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Abstract: The accurate determination of the Diameter at Breast Height (DBH) of Moso bamboo is
crucial for estimating biomass and carbon storage in Moso bamboo forests. In this research, we
utilized handheld LiDAR point cloud data to extract the DBH of Moso bamboo and enhanced
the accuracy of diameter fitting by optimizing denoising parameters. Specifically, we fine-tuned
two denoising parameters, neighborhood point number and standard deviation multiplier, across
five gradient levels for denoising. Subsequently, DBH fitting was conducted on data processed
with varying denoising parameters, followed by a precision evaluation to investigate the key factors
influencing the accuracy of Moso bamboo DBH fitting. The research results indicate that a handheld
laser was used to scan six plots, from which 132 single Moso bamboo trees were selected. Out of
these, 122 single trees were successfully segmented and identified, achieving an accuracy rate of
92.4% in identifying single Moso bamboo trees, with an average accuracy of 95.64% in extracting
DBH for individual plants; the mean error was ±1.8 cm. Notably, setting the minimum neighborhood
point to 10 resulted in the highest fitting accuracy for DBH. Moreover, the optimal standard deviation
multiplier threshold was found to be 1 in high-density forest plots and 2 in low-density forest plots.
Forest condition and slope were identified as the primary factors impacting the accuracy of Moso
bamboo DBH fitting.

Keywords: Moso bamboo; handheld LiDAR; individual tree detection; DBH; error analysis

1. Introduction

Moso bamboo (Phyllostachys edulis) is an evergreen plant that is commonly found in
tropical and subtropical regions [1]. It holds significant economic importance in China
due to its widespread distribution [2–4]. The edible bamboo shoots and versatile material
properties of Moso bamboo make it highly valuable [5]. The extensive root system of Moso
bamboo plays a crucial ecological role in windbreaks, sand stabilization, water conservation,
and soil preservation [6]. Moso bamboo exhibits rapid growth, achieving maturity within a
short span of 50 to 60 days from the emergence of shoots [7]. Its distinctive mechanism of
biomass accumulation highlights its substantial potential for carbon sequestration, making
a significant contribution to the global carbon sink [8,9].

Accurately estimating the individual parameters of Moso bamboo is crucial for deter-
mining its carbon storage capacity. Forestry researchers evaluate tree health by monitoring
the growth of individual trees in a forest, often using quantitative indicators like DBH to
ensure consistency in forest inventory results [10]. Laser scanning technology employs a
laser emitter to emit pulsed laser beams and scan the surrounding environment, collecting
precise three-dimensional point cloud data by measuring distances to target surfaces. This
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process effectively captures detailed spatial information, including the shape, size, and
depth of objects in a scanned area. [11]. This technology is particularly adept at extracting
individual tree parameters for forestry applications [12]. Polewski et al. (2019) introduced
an algorithm for matching unmarked airborne laser scanning (ALS) and backpack LiDAR
data, enhancing the measurement of forest resources through unmarked data matching [13].
Cai et al. (2021) enhanced DBH fitting accuracy by filtering out noise points with varying
intensities in point cloud data [14]. Brolly et al. (2021) utilized LiDAR technology to esti-
mate individual tree structural parameters by creating digital terrain models (DTMs), tree
canopy surface models, and trunk models to derive stand parameters [15]. Cai et al. (2018)
developed a method to rapidly determine bamboo age by analyzing the relationship be-
tween point cloud data echo intensity and bamboo age, achieving an accuracy of 92.5% [16].
Li et al. (2022) conducted a study comparing crown heights measured from individual
trees in sample sites with those extracted from LiDAR point cloud data, resulting in a Root
Mean Square Error (RMSE) of 1.33 m and a coefficient of determination (R2) of 0.96 [17].

Several studies have utilized Terrestrial Laser Scanning (TLS) data to analyze the
extraction of DBH in Moso bamboo. Huang et al. (2021) employed TLS technology
to capture point cloud data from Moso bamboo forest locations [18]. By conducting a
thorough examination of bamboo stem shapes and forest conditions, they introduced a
novel stem recognition method that enhanced the identification rate of individual Moso
bamboo plants in point cloud data and the accuracy of DBH estimation. Similarly, Jiang
et al. (2022) conducted TLS multi-station scanning to gather point cloud data from Moso
bamboo forests [19]. By fitting a circular cross-section of bamboo stems and establishing a
longitudinal axis of bamboo stems, they derived the DBH and pole length of Moso bamboo,
minimizing parameter errors caused by bamboo pole bending. These studies primarily
focus on enhancing the accuracy of DBH estimation by investigating the influence of Moso
bamboo’s growth structure. Additionally, the quality of point cloud data significantly
impacts the accuracy of DBH estimation in Moso bamboo. Noise points within the data are
identified as a key factor affecting the quality of point cloud data [20].

This study investigates the factors influencing the denoising of point cloud data,
focusing on two main questions: (1) How does the fitting accuracy of Moso bamboo
DBH change under various denoising parameter conditions? (2) What are the optimal
denoising parameters? The analysis in this paper aims to identify the sources of errors
and offer insights for parameter extraction for individual Moso bamboo using handheld
LiDAR technology.

2. Materials and Methods
2.1. Study Area

The study area is situated in the Taipinghu and Wushi Towns, Huangshan City,
in the southern region of Anhui Province, China (Figure 1a–c). This area experiences
a subtropical humid monsoon climate, with an average annual rainfall of 1274.7 mm,
1711.0 h of sunshine per year, and an average annual temperature of 16.6 ◦C in 2022
(Huangshan Statistical Bureau, 2023, Huangshan, China). The study area is rich in forest
resources and benefits from favorable climate conditions that promote vegetation growth.
Notable tree species present include Phyllostachys edulis, Cunninghamia lanceolata, Pinus
massoniana, and Liquidambar formosana, among others (Huangshan Forestry Bureau, 2021,
Huangshan, China).

2.2. Data Collection
2.2.1. Field Data

Six sample sites of Moso bamboo forests were selected in the study area (Figure 1c),
each measuring 20 m × 20 m (Figure 2a). Basic information on the sample sites can be found
in Table 1. Trees with DBH greater than 5 cm were individually tagged and measured using
a diameter ruler, with species category information recorded. Additionally, the coordinates
of the center point and four corners of each sample were obtained using the Real-Time
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Kinematic (RTK) technique of the Global Navigation Satellite System (GNSS) receiver for
later matching with the results of individual tree segmentation.
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Table 1. Summary of sample site information for Moso bamboo forest.

Serial Number Sample Size Number of
Plants

Under-Forest
Condition Average Slope

Site 1 20 m × 20 m 27 Few shrubs 5◦

Site 2 20 m × 20 m 18 Shrubby 9◦

Site 3 20 m × 20 m 27 Shrubby 13◦

Site 4 20 m × 20 m 20 Shrubby 25◦

Site 5 20 m × 20 m 20 Few shrubs 15◦

Site 6 20 m × 20 m 20 Few shrubs 5◦
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Figure 2. Sample site information. (a) Schematic diagram of sample site. (b) LiGrip-V100 handheld
rotary laser scanner. (c) Z–shaped route. (d) Scanning trajectory.

2.2.2. Handheld LiDAR Data

The handheld LiDAR equipment was Green Valley International’s model, the LiGrip-
V100 handheld rotary laser scanner (Green Valley, Bejing, China), with specifications shown
in Table 2. Given the dense Moso bamboo forest terrain with a certain slope, a LiGrip-V100
handheld rotary laser scanner was employed with a double Z–shaped route to optimize
point cloud data acquisition (Figure 2b,c). To maintain data quality, a constant scanning
speed was maintained while ensuring equipment stability to prevent rotational movements.
The walking speed was maintained between 0.8 and 1.2 m/s depending on the terrain. The
cloud profiles of the sample site are illustrated in Figure 3.

Table 2. Handheld LiDAR parameters.

Performance Indicators Parameters

Laser Sensor VLP–16
LiDAR Accuracy ±3 cm
Relative Accuracy ≤3 cm
Absolute Accuracy 5 cm

Size L270 mm × W210 mm × H120 mm
Laser Wavelength 903 nm

Scan Rate 300000 pts/s
View Angle Range 280◦~360◦ (Horizontal); –90◦~90◦ (Vertical)

Scan Range 100 m
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2.3. Moso Bamboo DBH Extraction Methods

The process of extracting the DBH of Moso bamboo included denoising, ground point
classification, point cloud normalization, individual tree segmentation, extraction of single
tree DBH, accuracy verification, and denoising parameter optimization (Figure 4).
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2.3.1. Removal of Noise

The handheld LiDAR data was processed using LiDAR360 V7.0 software (Green Valley,
Beijing, China). Initially, the point cloud data underwent cropping based on the sample
extent and filtering to remove redundancy and noise (Figure 5). Statistical filtering was
used for denoising in this study. The principle was to search for a specified number of
neighboring points for each point, calculating the mean of the distances from each point
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to its neighbors. The median and standard deviation of these distance means were then
calculated. Points whose mean distance was greater than the maximum distance (maximum
distance = median + number of standard deviations × standard deviation) were identified
as noise and excluded [21]. The parameters impacting the denoising outcome included the
number of neighboring points and the number of standard deviations.
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Figure 5. Removal of noise. (a1,a2) are whole plant of Moso bamboo; (b1,b2) are trunk of Moso
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2.3.2. Ground Point Classification and Normalization

The improved progressive triangulated irregular network densification algorithm was
applied for ground point classification to mitigate the impact of terrain factors on indi-
vidual tree segmentation and DBH extraction. The main process consisted of point cloud
gridding, selecting seed points, constructing a triangulated irregular network (TIN) using
the seed points, and iteratively densifying the TIN. A digital elevation model (DEM) with
a resolution of 0.5 m was generated through irregular triangular mesh interpolation [22].
Normalized point cloud data were obtained by subtracting the absolute elevation Z values
of the data from the ground points’ elevation to eliminate topography influence on tree
height estimation [23] (Figure 6).
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2.3.3. Individual Tree Segmentation

The point cloud segmentation algorithm was utilized for individual tree segmenta-
tion [24]. This methodology was based on the spatial separation characteristics between
tree canopies. Initially, local maxima detection was performed on the discrete point cloud,
assuming that these local highest points represented the treetop. Using this point as a seed
point, the point cloud was segmented using a region-growing algorithm. This process was
iterated until all significant trees were segmented (Figure 7).
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2.3.4. DBH Extraction

The DBH of bamboo was extracted using the method of least squares circle fitting.
This method achieves the optimal circle center and radius by minimizing the squared error
of the sum of distances from all data points to the circumference [25]. In this study, the
point cloud of the trunk at 1.3 m above ground was selected for circle fitting (Figure 8).

f (xa, ya, R) = ∑ d2
i (1)

ri =

√
(xi − xa)

2 + (yi − ya)
2 (2)

where di is the distance of each point from the center of the fitted circle at 1.3 m (di = ri − R),
xa and ya are the coordinates of the center of the determined fitted circle, xi and yi are the
coordinates of the center of the iteratively fitted circle, ri is the radius of the circle fitted at
different points, and R is the radius of the determined fitted circle.
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2.3.5. Denoising Parameter Optimization

In order to identify the best denoising parameters for the point cloud data of a Moso
bamboo forest, this study initially set the standard deviation multiplier at 5. Subsequently,
varying numbers of minimum neighborhood points (10, 20, 30, 40, 50) were tested for
denoising. The DBH was then fitted, and metrics such as precision (P), coefficient of
determination (R2), RMSE, and relative Root Mean Square Error (rRMSE) were calculated
to compare the fitted values with the measured values. This analysis aimed to determine
the optimal parameters for the minimum neighborhood point. Following this, using the
identified optimal parameters, the standard deviation multiplier was adjusted to 1, 2, 3, 4,
and 5 for further denoising processes. The DBH was fitted once again, and a comparison
was made with the measured values to ascertain the most suitable denoising parameters.

2.3.6. Accuracy Assessment

According to the measured RTK coordinates of the Moso bamboo and the point cloud
coordinates, a correspondence was established between the measured DBH and the fitted
DBH for accuracy verification. This study utilized P, R2, RMSE, and rRMSE to assess the
accuracy. A higher R2 indicated a stronger correlation between the measured and fitted
values, while a lower RMSE signified greater predictive value. The formula is as follows:

P = 1 − 1
n

n

∑
i=1

|Wi − wi|
Wi

(3)

R2 =
∑n

i=1 (wi − wi)
(
Wi − Wi

)√
∑n

i=1 (w i − wi)
2∑n

i=1 (W i − Wi
)2

(4)

RMSE =

√
1
n

n

∑
i=1

(W i − Wi
)2 (5)

rRMSE =
RMSE

1
n ∑n

i=1 wi
(6)

where P represents precision, R2 represents the coefficient of determination, RMSE repre-
sents the Root Mean Square Error, rRMSE represents the relative Root Mean Square Error,
n is the number of correctly segregated individual Moso bamboo plants, Wi is the fitted
DBH, wi is the measured DBH, Wi is the mean value of Wi, and wi is the mean value of wi.

3. Results
3.1. Identification Results and Analysis of Moso Bamboo

Table 3 displays the number of plants measured, recognized by the handheld LiDAR,
and undetected and the detection rate across the six sample sites. The identification accuracy
of Moso bamboo varied among the plots, with a 100% identification rate in site 6, 88.89% in
sites 1 and 3, and an average of 93% overall. The accuracy of Moso bamboo identification
was influenced by factors such as RTK accuracy and the quality of the point cloud data.
Site 6 had a sparse distribution of Moso bamboo and fewer understory shrubs, exhibiting
high accuracy in single Moso bamboo identification. Conversely, sites 1 and 3 had dense
bamboo and poor RTK signals in the understory, resulting in the low identification of
single trees.
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Table 3. Identification results of Moso Bamboo.

Serial Number
Number of

Plants
Measured

Number of
Plants Identified

Number of
Undetected

Strains

Recognition
Rate (%)

Site 1 27 24 3 88.89
Site 2 18 17 1 94.44
Site 3 27 24 3 88.89
Site 4 20 19 1 95
Site 5 20 18 2 90
Site 6 20 20 0 100

3.2. Parameter Optimization Results and Analysis

The quality of the point cloud data for Moso bamboo forests was enhanced by opti-
mizing denoising parameters prior to fitting the chest diameter. This study investigated
the optimal minimum neighborhood point parameter for statistical filtering [26] method to
denoise the point cloud data of Moso bamboo forests. Five parameter values were tested
for denoising, with a fixed standard deviation multiplier of 5. The extracted DBHs were
then compared with the measured values, as shown in Table 4. The results revealed that a
minimum neighboring point of 10 yielded the highest accuracy in fitting the cloud DBH of
Moso bamboo points in sites 1, 2, 3, 4, and 6, with accuracy rates of 96.37%, 90.44%, 86.80%,
92.39%, and 94.44%, respectively. The R2 values ranged from 0.344 to 0.959, with site 1
achieving the highest fit. The RMSE value for site 1 was 0.416, with an rRMSE of 4.38%,
indicating the best overall fit. Site 5 showed a high accuracy of 90.03% for DBH fit at a
minimum neighborhood point of 30, only slightly higher than the accuracy at a minimum
neighborhood point of 10. Overall, the most accurate fitting of Moso bamboo diameter was
achieved with a minimum neighborhood point of 10, suggesting that noise points could
be more precisely removed under this parameter while retaining effective data points that
revealed the structure of Moso bamboo.

Table 4. DBH fitting results after denoising with different minimum neighborhood point parameters.

Serial Number Minimum Number of
Neighborhood Points Accuracy (%) R2 RMSE rRMSE (%)

Site 1

10 96.37 0.959 0.416 4.38
20 94.39 0.872 0.632 6.24
30 93.87 0.906 0.700 7.36
40 93.64 0.839 0.713 7.5
50 94.48 0.898 0.647 6.80

Site 2

10 90.44 0.344 1.431 16.03
20 89.39 0.444 0.916 15.69
30 88.08 0.214 1.567 17.56
40 88.40 0.205 1.613 18.07
50 87.02 0.227 1.593 17.85

Site 3

10 86.80 0.519 1.572 13.38
20 85.95 0.435 1.689 14.38
30 86.68 0.511 1.606 13.67
40 83.54 0.586 1.802 15.35
50 82.92 0.330 1.989 16.94

Site 4

10 92.39 0.637 1.073 9.32
20 89.66 0.206 1.492 12.97
30 91.83 0.621 1.007 8.75
40 91.37 0.623 1.164 10.12
50 90.67 0.539 1.220 10.61
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Table 4. Cont.

Serial Number Minimum Number of
Neighborhood Points Accuracy (%) R2 RMSE rRMSE (%)

Site 5

10 89.68 0.691 1.513 14.02
20 88.55 0.576 1.220 17.89
30 90.03 0.728 1.398 12.96
40 89.30 0.681 1.545 14.32
50 88.65 0.634 0.586 14.70

Site 6

10 94.44 0.865 0.702 7.26
20 93.09 0.819 0.759 7.77
30 93.87 0.832 0.725 7.50
40 92.47 0.770 0.883 9.14
50 92.78 0.808 0.784 8.11

Based on a minimum neighborhood point set to 10, denoising was performed with
five standard deviation multiples, as shown in Table 5. Sites 3, 4, 5, and 6 exhibited the
highest accuracy of fit for DBH at a standard deviation multiplier of 2, with accuracies of
91.05%, 92.63%, 92.12%, and 94.72%, respectively, corresponding to R2 values of 0.645, 0.637,
0.740, and 0.872. The RMSE and rRMSE for the fitted and measured values of DBH for site 6
were the smallest, at 0.668 and 6.91%, respectively. On the other hand, sites 1 and 2 showed
the highest accuracy of fitting DBH at a standard deviation multiplier of 1, with accuracies
of 96.37% and 90.44%, respectively. The denser growth of Moso bamboo in sites 1 and 2
led to more compact and noisy point cloud data, where a standard deviation multiplier
of 1 effectively removed noise and yielded higher-quality point cloud data. In contrast,
sites 3, 4, 5, and 6 displayed sparse growth of Moso bamboo, with relatively fewer noise
points in the point cloud data. Adjusting the standard deviation multiplier to 1 impacted
the structure of the Moso bamboo point cloud itself, influencing the accuracy of DBH fit,
while a higher standard deviation multiplier preserved more noise points, also affecting
the fit of DBH.

Table 5. DBH fitting results after denoising with different standard deviation multiples.

Serial Number Standard
Deviation Multiplier Accuracy (%) R2 RMSE rRMSE (%)

Site 1

1 96.37 0.959 0.416 4.38
2 94.06 0.896 0.728 7.66
3 93.60 0.778 0.870 9.15
4 94.20 0.215 0.761 8.00
5 94.91 0.902 0.633 6.66

Site 2

1 90.44 0.344 1.431 16.03
2 89.58 0.411 1.357 15.20
3 88.30 0.241 1.539 17.24
4 88.06 0.282 1.492 16.71
5 89.09 0.424 1.365 15.29

Site 3

1 86.80 0.519 1.57 13.38
2 91.05 0.645 1.157 9.85
3 88.39 0.508 1.408 11.99
4 87.89 0.567 1.480 12.60
5 88.97 0.486 1.390 11.84

Site 4

1 92.39 0.515 1.073 9.32
2 92.63 0.637 1.071 9.31
3 92.51 0.367 1.154 10.03
4 92.49 0.449 1.159 10.08
5 92.52 0.499 1.118 9.72
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Table 5. Cont.

Serial Number Standard
Deviation Multiplier Accuracy (%) R2 RMSE rRMSE (%)

Site 5

1 89.68 0.691 1.513 14.02
2 92.12 0.740 1.316 12.20
3 89.70 0.578 1.710 15.85
4 89.98 0.544 1.771 16.42
5 89.21 0.583 1.737 16.11

Site 6

1 94.44 0.865 0.702 7.26
2 94.72 0.872 0.668 6.91
3 94.36 0.857 0.731 7.56
4 93.23 0.816 0.822 8.50
5 94.10 0.868 0.680 7.03

3.3. DBH Extraction Results and Analysis

The results presented in Figure 9 are based on the optimal parameter fitted to the
diameter of Moso bamboo chests. The correlations between the fitted and measured values
of Moso bamboo diameter at each sample site were 0.959, 0.344, 0.654, 0.515, 0.740, and
0.872, respectively. Notably, site 1 exhibited the highest correlation between the fitted
and measured values of diameter, with the lowest RMSE and rRMSE values of 0.416 and
4.38%, respectively. Following closely, site 6 showed an RMSE of 0.668 and rRMSE of 6.91%.
Conversely, site 2 displayed the lowest correlation, resulting in the highest RMSE and
rRMSE values of 1.431 and 16.03%.
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Site 1 exhibited a smaller slope with fewer overgrown shrubs shading the bamboo
pole area, resulting in a higher-quality point cloud collection. In contrast, the discrep-
ancy between the fitted and measured values of DBH for site 2 can be attributed to the
presence of a greater variety of mixed shrubs in the understory. Additionally, the pres-
ence of intertwined and fallen Moso bamboo plants in site 2 may have led to inaccuracies
in contour representation during single wood splitting, resulting in errors when fitting
the DBH.
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3.4. Analysis of Errors

In order to investigate the sources of error, eight Moso bamboo plants with significant
discrepancies in the fitted values of DBH were chosen for analysis (Table 6).

Table 6. Error analysis table.

Serial ID Measured DBH (cm) Fitted DBH (cm)

MZ02dm01 6.9 8.8
MZ03dm04 13.4 11.2
MZ03dm25 13.0 10.7
MZ04dm10 12.7 9.1
MZ04dm11 9.8 8.3
MZ05dm03 7.5 11.5
MZ05dm05 5.0 10.5
MZ06dm12 7.9 9.7

The measured DBH of Moso bamboo MZ2dm01 was 6.9 cm, while the fitted DBH was
8.8 cm, indicating a difference of 1.9 cm between the measured and fitted values. This error
was attributed to noisy point cloud data at 1.3 m, resulting in unclear contours (Figure 10a).
Similarly, the measured DBH of Moso bamboo MD3dm04 was 13.4 cm, whereas the fitted
DBH was 11.2 cm, showing a discrepancy of 2.2 cm. This discrepancy was due to excessive
stray irradiation in the area, causing the laser light to be absorbed by branches and trunks,
leading to inaccurate echo signals and an inability to accurately capture the profile of the
single Moso bamboo plant (Figure 10b). Additionally, the measured DBH of Moso bamboo
MD3dm25 was 13.0 cm, while the fitted DBH was 10.7 cm. The discrepancy in this case
was caused by the close proximity of two Moso bamboo plants, resulting in misidentifi-
cation. Subsequently, another Moso bamboo plant was manually refitted with a DBH of
11.5 cm, achieving an accuracy of 88.46% (Figure 10c). The measured DBH of Moso bamboo
MD4dm10 was 12.7 cm, while the fitted DBH was 9.1 cm. Unfortunately, the point cloud
data for this specimen were significantly missing (Figure 10d). In the case of MD4dm11,
the measured DBH was 9.8 cm, with a fitted DBH of 8.3 cm. Similar to MD4dm10, the
point cloud data were also missing (Figure 10e). Moving on to Moso bamboo MD5dm03,
the measured diameter was 7.5 cm, but the fitted diameter was 11.5 cm, resulting in a
large fitted value. The outline of the Moso bamboo in the point cloud appeared fuzzy and
overlapping, possibly due to rapid scanner movements causing multiple scans of the same
area, leading to an abundance of repetitive data points that impacted accuracy (Figure 10f).
Continuing with MD5dm05, the measured DBH was 5.0 cm, while the fitted DBH was
10.6 cm, showing a large fitted value caused by fuzzy overlap in the point cloud data at
1.3 m (Figure 10g). Lastly, for Moso bamboo MD6dm12, the measured DBH was 7.9 cm,
with a fitted DBH of 9.7 cm. The data indicated a significant break at 1.3 m, likely resulting
from a splicing error during the normalization process due to the steep slope of the sample
site (Figure 10h).

The challenges in accurately fitting the Moso bamboo DBH using handheld LiDAR
data can be attributed to two main factors. Firstly, the dense forest conditions in the
scanned sample plots, characterized by numerous low shrubs in the understory, lead to
laser absorption and inadequate return, resulting in a point cloud with lower density
and reduced quality. This hindered the precise representation of Moso bamboo outlines
post-data processing. Secondly, the presence of tilted and overlapping Moso bamboo in
some areas caused ambiguity in the point cloud data, further complicating accurate outline
depiction. Additionally, in sample plots with steep slopes, maintaining consistent scanning
speed and smooth travel paths proved challenging, impacting point cloud alignment and
leading to stitching errors. Consequently, the accurate representation of Moso bamboo
outlines became compromised.
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After excluding points with large errors, the results of the fitted and measured values
of DBH are presented in Figure 11 and Table 7. The extraction accuracy of DBH for sample
sites 2–6 generally improved, with an increase in R2 and a decrease in both RMSE and
rRMSE. Overall, after removing points with large errors, all evaluation parameters were
significantly optimized.
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Table 7. Precision evaluation results before and after removing points with significant errors.

Sample
Site

Pre-Deletion Post-Deletion

Accuracy
(%) R2 RMSE rRMSE (%) Accuracy

(%) R2 RMSE rRMSE (%)

Site 1 96.37 0.959 0.416 4.38 96.37 0.959 0.416 4.38
Site 2 90.44 0.344 1.431 16.03 95.42 0.672 0.694 7.37
Site 3 91.05 0.645 1.157 9.85 94.24 0.732 0.915 7.84
Site 4 92.63 0.637 1.071 9.31 95.48 0.729 0.714 6.19
Site 5 92.12 0.740 1.316 12.20 96.71 0.931 0.565 5.08
Site 6 94.72 0.872 0.668 6.91 95.60 0.903 0.564 5.78

4. Discussions

This study utilized a handheld LiDAR device to gather point cloud data from samples
of Moso bamboo. The data underwent denoising, ground point classification, normaliza-
tion, and single-wood segmentation operations. Subsequently, the single Moso bamboo
DBH was extracted using the least-squares circle fitting method and compared with the
measured DBH for accuracy evaluation.

Compared to terrestrial laser scanning and backpack laser scanning, handheld LiDAR
is capable of scanning more complex forest environments. Terrestrial laser scanning, when
scanning dense vegetation, often requires setting up multiple sites in different locations and
spending a significant amount of time on data processing. On the other hand, backpack
laser scans from a higher height than the scanning personnel, making it susceptible to
damage from branches and leaves at lower branch heights or complex forest conditions.
This can lead to sensor damage and a decrease in point cloud quality due to obstruction
from branches and leaves. In contrast, the handheld LiDAR scanner is compact, lightweight,
easy to carry, and simple to operate. It enables the quick collection of point cloud data in
complex secondary forests, resulting in higher measurement efficiency.

The utilization of handheld LiDAR scanners for arborimetric measurements is a signifi-
cant advancement in modern forestry and ecological research. This study has demonstrated
the effectiveness of using handheld LiDAR scanners to measure the DBH of Moso bamboo.
By utilizing point cloud data from these portable devices, additional parameters such as
tree height, LAI, and canopy spread can be extracted. These variables play a crucial role in
modeling tree growth patterns, understanding vertical canopy structure, and improving
estimates of forest carbon sequestration—a critical aspect of global change ecology. More-
over, detailed characterizations of individual trees aid in creating accurate forest biomass
maps and enhance our ability to monitor ecosystem services like carbon storage and habitat
suitability. Apart from ecological applications, the high-resolution data obtained from
handheld LiDAR systems can also support precision forestry initiatives, capturing the
intricacies and diversity of forest environments. Therefore, future research should focus on
exploring the potential of handheld LiDAR scanners in various dendrometric applications,
including evaluating their suitability for measuring unconventional parameters, validat-
ing their accuracy against traditional methods, and incorporating them into innovative
ecological models that simulate forest responses to environmental stressors.

In this study, only five parameter intervals were selected through the experimental
screening of suitable denoising parameters. Subsequent processing can continue to further
refine these parameters in order to improve the accuracy of DBH extraction. Precision
forestry demands high accuracy in parameters such as single Moso bamboo identification
and diameter extraction. The next step could involve attempting to fuse airborne and
handheld LiDAR point cloud data to obtain higher-quality and more comprehensive point
cloud data. This could pave the way for further research on parameters such as Moso
bamboo tree height, bamboo age, biomass, and other related factors.
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5. Conclusions

This research utilized handheld LiDAR technology to capture point cloud data of
Moso bamboo forests in Taipinghu and Wushi Township, Huangshan City. This study
conducted DBH fitting post-denoising using various parameters, assessed the accuracy,
and examined the errors of the fitted values. The findings indicated a 93% accuracy in
identifying Moso bamboo with a handheld LiDAR scanner and achieved an average DBH
fitting accuracy of 95.64% after eliminating points with significant errors. The mean error
was ±1.8 cm. Notably, setting the number of neighboring points to 10 resulted in the
highest fitting accuracy for Moso bamboo diameter. This study observed varying outcomes
in the extraction of samples based on different stand densities, suggesting an optimal
threshold of 1 for the standard deviation multiplier in dense Moso bamboo sample sites
and 2 for sparse Moso bamboo sample sites. Additionally, forest condition and slope were
identified as key factors influencing the error in fitting DBH to handheld LiDAR data.
Issues such as shrubs obstructing the laser, intertwined bamboo growth affecting point
cloud quality, and errors in data from samples with steep slopes were noted.

Author Contributions: Conceptualization, L.L., L.W. and N.L.; Methodology, L.L. and L.W.; Software,
L.W. and S.Z.; Validation, L.W., S.Z. and Z.W.; Data curation, L.W., Z.W. and M.D.; Formal analysis,
L.W., S.Z. and Z.W.; Funding acquisition, L.L. and M.D.; Investigation, L.L., L.W., N.L., S.Z., Z.W.,
M.D. and Y.C.; Visualization, L.L., L.W. and N.L.; Writing—original draft preparation, L.L., L.W.
and N.L.; Writing—review and editing, L.L., L.W., N.L., S.Z., Z.W. and M.D.; Supervision, N.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was financially supported by the National Natural Science Foundation of
China (grant no. 42101387), Natural Science Research Project for Anhui Universities (grant no.
2023AH030094), Chuzhou University Research and Development Fund for the Talent Startup Project
(grant no. 2022XJZD08), Anhui Province Key Laboratory of Physical Geographic Environment (grant
no. 2022PGE004), and the National College Student Innovation and Entrepreneurship Training Project
(grant no. 202310377002).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Acknowledgments: The authors would like to thank Guiying Li, Tianzhen Wu, Wenlin Yang,
Shitao Li, Hongfeng Xu, Kai Jian, and Xiaoyu Sun for their support in the field investigation.

Conflicts of Interest: Author Yuyun Chen is employed by the company Shanghai Ubiquitous
Navigation Technology Co., Ltd. The remaining authors declare that this research was conducted
in the absence of any commercial or financial relationships that could be construed as a potential
conflict of interest. The Company Shanghai Ubiquitous Navigation Technology Co., Ltd. had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Liu, C.; Zhou, Y.; Qin, H.; Liang, C.; Shao, S.; Fuhrmann, J.J.; Chen, J.; Xu, Q. Moso bamboo invasion has contrasting effects on soil

bacterial and fungal abundances, co-occurrence networks and their associations with enzyme activities in three broadleaved
forests across subtropical China. For. Ecol. Manag. 2021, 498, 119549. [CrossRef]

2. Li, L.; Zhu, H.; Wu, T.; Wei, L.; Li, N. New landscape-perspective exploration of Moso bamboo forests under on/off-year
phenomena and human activities. Front. For. Glob. Change 2023, 6, 1204329. [CrossRef]

3. Zheng, Y.; Fan, S.; Guan, F.; Xia, W.; Wang, S.; Xiao, X. Strip Clearcutting Drives Vegetation Diversity and Composition in the
Moso Bamboo Forests. For. Sci. 2022, 68, 27–36. [CrossRef]

4. Yuen, J.Q.; Fung, T.; Ziegler, A.D. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. For. Ecol. Manag.
2017, 393, 113–138. [CrossRef]

5. Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244.
[CrossRef]

6. Li, L. Phenology Examination, Classification and Aboveground Biomass Estimation of Moso Bamboo Forests Using Time Series
Remote Sensing Data. Ph.D. Thesis, Zhejiang A&F University, Hangzhou, China, 2020.

7. Zhou, G.; Meng, C.; Jiang, P.; Xu, Q. Review of Carbon Fixation in Bamboo Forests in China. Bot. Rev. 2011, 77, 262–270. [CrossRef]

https://doi.org/10.1016/j.foreco.2021.119549
https://doi.org/10.3389/ffgc.2023.1204329
https://doi.org/10.1093/forsci/fxab044
https://doi.org/10.1016/j.foreco.2017.01.017
https://doi.org/10.1016/S0961-9534(00)00038-6
https://doi.org/10.1007/s12229-011-9082-z


Forests 2024, 15, 804 16 of 16

8. Shendryk, I.; Broich, M.; Tulbure, M.G.; Alexandrov, S.V. Bottom-up delineation of individual trees from full-waveform airborne
laser scans in a structurally complex eucalypt forest. Remote Sens. Environ. 2016, 173, 69–83. [CrossRef]

9. Li, L.; Li, N.; Lu, D.; Chen, Y. Mapping Moso bamboo forest and its on-year and off-year distribution in a subtropical region using
time-series Sentinel-2 and Landsat 8 data. Remote Sens. Environ. 2019, 231, 111265. [CrossRef]

10. Proudman, A.; Ramezani, M.; Digumarti, S.T.; Chebrolu, N.; Fallon, M. Towards real-time forest inventory using handheld
LiDAR. Robot. Auton. Syst. 2022, 157, 104240. [CrossRef]

11. Zhao, L.; Zhang, X.; Sun, H. Application of LiDAR data to forest parameters estimation. World For. Res. 2010, 23, 61–64.
12. Pham, D.D.; Suh, Y.S. Remote length measurement system using a single point laser distance sensor and an inertial measurement

unit. Comput. Stand. Interfaces 2017, 50, 153–159. [CrossRef]
13. Polewski, P.; Yao, W.; Cao, L.; Gao, S. Marker-free coregistration of UAV and backpack LiDAR point clouds in forested areas.

ISPRS J. Photogramm. Remote Sens. 2019, 147, 307–318. [CrossRef]
14. Cai, S.; Xin, Y.; Duan-Mu, J. Extraction of DBH from filtering out low intensity point cloud by backpack laser scanning. For. Eng.

2021, 37, 12–19.
15. Brolly, G.; Kiraly, G.; Lehtomaki, M.; Liang, X. Voxel-based automatic tree detection and parameter retrieval from terrestrial laser

scans for plot-wise forest inventory. Remote Sens. 2021, 13, 542. [CrossRef]
16. Cai, Y.; Xu, W.; Liang, D.; Deng, S.; Li, C. Distinguishing Phyllostachys edulis age based on laser scanning intensity. Chin. J. Lasers

2018, 45, 272–280.
17. Li, L.; Sun, Y.; Wan, F.; Xu, X.; Huang, X. Research on canopy height inversion of Moso bamboo forests on Ta-pieh Mountains

based on LiDAR. J. Bamboo Res. 2022, 41, 10–16.
18. Huang, L.; Guan, F. Retrieving parameters of individual Moso bamboo using terrestrial laser scanning data. J. Northeast For. Univ.

2021, 49, 67–70, 114.
19. Jiang, R.; Lin, J.; Li, T. Refined Aboveground Biomass Estimation of Moso Bamboo Forest Using Culm Lengths Extracted from

TLS Point Cloud. Remote Sens. 2022, 14, 5537. [CrossRef]
20. Yang, B.; Liang, F.; Huang, R. Progress, challenges and perspectives of 3D LiDAR point cloud processing. Acta Geod. Cartogr. Sin.

2017, 46, 1509–1516.
21. Lu, D.; Zou, G. Comparative research on denoising algorithms of 3D laser point cloud. Bull. Surv. Mapp. 2019, S2, 102–105.
22. Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested

areas. ISPRS J. Photogramm. Remote Sens. 2016, 117, 79–91. [CrossRef]
23. Lee, H.; Slatton, K.C.; Roth, B.E.; Cropper, W.P. Adaptive clustering of airborne LiDAR data to segment individual tree crowns in

managed pine forests. Int. J. Remote Sens. 2010, 31, 117–139. [CrossRef]
24. Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A New Method for Segmenting Individual Trees from the Lidar Point Cloud.

Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [CrossRef]
25. Liu, C.; Xing, Y.; Duanmu, J.; Tian, X. Evaluating different methods for estimating diameter at breast height from terrestrial laser

scanning. Remote Sens. 2018, 10, 513. [CrossRef]
26. Haris, B.; Jasmin, V.; Walter, B.; De Cubber, S.; Bruno, S. Fast Statistical Outlier Removal Based Method for Large 3D Point Clouds

of Outdoor Environments. IFAC-PapersOnLine 2018, 51, 348–353.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.rse.2015.11.008
https://doi.org/10.1016/j.rse.2019.111265
https://doi.org/10.1016/j.robot.2022.104240
https://doi.org/10.1016/j.csi.2016.10.009
https://doi.org/10.1016/j.isprsjprs.2018.11.020
https://doi.org/10.3390/rs13040542
https://doi.org/10.3390/rs14215537
https://doi.org/10.1016/j.isprsjprs.2016.03.016
https://doi.org/10.1080/01431160902882561
https://doi.org/10.14358/PERS.78.1.75
https://doi.org/10.3390/rs10040513

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collection 
	Field Data 
	Handheld LiDAR Data 

	Moso Bamboo DBH Extraction Methods 
	Removal of Noise 
	Ground Point Classification and Normalization 
	Individual Tree Segmentation 
	DBH Extraction 
	Denoising Parameter Optimization 
	Accuracy Assessment 


	Results 
	Identification Results and Analysis of Moso Bamboo 
	Parameter Optimization Results and Analysis 
	DBH Extraction Results and Analysis 
	Analysis of Errors 

	Discussions 
	Conclusions 
	References

