis.
This paper recommends increasing the density and quality of data collection to enhance
understory vegetation scanning. CNNs can contribute by processing this denser data more
efficiently [50]. At the same time, the scanning ability of understory vegetation can be
improved by increasing the density and quality of high cloud to enhance the accuracy
of the model to estimate the whole stand biomass. The fusion method of LiDAR data
and satellite multi-spectral data can be further explored and optimized to improve the
estimation accuracy of the model under different stand conditions. Finally, field validation
can be carried out across a wider range of areas and different types of forests to assess the
validity and applicability of the model, facilitating its application in real forest management
and carbon stock assessment. Through research in the above directions, the forest stock
estimation method based on airborne Lidar and satellite remote sensing could be further
improved and optimized in the future to provide more accurate and effective scientific
support for forest resource management and carbon neutrality goals.

5. Conclusions

This paper proposes a forest stock estimation method based on “ML + LiDAR +
satellite”, which provides a promising tool for the assessment of wood resources in
plantations under carbon neutrality targets. Based on a parametric statistical analysis
method and non-parametric artificial intelligence method, the stock model of a eucalyp-
tus plantation in southern China was constructed. The ML method can capture nonlin-
ear relationships more flexibly. The following results were obtained: ∆R2 = 0.01~0.27,
∆RMSE = 1.88~13.77 m3·hm−2, and ∆MAE = 1.17~13.57 m3·hm−2. The current research
methods are mainly aimed at artificial forests, and their applicability and accuracy have
not been fully verified in natural forests. This study mainly adopts support vector machine
regression and random forest regression methods. Although it has advantages compared
with traditional statistical methods, it does not explore the application potential of more
advanced machine learning algorithms such as deep learning in this field. In the future, we
could try to adopt more advanced AI methods to expand the scope of research to a regional
or even national scale. All in all, under the goal of carbon neutrality, how the machine
learning modeling scheme can better serve the balance of wood resources and ecological
services in plantation forests is one of the main questions for our future research.

Author Contributions: Conceptualization, G.F.; data curation, F.L., Y.W. and C.G.; formal analysis,
G.F. and H.C.; investigation, J.Z., Q.X. and F.L.; methodology, G.F. and B.Z.; resources, W.L. and Y.W.;
software, B.Z. and X.Z.; supervision, H.C. and Z.D.; visualization, J.Z.; writing—original draft, G.F.;
writing—review and editing, R.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Key Research and Development Project of Inner Mongolia
Autonomous Region (2022YFHH0065-03); Laibin Jinxiu Dayaoshan Forest Ecosystem Observation
and Research Station Guangxi of under Grand (No. 22-035-130-01); Tibet Autonomous Region
Science and Technology Plan Project (XZ202301YD0043C); Mangrove species identification and
growth monitoring warning by integrating UAV hyperspectral images and LiDAR point clouds
(2024GXLK08); National Guilin Scientific Research ([2022] No. 6); Postdoctoral Innovative Talent
Support Program (BX20220038).

Data Availability Statement: Data will be made available on request.



Forests 2024, 15, 751 19 of 23

Acknowledgments: We acknowledge the data support from the National Forestry and Grassland-
Science Data Center (NFGSDC), National Science & Technology Infrastructure of China. (http:
//www.forestdata.cn (accessed on 1 November 2022)). We thank Zhuo Deng and all those who have
made important contributions to this paper.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Extraction of airborne laser scanning (ALS) point clouds feature variables.

Variable
Type Variable Name Feature Description

Height
variable

Hmax The maximum value of Z for all normalized points
Hmin The minimum value of the Z-value of all normalized points

Hmedian_z Altitude mean deviation
Hstddev Height standard deviation
Hkurtosis Height kurtosis
Hsqrt_m Height quadratic mean
Hcurt_m Height cubic mean

HP1,HP5,. . .,HP99 Normalized percentile of point cloud height distribution, a total of 15
HA1,HA2,. . .,HA99 Normalized percentile of cumulative height of point clouds, a total of 15

Density
variable D1,D2,. . .,D9

The point clouds are divided into ten slices of the same height from low to high,
and the proportion of echo points of the layer in all return points is 10 in total

Canopy
density CC The ratio of vegetation points to all points in the first echo

Table A2. Extract band variables of multispectral images.

Band Combination Equation

B24 B2/B4
B534 B3 × B4/B5
B547 B5 × B4/B7
B452 (B4 + B5 − B2)/(B4 + B5 + B2)
B45 B4 + B5
B75 B7/B5
B53 B5/B3
B345 B3 + B4 + B5

VIS234 B2 + B3 + B4
B47 B4/B7

Albedo 0.356B1 + 0.130B3 + 0.373B4 + 0.085B5 +
0.072B7 − 0.0018

Table A3. VIF values between point clouds variables.

D9 Hmax HP95 Hkurtosis

D9 - 2.46 2.69 1.00
Hmax 2.46 - 250.25 1.01
HP95 2.69 250.25 - 1.01

Hkurtosis 1.00 1.01 1.01 -

Table A4. Preliminary evaluation of stepwise regression model for point clouds.

Model R2 Adjusted R2 SE

Y1 0.902 0.894 18.460
Y2 0.908 0.900 17.904

http://www.forestdata.cn
http://www.forestdata.cn
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Table A5. VIF values between remote sensing image variables.

B47 B6 B2 B11 B10 B452 B457

B47 - 4.43 1.08 1.31 1.22 2.17 1.09
B6 4.43 - 1.39 1.67 1.48 1.99 1.03
B2 1.08 1.39 - 1.49 1.41 1.00 1.00
B11 1.31 1.67 1.49 - 12.16 1.02 1.17
B10 1.22 1.48 1.41 12.16 - 1.02 1.13
B452 2.17 1.99 1.00 1.02 1.02 - 1.13
B457 1.09 1.03 1.00 1.17 1.13 1.13 -

Table A6. Preliminary evaluation of multivariate linear models for remote sensing images.

Model R2 Adjusted R2 SE

Y3 0.494 0.434 46.618
Y4 0.502 0.442 46.272

Table A7. Summary screening results and variable combination naming.

Data Source Screening Method Screening Result Variable Combination Naming

Point clouds
SS D9, HP95, Hmax, Hkurtosis COLL1

RFFS Hcurt_m, D8, Hp30, HA50 COLL2

Optical remote sensing SS B2, B6, B11, B47, B452, B457 COLL3
RFFS B6, B7, GNDVI, B5 COLL4

Point clouds combined with
optical remote sensing

SS COLL1 + COLL3 COLL5
RFFS COLL2 + COLL4 COLL6

Table A8. The prediction results were compared with the measured accumulation in the plot to
compare the goodness of fit of the model.

C Gamma C Optimum Value Gamma Optimum Value

COLL1 and COLL2 2 and 0.125 8 and 0.125 2 and 8 0.125
COLL3 and COLL4 8 and 0.125 0.25 and 8 8 and 0.25 0.125 and 8
COLL5 and COLL6 8 and 0.125 1 and 0.125 8 and 1 0.125

Appendix B

Forests 2024, 15, x FOR PEER REVIEW 22 of 25 
 

 

Appendix B 

 
Figure A1. Cloud processing results of sample locations. The height increases from blue to red, 
with blue representing the ground and red representing the forest canopy. 

 
Figure A2. Point clouds feature variance contribution ranking chart. Set the dotted line as the fea-
ture variance contribution threshold to 0.25. Red is for variables greater than 0.25 and blue is for 
variables less than 0.25. 

Characteristic variance contribution degree

Re
m

ot
e 

se
ns

in
g 

im
ag

e 
va

ri
ab

le
 n

am
e

 
Figure A3. Remote sensing image feature variance contribution ranking chart. The cumulative 
feature contribution ratio of feature variables is calculated according to the ranking. The threshold 
value is set as the contribution ratio greater than 90%, and the red value is the cumulative feature 
contribution ratio greater than 90%. Blue is less than 90% of the cumulative feature contribution. 

Figure A1. Cloud processing results of sample locations. The height increases from blue to red, with
blue representing the ground and red representing the forest canopy.



Forests 2024, 15, 751 21 of 23

Forests 2024, 15, x FOR PEER REVIEW 22 of 25 
 

 

Appendix B 

 
Figure A1. Cloud processing results of sample locations. The height increases from blue to red, 
with blue representing the ground and red representing the forest canopy. 

 
Figure A2. Point clouds feature variance contribution ranking chart. Set the dotted line as the fea-
ture variance contribution threshold to 0.25. Red is for variables greater than 0.25 and blue is for 
variables less than 0.25. 

Characteristic variance contribution degree

Re
m

ot
e 

se
ns

in
g 

im
ag

e 
va

ri
ab

le
 n

am
e

 
Figure A3. Remote sensing image feature variance contribution ranking chart. The cumulative 
feature contribution ratio of feature variables is calculated according to the ranking. The threshold 
value is set as the contribution ratio greater than 90%, and the red value is the cumulative feature 
contribution ratio greater than 90%. Blue is less than 90% of the cumulative feature contribution. 

Figure A2. Point clouds feature variance contribution ranking chart. Set the dotted line as the feature
variance contribution threshold to 0.25. Red is for variables greater than 0.25 and blue is for variables
less than 0.25.

Forests 2024, 15, x FOR PEER REVIEW 22 of 25 
 

 

Appendix B 

 
Figure A1. Cloud processing results of sample locations. The height increases from blue to red, 
with blue representing the ground and red representing the forest canopy. 

 
Figure A2. Point clouds feature variance contribution ranking chart. Set the dotted line as the fea-
ture variance contribution threshold to 0.25. Red is for variables greater than 0.25 and blue is for 
variables less than 0.25. 

Characteristic variance contribution degree

Re
m

ot
e 

se
ns

in
g 

im
ag

e 
va

ri
ab

le
 n

am
e

 
Figure A3. Remote sensing image feature variance contribution ranking chart. The cumulative 
feature contribution ratio of feature variables is calculated according to the ranking. The threshold 
value is set as the contribution ratio greater than 90%, and the red value is the cumulative feature 
contribution ratio greater than 90%. Blue is less than 90% of the cumulative feature contribution. 

Figure A3. Remote sensing image feature variance contribution ranking chart. The cumulative
feature contribution ratio of feature variables is calculated according to the ranking. The threshold
value is set as the contribution ratio greater than 90%, and the red value is the cumulative feature
contribution ratio greater than 90%. Blue is less than 90% of the cumulative feature contribution.

References
1. Jayathunga, S.; Owari, T.; Tsuyuki, S. The Use of Fixed–Wing UAV Photogrammetry with LiDAR DTM to Estimate Merchantable

Volume and Carbon Stock in Living Biomass over a Mixed Conifer–Broadleaf Forest. Int. J. Appl. Earth Obs. Geoinf. 2018, 73,
767–777. [CrossRef]

2. Neeff, T.; de Alencastro Graça, P.M.; Dutra, L.V.; da Costa Freitas, C. Carbon Budget Estimation in Central Amazonia: Successional
Forest Modeling from Remote Sensing Data. Remote Sens. Environ. 2005, 94, 508–522. [CrossRef]

3. Qin, H.; Zhou, W.; Yao, Y.; Wang, W. Estimating Aboveground Carbon Stock at the Scale of Individual Trees in Subtropical Forests
Using UAV LiDAR and Hyperspectral Data. Remote Sens. 2021, 13, 4969. [CrossRef]

4. Wu, W.; Xu, L.; Zheng, H.; Zhang, X. How Much Carbon Storage Will the Ecological Space Leave in a Rapid Urbanization Area?
Scenario Analysis from Beijing-Tianjin-Hebei Urban Agglomeration. Resour. Conserv. Recycl. 2023, 189, 106774. [CrossRef]

5. Byrd, K.B.; Ballanti, L.; Thomas, N.; Nguyen, D.; Holmquist, J.R.; Simard, M.; Windham-Myers, L. A Remote Sensing-Based
Model of Tidal Marsh Aboveground Carbon Stocks for the Conterminous United States. ISPRS J. Photogramm. Remote Sens. 2018,
139, 255–271. [CrossRef]

6. Madundo, S.D.; Mauya, E.W.; Kilawe, C.J. Comparison of Multi-Source Remote Sensing Data for Estimating and Mapping
above-Ground Biomass in the West Usambara Tropical Montane Forests. Sci. Afr. 2023, 21, e01763. [CrossRef]

7. Smith, B.; Knorr, W.; Widlowski, J.-L.; Pinty, B.; Gobron, N. Combining Remote Sensing Data with Process Modelling to Monitor
Boreal Conifer Forest Carbon Balances. For. Ecol. Manag. 2008, 255, 3985–3994. [CrossRef]

https://doi.org/10.1016/j.jag.2018.08.017
https://doi.org/10.1016/j.rse.2004.12.002
https://doi.org/10.3390/rs13244969
https://doi.org/10.1016/j.resconrec.2022.106774
https://doi.org/10.1016/j.isprsjprs.2018.03.019
https://doi.org/10.1016/j.sciaf.2023.e01763
https://doi.org/10.1016/j.foreco.2008.03.056


Forests 2024, 15, 751 22 of 23

8. Poorazimy, M.; Shataee, S.; McRoberts, R.E.; Mohammadi, J. Integrating Airborne Laser Scanning Data, Space-Borne Radar Data
and Digital Aerial Imagery to Estimate Aboveground Carbon Stock in Hyrcanian Forests, Iran. Remote Sens. Environ. 2020, 240,
111669. [CrossRef]

9. Zheng, Y.; Zhang, B. The Impact of Carbon Market on City Greening: Quasi-Experimental Evidence from China. Resour. Conserv.
Recycl. 2023, 193, 106960. [CrossRef]

10. Guo, Q.; Du, S.; Jiang, J.; Guo, W.; Zhao, H.; Yan, X.; Zhao, Y.; Xiao, W. Combining GEDI and Sentinel Data to Estimate Forest
Canopy Mean Height and Aboveground Biomass. Ecol. Inform. 2023, 78, 102348. [CrossRef]

11. Massetti, A.; Gil, A. Mapping and Assessing Land Cover/Land Use and Aboveground Carbon Stocks Rapid Changes in Small
Oceanic Islands’ Terrestrial Ecosystems: A Case Study of Madeira Island, Portugal (2009–2011). Remote Sens. Environ. 2020, 239,
111625. [CrossRef]

12. Ai, X.-N.; Gao, S.-J.; Li, W.-M.; Liao, H. Greening China: Environmentally Adjusted Multifactor Productivity in the Last Four
Decades. Resour. Conserv. Recycl. 2023, 192, 106918. [CrossRef]

13. Chaddad, F.; Mello, F.A.O.; Tayebi, M.; Safanelli, J.L.; Campos, L.R.; Amorim, M.T.A.; Barbosa de Sousa, G.P.; Ferreira, T.O.; Ruiz,
F.; Perlatti, F.; et al. Impact of Mining-Induced Deforestation on Soil Surface Temperature and Carbon Stocks: A Case Study Using
Remote Sensing in the Amazon Rainforest. J. S. Am. Earth Sci. 2022, 119, 103983. [CrossRef]

14. Pereira, O.J.R.; Montes, C.R.; Lucas, Y.; Melfi, A.J. Use of Remote Sense Imagery for Mapping Deep Plant-Derived Carbon
Storage in Amazonian Podzols in Regional Scale. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing
Symposium—IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 3770–3772.

15. Chang, F.-C.; Ko, C.-H.; Yang, P.-Y.; Chen, K.-S.; Chang, K.-H. Carbon Sequestration and Substitution Potential of Subtropical
Mountain Sugi Plantation Forests in Central Taiwan. J. Clean. Prod. 2017, 167, 1099–1105. [CrossRef]

16. Zhou, P.; Sun, Z.; Zhang, X.; Wang, Y. A Framework for Precisely Thinning Planning in a Managed Pure Chinese Fir Forest Based
on UAV Remote Sensing. Sci. Total Environ. 2023, 860, 160482. [CrossRef] [PubMed]

17. Bordoloi, R.; Das, B.; Tripathi, O.P.; Sahoo, U.K.; Nath, A.J.; Deb, S.; Das, D.J.; Gupta, A.; Devi, N.B.; Charturvedi, S.S.; et al.
Satellite Based Integrated Approaches to Modelling Spatial Carbon Stock and Carbon Sequestration Potential of Different Land
Uses of Northeast India. Environ. Sustain. Indic. 2022, 13, 100166. [CrossRef]

18. Yang, C.; Liu, J.; Zhang, Z.; Zhang, Z. Estimation of the Carbon Stock of Tropical Forest Vegetation by Using Remote Sensing and
GIS. In Proceedings of the IGARSS 2001—Scanning the Present and Resolving the Future, IEEE International Geoscience and
Remote Sensing Symposium (Cat. No.01CH37217), Sydney, Australia, 9–13 July 2001; Volume 4, pp. 1672–1674.

19. Zeng, W.; Sun, X. Development of Forest Stand Volume Models Based on Airborne Laser Scanning Data. Scie.Silvae Sin. 2021,
57, 31–38.

20. Corte, A.P.D.; Souza, D.V.; Rex, F.E.; Sanquetta, C.R.; Mohan, M.; Silva, C.A.; Zambrano, A.M.A.; Prata, G.; Alves de Almeida,
D.R.; Trautenmüller, J.W.; et al. Forest Inventory with High-Density UAV-Lidar: Machine Learning Approaches for Predicting
Individual Tree Attributes. Comput. Electron. Agric. 2020, 179, 105815. [CrossRef]

21. Geospatial Science for Smart Land Management: An Asian Context. de Vries, W.T.; Rudiarto, I.; Piyasena, N.M.P.M. (Eds.) CRC
Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-334951-8.

22. Chinembiri, T.S.; Mutanga, O.; Dube, T. Carbon Stock Prediction in Managed Forest Ecosystems Using Bayesian and Frequentist
Geostatistical Techniques and New Generation Remote Sensing Metrics. Remote Sens. 2023, 15, 1649. [CrossRef]

23. Ke, S.; Zhang, Z.; Wang, Y. China’s Forest Carbon Sinks and Mitigation Potential from Carbon Sequestration Trading Perspective.
Ecol. Indic. 2023, 148, 110054. [CrossRef]

24. Qin, H.; Zhou, W.; Yao, Y.; Wang, W. Individual Tree Segmentation and Tree Species Classification in Subtropical Broadleaf
Forests Using UAV-Based LiDAR, Hyperspectral, and Ultrahigh-Resolution RGB Data. Remote Sens. Environ. 2022, 280, 113143.
[CrossRef]

25. Georgopoulos, N.; Gitas, I.Z.; Stefanidou, A.; Korhonen, L.; Stavrakoudis, D. Estimation of Individual Tree Stem Biomass in an
Uneven-Aged Structured Coniferous Forest Using Multispectral LiDAR Data. Remote Sens. 2021, 13, 4827. [CrossRef]

26. Marczak, P.T.; Van Ewijk, K.Y.; Treitz, P.M.; Scott, N.A.; Robinson, D.C.E. Predicting Carbon Accumulation in Temperate Forests
of Ontario, Canada Using a LiDAR-Initialized Growth-and-Yield Model. Remote Sens. 2020, 12, 201. [CrossRef]

27. Naik, P.; Dalponte, M.; Bruzzone, L. Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote
Sensing Data. Remote Sens. 2021, 13, 1282. [CrossRef]

28. Suhaili, A.; Lawen, J. Estimation of Plant Biomass and Carbon Stock for a Juvenile Reforested Mangrove Stand Using High
Resolution Imaging Spectrometer. In Proceedings of the 5th Workshop on Hyperspectral Image and Signal Processing: Evolution
in Remote Sensing (WHISPERS), Gainesville, FL, USA, 26–28 June 2013; pp. 1–5.

29. Silva, J.S.R.D.; Abhiram, G.; Perera, T.A.N.T.; Herath, H.M.S.K.; Rathnayake, R.M.K.T.; Kumara, J.B.D.A.P.; Bandara, P.K.G.S.S.
Artificial Intelligence (AI) Assisted Precision Agriculture: Applications in Asian Context. In Geospatial Science for Smart Land
Management; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-334951-8.

30. Lin, W.; Lu, Y.; Jiang, X.; Li, G.; Li, D.; Lu, D. Modeling forest growing stock volume in a north subtropical region using the
hierarchical Bayesian approach based on multi-source data. Nat. Rem. Sens. Bull. 2022, 26, 468–479. [CrossRef]

31. Campbell, M.J.; Dennison, P.E.; Kerr, K.L.; Brewer, S.C.; Anderegg, W.R.L. Scaled Biomass Estimation in Woodland Ecosystems:
Testing the Individual and Combined Capacities of Satellite Multispectral and Lidar Data. Remote Sens. Environ. 2021, 262, 112511.
[CrossRef]

https://doi.org/10.1016/j.rse.2020.111669
https://doi.org/10.1016/j.resconrec.2023.106960
https://doi.org/10.1016/j.ecoinf.2023.102348
https://doi.org/10.1016/j.rse.2019.111625
https://doi.org/10.1016/j.resconrec.2023.106918
https://doi.org/10.1016/j.jsames.2022.103983
https://doi.org/10.1016/j.jclepro.2016.08.016
https://doi.org/10.1016/j.scitotenv.2022.160482
https://www.ncbi.nlm.nih.gov/pubmed/36464045
https://doi.org/10.1016/j.indic.2021.100166
https://doi.org/10.1016/j.compag.2020.105815
https://doi.org/10.3390/rs15061649
https://doi.org/10.1016/j.ecolind.2023.110054
https://doi.org/10.1016/j.rse.2022.113143
https://doi.org/10.3390/rs13234827
https://doi.org/10.3390/rs12010201
https://doi.org/10.3390/rs13071282
https://doi.org/10.11834/jrs.20221545
https://doi.org/10.1016/j.rse.2021.112511


Forests 2024, 15, 751 23 of 23

32. Yu, T.; Pang, Y.; Liang, X.; Jia, W.; Bai, Y.; Fan, Y.; Chen, D.; Liu, X.; Deng, G.; Li, C.; et al. China’s Larch Stock Volume Estimation
Using Sentinel-2 and LiDAR Data. Geo-Spat. Inf. Sci. 2023, 26, 392–405. [CrossRef]

33. Gao, L.; Chai, G.; Zhang, X. Above-Ground Biomass Estimation of Plantation with Different Tree Species Using Airborne LiDAR
and Hyperspectral Data. Remote Sens. 2022, 14, 2568. [CrossRef]

34. Li, J.; Hu, B.; Sohn, G.; Jing, L. Individual Tree Species Classification Using Structure Features from High Density Airborne Lidar
Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010;
pp. 2099–2102.

35. Thapa, R.B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; Shimada, M. Calibration of Aboveground Forest Carbon Stock Models for
Major Tropical Forests in Central Sumatra Using Airborne LiDAR and Field Measurement Data. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2015, 8, 661–673. [CrossRef]

36. Dhakshayani, J.; Surendiran, B.; Jyothsna, J. Artificial Intelligence in Precision Agriculture: A Systematic Review on Tools,
Techniques, and Applications. In Predictive Analytics in Smart Agriculture; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-
339130-2.

37. Gang, B.; Hasituya; Hugejiletu; Bao, Y. Remotely Sensed Estimate of Biomass Carbon Stocks in Xilingol Grassland Using MODIS
NDVI Data. In Proceedings of the International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC),
Shenyang, China, 20–22 December 2013; pp. 676–679.

38. Silva, C.A.; Klauberg, C.; e Carvalho, S.d.P.C.; Rodriguez, L.C.E. Estimation of Aboveground Carbon Stocks in Eucalyptus
Plantations Using LIDAR. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium—IGARSS,
Melbourne, Australia, 21–26 July 2013; pp. 972–974.

39. Song, M.; Zhao, Y.; Liang, J.; Li, F. Spatial-Temporal Variability of Carbon Emission and Sequestration and Coupling Coordination
Degree in Beijing District Territory. Clean. Environ. Syst. 2023, 8, 100102. [CrossRef]

40. Wang, Q.; Pang, Y.; Chen, D.; Liang, X.; Lu, J. Lidar Biomass Index: A Novel Solution for Tree-Level Biomass Estimation Using 3D
Crown Information. For. Ecol. Manag. 2021, 499, 119542. [CrossRef]

41. Pan, H.; Meng, X.; Zhang, Z.; Tang, Y.; Liu, Y.; Cai, H.; Lu, F. Test of Eucalyptus Binary Volume Table Based on TLS Point Cloud
Data. Guangxi For. Sci. 2023, 52, 516–521. [CrossRef]

42. Liang, B.; Wang, J.; Zhang, Z.; Zhang, J.; Zhang, J.; Cressey, E.L.; Wang, Z. Planted Forest Is Catching up with Natural Forest in
China in Terms of Carbon Density and Carbon Storage. Fundam. Res. 2022, 2, 688–696. [CrossRef]

43. Lv, Y.; Han, N.; Du, H. Estimation of Bamboo Forest Aboveground Carbon Using the RGLM Model Based on Object-Based
Multiscale Segmentation of SPOT-6 Imagery. Remote Sens. 2023, 15, 2566. [CrossRef]

44. Pei, H.; Owari, T.; Tsuyuki, S.; Hiroshima, T. Identifying Spatial Variation of Carbon Stock in a Warm Temperate Forest in Central
Japan Using Sentinel-2 and Digital Elevation Model Data. Remote Sens. 2023, 15, 1997. [CrossRef]

45. Sun, S.; Wang, Y.; Song, Z.; Chen, C.; Zhang, Y.; Chen, X.; Chen, W.; Yuan, W.; Wu, X.; Ran, X.; et al. Modelling Aboveground
Biomass Carbon Stock of the Bohai Rim Coastal Wetlands by Integrating Remote Sensing, Terrain, and Climate Data. Remote Sens.
2021, 13, 4321. [CrossRef]

46. Brilli, L.; Chiesi, M.; Brogi, C.; Magno, R.; Arcidiaco, L.; Bottai, L.; Tagliaferri, G.; Bindi, M.; Maselli, F. Combination of Ground
and Remote Sensing Data to Assess Carbon Stock Changes in the Main Urban Park of Florence. Urban For. Urban Green. 2019, 43,
126377. [CrossRef]

47. Molina, P.X.; Asner, G.P.; Farjas Abadía, M.; Ojeda Manrique, J.C.; Sánchez Diez, L.A.; Valencia, R. Spatially-Explicit Testing of a
General Aboveground Carbon Density Estimation Model in a Western Amazonian Forest Using Airborne LiDAR. Remote Sens.
2016, 8, 9. [CrossRef]

48. Wang, B.; Chen, Y.; Yan, Z.; Liu, W. Integrating Remote Sensing Data and CNN-LSTM-Attention Techniques for Improved Forest
Stock Volume Estimation: A Comprehensive Analysis of Baishanzu Forest Park, China. Remote Sens. 2024, 16, 324. [CrossRef]

49. Zhao, J.; Liu, D.; Cao, Y.; Zhang, L.; Peng, H.; Wang, K.; Xie, H.; Wang, C. An Integrated Remote Sensing and Model Approach for
Assessing Forest Carbon Fluxes in China. Sci. Total Environ. 2022, 811, 152480. [CrossRef]

50. Zhao, Y.; Ma, Y.; Quackenbush, L.J.; Zhen, Z. Estimation of Individual Tree Biomass in Natural Secondary Forests Based on ALS
Data and WorldView-3 Imagery. Remote Sens. 2022, 14, 271. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/10095020.2022.2105754
https://doi.org/10.3390/rs14112568
https://doi.org/10.1109/JSTARS.2014.2328656
https://doi.org/10.1016/j.cesys.2022.100102
https://doi.org/10.1016/j.foreco.2021.119542
https://doi.org/10.19692/j.issn.1006-1126.20230417
https://doi.org/10.1016/j.fmre.2022.04.008
https://doi.org/10.3390/rs15102566
https://doi.org/10.3390/rs15081997
https://doi.org/10.3390/rs13214321
https://doi.org/10.1016/j.ufug.2019.126377
https://doi.org/10.3390/rs8010009
https://doi.org/10.3390/rs16020324
https://doi.org/10.1016/j.scitotenv.2021.152480
https://doi.org/10.3390/rs14020271

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collection 
	Plot Data 
	LiDAR Data 
	Landsat 8 Data 

	Feature Variable Screening 
	Stepwise Screening 
	Random Forest Screening 

	Accumulation Modeling Based on Point Clouds and Multispectral Images 
	Stepwise Regression Modeling 
	Partial Least Squares Regression Modeling 
	Random Forest Regression Modeling 
	Support Vector Regression Modeling 

	Evaluation Index 

	Results 
	Point Clouds Model Evaluation and Analysis 
	Evaluation and Analysis of Optical Remote Sensing Models 
	Model Evaluation and Analysis of Combined Point Clouds and Optical Remote Sensing 

	Discussion 
	Comparison of Parametric and Non-Parametric Methods in Modeling Plantation Stock 
	Versatility of the Best Combination of Image and Point Clouds Features 
	Non-Parametric Approaches and Combined Data Oriented towards Carbon Neutrality Goals Can Improve Forest Volume Resource Modeling 
	Limitations and Future Directions 

	Conclusions 
	Appendix A
	Appendix B
	References

