Trends in the Altitudinal Gradient Evolution of Vegetation Ecological Functions in Mountainous Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Ecological Functions of Vegetation
2.3.1. Water Conservation
2.3.2. Soil Conservation
2.3.3. Carbon Storage
2.4. Altitude Gradient Classification
2.5. Driving Factors of Ecological Functions
3. Results
3.1. Changes in Vegetation Types of the SHMB
3.2. Spatiotemporal Variation in the Vegetation Ecological Functions
3.3. Characteristics of Ecological Functions Distribution across Altitude Gradients
3.4. Driving Factors of Ecological Functions at Different Altitude Gradients
4. Discussion
4.1. Impact of the Altitude Gradient on Ecological Functions
4.2. Driver Factors of Ecological Functions at Different Altitude Gradients
4.3. Limitations of this Study and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grêt-Regamey, A.; Weibel, B. Global Assessment of Mountain Ecosystem Services Using Earth Observation Data. Ecosyst. Serv. 2020, 46, 101213. [Google Scholar] [CrossRef]
- Lyu, R.; Pang, J.; Zhang, J.; Zhang, J. The Impacts of Disturbances on Mountain Ecosystem Services: Insights from BEAST and Bayesian Network. Appl. Geogr. 2024, 162, 103143. [Google Scholar] [CrossRef]
- Klein, J.A.; Tucker, C.M.; Nolin, A.W.; Hopping, K.A.; Reid, R.S.; Steger, C.; Grêt-Regamey, A.; Lavorel, S.; Müller, B.; Yeh, E.T.; et al. Catalyzing Transformations to Sustainability in the World’s Mountains. Earth’s Future 2019, 7, 547–557. [Google Scholar] [CrossRef]
- Martín-López, B.; Leister, I.; Lorenzo Cruz, P.; Palomo, I.; Grêt-Regamey, A.; Harrison, P.A.; Lavorel, S.; Locatelli, B.; Luque, S.; Walz, A. Nature’s Contributions to People in Mountains: A Review. PLoS ONE 2019, 14, e0217847. [Google Scholar] [CrossRef] [PubMed]
- Price, M.F.; Gurgiser, W.; Juen, I.; Adler, C.; Von Dach, S.W.; Kaser, G.; Mayr, S. Contributing Imc2019 Moderators the International Mountain Conference, Innsbruck, Austria, September 2019 (IMC2019): A Synthesis with Recommendations for Research. Mt. Res. Dev. 2022, 42, A1–A16. [Google Scholar] [CrossRef]
- Dai, L.; Li, S.; Zhou, W.; Qi, L.; Zhou, L.; Wei, Y.; Li, J.; Shao, G.; Yu, D. Opportunities and Challenges for the Protection and Ecological Functions Promotion of Natural Forests in China. For. Ecol. Manag. 2018, 410, 187–192. [Google Scholar] [CrossRef]
- Schmeller, D.S.; Urbach, D.; Bates, K.; Catalan, J.; Cogălniceanu, D.; Fisher, M.C.; Friesen, J.; Füreder, L.; Gaube, V.; Haver, M.; et al. Scientists’ Warning of Threats to Mountains. Sci. Total Environ. 2022, 853, 158611. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhang, J.; Peng, S.; Ding, Y. Simulating Ecological Functions of Vegetation Using a Dynamic Vegetation Model. Forests 2022, 13, 1464. [Google Scholar] [CrossRef]
- Qiu, H.; Zhang, J.; Han, H.; Cheng, X.; Kang, F. Study on the Impact of Vegetation Change on Ecosystem Services in the Loess Plateau, China. Ecol. Indic. 2023, 154, 110812. [Google Scholar] [CrossRef]
- Yu, F.; Li, C.; Yuan, Z.; Luo, Y.; Yin, Q.; Wang, Q.; Hao, Z. How Do Mountain Ecosystem Services Respond to Changes in Vegetation and Climate? An Evidence from the Qinling Mountains, China. Ecol. Indic. 2023, 154, 110922. [Google Scholar] [CrossRef]
- Fang, Z.; Bai, Y.; Jiang, B.; Alatalo, J.M.; Liu, G.; Wang, H. Quantifying Variations in Ecosystem Services in Altitude-Associated Vegetation Types in a Tropical Region of China. Sci. Total Environ. 2020, 726, 138565. [Google Scholar] [CrossRef] [PubMed]
- Drillet, Z.; Fung, T.K.; Leong, R.A.T.; Sachidhanandam, U.; Edwards, P.; Richards, D. Urban Vegetation Types are Not Per-ceived Equally in Providing Ecosystem Services and Disservices. Sustainability 2020, 12, 2076. [Google Scholar] [CrossRef]
- Gomes, L.C.; Bianchi, F.J.J.A.; Cardoso, I.M.; Fernandes Filho, E.I.; Schulte, R.P.O. Land Use Change Drives the Spatio-Temporal Variation of Ecosystem Services and Their Interactions along an Altitudinal Gradient in Brazil. Landsc. Ecol. 2020, 35, 1571–1586. [Google Scholar] [CrossRef]
- Wu, J.; Wang, G.; Chen, W.; Pan, S.; Zeng, J. Terrain Gradient Variations in the Ecosystem Services Value of the Qinghai-Tibet Plateau, China. Glob. Ecol. Conserv. 2022, 34, e02008. [Google Scholar] [CrossRef]
- Xiao, P.; Zhou, Y.; Li, M.; Xu, J. Spatiotemporal Patterns of Habitat Quality and Its Topographic Gradient Effects of Hubei Province Based on the InVEST Model. Environ. Dev. Sustain. 2023, 25, 6419–6448. [Google Scholar] [CrossRef]
- Ma, Z.; Dong, C.; Tang, Z.; Wang, N. Altitude-Dependent Responses of Dryland Mountain Ecosystems to Drought under a Warming Climate in the Qilian Mountains, NW China. J. Hydrol. 2024, 630, 130763. [Google Scholar] [CrossRef]
- Geng, W.; Li, Y.; Zhang, P.; Yang, D.; Jing, W.; Rong, T. Analyzing Spatio-Temporal Changes and Trade-Offs/Synergies among Ecosystem Services in the Yellow River Basin, China. Ecol. Indic. 2022, 138, 108825. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, Z.; Wang, D.; Luo, F.; Bai, J.; Fu, Y. Impact of Vegetation Restoration on Ecosystem Services in the Loess Plateau, a Case Study in the Jinghe Watershed, China. Ecol. Indic. 2022, 142, 109183. [Google Scholar] [CrossRef]
- Li, H.; Mao, D.; Li, X.; Wang, Z.; Jia, M.; Huang, X.; Xiao, Y.; Xiang, H. Understanding the Contrasting Effects of Policy-Driven Ecosystem Conservation Projects in Northeastern China. Ecol. Indic. 2022, 135, 108578. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.; Yang, L.; Zhu, Z. Variations in Ecosystem Service Value and Its Driving Factors in the Nanjing Metropolitan Area of China. Forests 2023, 14, 113. [Google Scholar] [CrossRef]
- Xue, C.; Zhang, H.; Wu, S.; Chen, J.; Chen, X. Spatial-Temporal Evolution of Ecosystem Services and Its Potential Drivers: A Geospatial Perspective from Bairin Left Banner, China. Ecol. Indic. 2022, 137, 108760. [Google Scholar] [CrossRef]
- Wu, B.; Yuan, Q.; Yan, C.; Wang, Z.; Yu, X.; Li, A.; Ma, R.; Huang, J.; Chen, J.; Chang, C.; et al. Land Cover Changes of China from 2000 to 2010. Quat. Sci. 2014, 34, 723–731. (In Chinese) [Google Scholar]
- Zhang, L.; Wu, B.; Li, X.; Xing, Q. Classification system of China land cover for carbon budget. Acta Ecol. Sin. 2014, 34, 7158–7166. (In Chinese) [Google Scholar]
- Su, C.; Fu, B. Evolution of Ecosystem Services in the Chinese Loess Plateau under Climatic and Land Use Changes. Glob. Planet. Chang. 2013, 101, 119–128. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Wang, X.; Meersmans, J.; Liu, Y.; Qiu, S. Simulating the Impact of Grain-for-Green Programme on Ecosystem Services Trade-Offs in Northwestern Yunnan, China. Ecosyst. Serv. 2019, 39, 100998. [Google Scholar] [CrossRef]
- Li, Y.; Luo, H. Trade-off/Synergistic Changes in Ecosystem Services and Geographical Detection of Its Driving Factors in Typical Karst Areas in Southern China. Ecol. Indic. 2023, 154, 110811. [Google Scholar] [CrossRef]
- Shao, Y.; Xiao, Y.; Sang, W. Land Use Trade-Offs and Synergies Based on Temporal and Spatial Patterns of Ecosystem Services in South China. Ecol. Indic. 2022, 143, 109335. [Google Scholar] [CrossRef]
- Lu, N.; Sun, G.; Feng, X.; Fu, B. Water Yield Responses to Climate Change and Variability across the North–South Transect of Eastern China (NSTEC). J. Hydrol. 2013, 481, 96–105. [Google Scholar] [CrossRef]
- Yan, X.; Cao, G.; Cao, S.; Yuan, J.; Zhao, M.; Tong, S.; Li, H. Spatiotemporal Variations of Water Conservation and Its Influencing Factors in the Qinghai Plateau, China. Ecol. Indic. 2023, 155, 111047. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of Water Provision Service for Monsoon Catchments of South China: Applicability of the InVEST Model. Landsc. Urban. Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Zhang, B. The Evaluation of Water Conservation Function of Shrub-Grassland System in Hilly Region of the Loess Plateau. Master’s Thesis, Lanzhou University, Lanzhou, China, 2019. (In Chinese). [Google Scholar]
- López-Vicente, M.; Guzmán, G. Chapter 13—Measuring Soil Erosion and Sediment Connectivity at Distinct Scales. In Precipitation; Rodrigo-Comino, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 287–326. ISBN 978-0-12-822699-5. [Google Scholar]
- Hu, M.; Li, Z.; Wang, Y.; Jiao, M.; Li, M.; Xia, B. Spatio-Temporal Changes in Ecosystem Service Value in Response to Land-Use/Cover Changes in the Pearl River Delta. Resour. Conserv. Recycl. 2019, 149, 106–114. [Google Scholar] [CrossRef]
- Liang, Y.; Hashimoto, S.; Liu, L. Integrated Assessment of Land-Use/Land-Cover Dynamics on Carbon Storage Services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic. 2021, 120, 106939. [Google Scholar] [CrossRef]
- Sun, X. Evaluation of Ecosystem Services in Shangri-La Based on InVEST Model. Master’s Thesis, Yunnan Normal University, Kunming, China, 2018. (In Chinese). [Google Scholar]
- Zhang, H. The Function of Water and Soil Conservation and Its Ecological Environmental Responses, in Hilly and Mountainous Regions of South, China. Master’s Thesis, Hunan Normal University, Changsha, China, 2014. (In Chinese). [Google Scholar]
- Wang, J.; Zhang, T.; Fu, B.-J. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Liu, Y.; Hai, X.; Shanguan, Z.; Deng, L. Driving Factors of Ecosystem Services and Their Spatiotemporal Change Assessment Based on Land Use Types in the Loess Plateau. J. Environ. Manag. 2022, 311, 114835. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yu, X.; Wang, H.; Jia, G.; Zhao, Y.; Tu, Z.; Deng, W.; Jia, J.; Chen, J. Effects of Forest Structure on Hydrological Processes in China. Journal of Hydrology 2018, 561, 187–199. [Google Scholar] [CrossRef]
- Favero, A.; Daigneault, A.; Sohngen, B. Forests: Carbon Sequestration, Biomass Energy, or Both? Sci. Adv. 2020, 6, eaay6792. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Zuo, L.; Zhang, Z.; Zhao, X.; Sun, F.; Zhu, Z.; Liu, Y. Impact of Land Use Change on Water Conservation: A Case Study of Zhangjiakou in Yongding River. Sustainability 2021, 13, 22. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.-J.; Zhu, D.; Zhang, J. Spatiotemporal Changes in Ecosystem Services in the Conservation Priorities of the Southern Hill and Mountain Belt, China. Ecol. Indic. 2021, 122, 107225. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.-J.; Ye, L.; Jiang, J. Vegetation Restoration Thresholds under Different Vegetation Types and Altitude Gradients in the Sichuan-Yunnan Ecological Shelter, China. J. Environ. Manag. 2023, 340, 117910. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, D.; Song, J.; Guo, J.; You, X.; Jiang, Y. Impacts of Land Use Changes on Ecosystem Services at Different Elevations in an Ecological Function Area, Northern China. Ecol. Indic. 2022, 140, 109003. [Google Scholar] [CrossRef]
- Zhu, L.; Shi, M.; Fan, D.; Tu, K.; Sun, W. Analysis of Changes in Vegetation Carbon Storage and Net Primary Productivity as Influenced by Land-Cover Change in Inner Mongolia, China. Sustainability 2023, 15, 4735. [Google Scholar] [CrossRef]
- Wang, L.-J.; Ma, S.; Jiang, J.; Zhao, Y.-G.; Zhang, J.-C. Spatiotemporal Variation in Ecosystem Services and Their Drivers among Different Landscape Heterogeneity Units and Terrain Gradients in the Southern Hill and Mountain Belt, China. Remote Sens. 2021, 13, 1375. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Wang, C.; Wang, K.; Wang, C.; Li, Y.; Bai, X.; Zhou, Y. Spatial and Temporal Changes of Landscape Patterns and Their Effects on Ecosystem Services in the Huaihe River Basin, China. Land 2022, 11, 513. [Google Scholar] [CrossRef]
- Keith, H.; Mackey, B.; Lindenmayer, D. Re-Evaluation of Forest Biomass Carbon Stocks and Lessons from the World’s Most Carbon-Dense Forests. Proc. Natl. Acad. Sci. USA 2009, 106, 11635–11640. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, J.; Wu, C.; Zheng, S.; Hong, W.; Su, S.; Wu, C. Effects of Forest Gaps on Some Microclimate Variables in Castanopsis Kawakamii Natural Forest. J. Mt. Sci. 2012, 9, 706–714. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Mao, X. Ecological Risk Assessment of Cities on the Tibetan Plateau Based on Land Use/Land Cover Changes—Case Study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Williams, J.R.; Renard, K.G.; Dyke, P.T.; Williams, J.R.; Renard, K.G.; Dyke, P.T. EPIC: A New Method for Assessing Erosion’s Effect on Soil Productivity. J. Soil Water Conserv. 1983, 38, 1–3. [Google Scholar]
- Lan, X.; Du, H.; Song, T.; Zeng, F.; Peng, W.; Liu, Y.; Fan, Z.; Zhang, J. Vegetation carbon storage in the main forest types in Guangxi and the related influencing factors. Acta Ecol. Sin. 2019, 39, 2043–2053. (In Chinese) [Google Scholar]
- Xia, L.; Wang, F.; Liu, D. Study on the change of forest vegetation CS in Hunan Province from 1999 to 2013. Hunan For. Sci. Technol. 2017, 44, 64–69. (In Chinese) [Google Scholar]
- Li, L.; Fang, X.; Li, B.; Liu, Z. Forest Vegetation CS, Carbon Density and its Regional Spatial Distribution Patterns in Hunan Province in 2014. J. Cent. South Univ. For. Technol. 2017, 37, 69–77. (In Chinese) [Google Scholar] [CrossRef]
Data Types | Type | Data Source | Resolution |
---|---|---|---|
Vegetation types | Raster | China Cover [22,23] | 90 m |
Precipitation | Raster | Resource and Environment Science and Data Center (https://www.resdc.cn/, accessed on 10 January 2022) | 1000 m |
Potential evapotranspiration; | Raster | MOD16A3 products from the US Geological Survey (http://modis.gsfc.nasa.gov/, accessed on 20 January 2022) | 1000 m |
NDVI | Raster | Resource and Environment Science and Data Center (https://www.resdc.cn/, accessed on 15 January 2022) | 1000 m |
GDP | Raster | 1000 m | |
POP | Raster | 1000 m | |
DEM | Raster | Geospatial data cloud (https://www.gscloud.cn/, accessed on 16 January 2022) | 90 m |
Soil properties | Raster | Harmonized World Soil Database (HWSD_China_Subset_v1.1) | 1000 m |
Gradient T | First Gradient T1 | Second Gradient T2 | Third Gradient T3 | Fourth Gradient T4 |
---|---|---|---|---|
Altitude (m) | <500 | 500~800 | 800~1500 | >1500 |
Percentage (%) | 46.59 | 21.67 | 24.81 | 6.92 |
WC (×1010 m3) | SC (×109 t) | CS (×106 t) | |
---|---|---|---|
2000 | 8.53 | 6.41 | 1650.71 |
2010 | 13.02 | 9.45 | 1653.18 |
2020 | 17.79 | 12.63 | 1655.46 |
Ecological Functions | Altitude Gradient | 2000 | 2010 | 2020 |
---|---|---|---|---|
WC (mm) | T1 | 274 | 481 | 643 |
T2 | 329 | 518 | 692 | |
T3 | 298 | 376 | 540 | |
T4 | 246 | 187 | 293 | |
SC (t/ha) | T1 | 121 | 202 | 270 |
T2 | 234 | 368. | 493 | |
T3 | 236 | 307 | 412 | |
T4 | 170 | 156 | 198 | |
CS (t/ha) | T1 | 42 | 42 | 42 |
T2 | 52 | 52 | 53 | |
T3 | 46 | 46 | 47 | |
T4 | 38 | 38 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, C.; Huang, C.; Zhang, X.; Ma, S.; Wang, L.; Hu, H.; Jiang, J. Trends in the Altitudinal Gradient Evolution of Vegetation Ecological Functions in Mountainous Areas. Forests 2024, 15, 1000. https://doi.org/10.3390/f15061000
Niu C, Huang C, Zhang X, Ma S, Wang L, Hu H, Jiang J. Trends in the Altitudinal Gradient Evolution of Vegetation Ecological Functions in Mountainous Areas. Forests. 2024; 15(6):1000. https://doi.org/10.3390/f15061000
Chicago/Turabian StyleNiu, Changhao, Chenyang Huang, Xiaolong Zhang, Shuai Ma, Liangjie Wang, Haibo Hu, and Jiang Jiang. 2024. "Trends in the Altitudinal Gradient Evolution of Vegetation Ecological Functions in Mountainous Areas" Forests 15, no. 6: 1000. https://doi.org/10.3390/f15061000
APA StyleNiu, C., Huang, C., Zhang, X., Ma, S., Wang, L., Hu, H., & Jiang, J. (2024). Trends in the Altitudinal Gradient Evolution of Vegetation Ecological Functions in Mountainous Areas. Forests, 15(6), 1000. https://doi.org/10.3390/f15061000