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Abstract: The composition, distribution, and growth of native natural forests are important references
for the restoration, structural adjustment, and close-to-nature transformation of artificial forests. The
joint species distribution model is a powerful tool for analyzing community structure and interspecific
relationships. It has been widely used in biogeography, community ecology, and animal ecology, but
it has not been extended to natural forest conservation and restoration in China. Therefore, based on
the 9th National Forest Inventory data in Jilin Province, combined with environmental factors and
functional traits of tree species, this study adopted the joint species distribution model—including
a model with all variables (model FULL), a model with environmental factors (model ENV), and a
model with spatial factors (model SPACE)—to examine the distribution of multiple tree species. The
results show that, in models FULL and ENV, the environmental factors explaining the model variation
were ranked as follows, climate > site > soil. The explanatory power was as follows: model FULL
(AUC = 0.8325, Tjur R2 = 0.2326) > model ENV (AUC = 0.7664, Tjur R2 = 0.1454) > model SPACE
(AUC = 0.7297, Tjur R2 = 0.1346). Tree species niches in model ENV were similar to those in model
FULL. Compared to predictive power, we found that the information transmitted by environmental
and spatial predictors overlaps, so the choice between model FULL and ENV should be based on the
purpose of the model, rather than the difference in predictive ability. Both models can be used to
study the adaptive distribution of multiple tree species in northeast China.

Keywords: joint species distribution model; niche; environmental factors; Tjur R2

1. Introduction

Natural forests are the most stable, diverse, and structurally complex terrestrial ecosys-
tems in nature; they play an irreplaceable role in responding to climate change, protecting
biodiversity, and maintaining ecological balance [1,2]. China’s natural forest area reaches
138.68 million hectares, accounting for 63.55% of national forest area [3], making it a
crucial strategic resource. The stock volume per unit area of China’s natural forests is
113.36 m3/ha, which is significantly lower compared to European countries with similar
site conditions (where the stock volume exceeds 200 m3/ha) [4]. In July 2019, the General
Office of the Central Committee of the Communist Party of China and the General Office of
the State Council issued the “Natural Forest Conservation and Restoration System Scheme”,
proposing the conservation and improvement of natural forest structure, focusing on cul-
tivating native tree species, and enhancing forest quality. Therefore, protecting natural
forest resources and enhancing the quality of natural forests has become a focus of forest
management now and in the future.
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The structure of stands, especially tree species composition, is a critical factor to con-
sider in the restoration of natural forests. For a long time, the selection of target tree species
and the determination of target forests in natural forest management have been mainly
based on expert experience, lacking quantitative research. The composition, distribution,
and growth conditions of tree species in virgin natural forests are important references for
natural forest restoration, structural adjustment, and the near-natural management of plan-
tations [5]. Currently, species distribution studies in Jilin Province are mainly limited to a
few tree species and forest types, such as Betula platyphylla, Betula ermanii, Quercus mongolica,
Larix gmelinii, and the broad-leaved forests of Pinus koraiensis [6–8]. Liu et al. conducted
more systematic research using the MaxEnt model, but these studies have overlooked the
interactions between species and cannot meet the needs of natural forest restoration and
quality improvement in the region [9]. Therefore, it is necessary to adopt new methods to
study the potential distribution suitability of the main forest types in northeast China’s
natural forests.

Species in nature do not exist independently in the environment but coexist and
interact within communities, also influenced by surrounding environmental factors [10].
Thus, species distribution is determined by both abiotic environmental factors (such as
climate, soil, and topography) and biotic interactions between different species (such as
predation, competition, and mutualism) [11,12]. With the development of computer tech-
nology and statistical methods, a species distribution modeling approach that combines
environmental variables with interactions among multiple species (i.e., joint species distri-
bution models) has been used in studies on the simulation and prediction of multi-species
distributions [13–15]. Joint species distribution models, by using species correlation in-
formation and latent variables to predict missing environmental factors, can clearly se-
lect models and assess the model’s performance within the model framework, thereby
simulating multi-species species–environment relationships and predicting the intensity
and type of interactions between different species [16]. Not only does this enhance the
interpretative power over ecological questions, but it also improves the flexibility and effec-
tiveness of predicting species’ distribution suitability. Therefore, joint species distribution
models are powerful tools for analyzing the structure of biological communities and inter-
specific relationships, widely applied in biogeography, community ecology, and animal
ecology [17–22], but these models have not yet been widely applied in the conservation
and restoration of China’s natural forests. Thus, understanding the distribution of multiple
tree species and their interrelationships in natural forests has significant theoretical and
practical significance for forest restoration.

Jilin province is located in the temperate zone, which has various types of natural
forests, including coniferous forest, broad-leaved forest, mixed forest, etc. The distribution
and combination of different tree species in the forest form a unique forest ecosystem. By
studying the natural distribution of tree species, we can reveal the structure, function, and
succession law of the forest ecosystem, and provide a scientific basis for the protection,
restoration, and management of forest ecology. Therefore, the objectives of this study
were as follows: (1) to construct a hierarchical model of species communities (HMSC) in
combination with environmental factors and species functional traits for the distribution of
multiple species; (2) to interpret tree species niches through the establishment of the best
fitting joint species distribution model; and (3) to analyze effects of tree species traits and
phylogeny on the HMSC model.

2. Materials and Methods
2.1. Study Area

The area involved in this study is the entirety of Jilin Province, located in the central
part of northeast China, spanning from 121◦38′ E to 131◦19′ E longitude and 40◦52′ N to
46◦18′ N latitude. The terrain of Jilin Province exhibits a characteristic of being higher
in the southeast and lower in the northwest, divided by the central Greater Khingan
Range into eastern mountainous areas and central–western plains. There are 19 soil types
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within the province, with dark brown earth being predominant. The natural environment
belongs to a temperate continental monsoon climate, with distinct seasonal changes and
regional differences, forming a gradient of vegetation types from southeast to northwest
characterized by moist, semi-moist, and semi-arid climates—from the moist forest climate
in the east to the semi-moist forest-steppe climate in the center and the semi-arid steppe
climate in the west. The average winter temperature does not exceed −11 ◦C, with summer
temperatures generally above 23 ◦C. The annual average precipitation is between 400 and
600 mm, with annual average sunshine hours ranging from 2259 to 3016 h, and the frost-free
period lasts between 100 and 160 days [9].

2.2. Data Collection

The data for the study area primarily revolve the ninth (2014) National Forest In-
ventory database in Jilin Province, encompassing five types of data needed: community
data (species presence or abundance), environmental factors (site, soil, or climate), tree
species functional traits (maximum tree height, wood density, and leaf area index, etc.),
phylogenetic relationships of tree species, and plot spatial data.

2.2.1. Plot Data

The construction of the joint species distribution model primarily uses sample plot
data on tree species composition by basal area, site factors, and latitude and longitude
coordinates, focused on the central Changbai Mountain subregion. The species’ basal area
compositions are extracted to form community data, with the basal area per hectare for
each species calculated to form the community abundance data. Further, the basal area per
hectare data are used to form presence–absence data for the community. Site factor data
mainly include elevation, slope, aspect, position, soil (type and thickness), humus layer
thickness, and litter thickness, from which site factor data in the environmental covariates
can be obtained. Plot latitude and longitude coordinates form the spatial data. A total of
3309 permanent sample plot data points with each 600 m2 from the ninth National Forest
Inventory were collected for this study; their distributions are shown in Figure 1.
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Figure 1. The distribution map of permanent sample plots used in the study in Jilin province.

2.2.2. Climate Data

The climate data were sourced from the software ClimateAP V3.10, which is specifically
designed for extracting climate factors in the East Asia–Pacific region (from https://web.
climateap.net, accessed on 5 September 2023). ClimateAP allows users to extract and
downscale gridded climate data to site-specific, scale-free climate data through a dynamic
local downscaling method. ClimateAP calculates and exports many biologically relevant
climate variables at monthly, seasonal, and annual timesteps [23]. The study area’s climate
data were formed by registering and clipping with the basic geographic data of Jilin Province.
For this study area, the climate data of 3309 sample plots were acquired, including 10 annual

https://web.climateap.net
https://web.climateap.net
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variables (MAT, MWMT, MCMT, TD, MAP, AHM, NFFD, EMT, Eref, and CMD), 8 seasonal
variables (Tave_DJF, Tave_JJA, Tmax_DJF, Tmax_JJA, Tmin_DJF, Tmin_JJA, PPT_DJF, and
PPT_JJA), and 48 monthly variables (Tave01–Tave12, Tmin01–Tmin12, Tmax01–Tmax12,
and PPT01–PPT12). These abbreviations refer to Wang et al. [23].

2.2.3. Soil Data

Soil data were obtained from the SoilGrids system (version updated in June 2016), with
a spatial resolution of 250 m. Based on the World Reference Base (WRB) and the United
States Department of Agriculture (USDA) classification systems, totaling approximately
280 raster layers, the SoilGrids system provides global predictions of standard soil prop-
erties (organic carbon, bulk density, cation exchange capacity (CEC), pH value, soil struc-
ture ratio, and proportion of coarse fragments), bedrock depth, and soil type distribu-
tions at seven standard depths (0, 5, 15, 30, 60, 100, and 200 cm) [24]. Under the Open
Database License (ODbL), the 250 m maps from SoilGrids V2.0 can be downloaded from
www.SoilGrids.org (accessed on 15 September 2023). For this study area, 11 soil properties
were acquired.

2.2.4. Tree Species Trait Factors Data

To assess the relationship between tree species niches and functional traits, it was
necessary to collect functional trait data for the tree species appearing in the community
data. Among the 3309 permanent sample plot data collected, a total of 75 tree species were
involved. Due to the very low frequency of occurrence of many species, this study selected
31 tree species for further research, based on the criterion that the species appeared in
more than 3% of all permanent sample plots. The species selected include the following:
Pinus koraiensis Siebold et Zuccarini (sp1), Picea koraiensis Nakai (sp2), Picea jezoensis Carr. var.
microsperma (Lindl.) Cheng et L.K.Fu (sp3), Abies nephrolepis (Trautv.) Maxim. (sp4), Abies
holophylla Maxim. (sp5), Larix olgensis Henry (sp6), Pinus sylvestris Linn. var. mongolica Litv.
(sp7), Quercus mongolica Fischer ex Ledebour (sp8), Tilia mandshurica Rmpr.et Maxim. (sp9),
Tilia amurensis Rupr. (sp10), Ulmus davidiana Planch var. japonica (Rehd.) Nakai (sp11),
Carpinus cordata Bl. (sp12), Ulmus laciniata (Trautv.) Mayr (sp13), Betula dahurica Pall. (sp14),
Betula platyphylla Suk. (sp15), Betula costata Trautv. (sp16), Fraxinus mandschurica Rupr.
(sp17), Juglans mandshurica Maxim. (sp18), Phellodendron amurense Rupr. (sp19), Acer mono
Maxim. (sp20), Acer tegmentosum Maxim. (sp21), Acer mandshuricum Maxim. (sp22), Acer
ukurunduense Trautv. et Mey. (sp23), Acer triflorum Komarov (sp24), Acer pseudo-sieboldianum
(Pax) Komarov (sp25), Sorbus alnifolia (Sieb. et Zucc.) K. Koch (sp26), Fraxinus rhynchophylla
Hance (sp27), Populus davidiana Dode (sp28), Populus ussuriensis Kom. (sp29), Populus
simonii Carr. (sp30), and Salix matsudana Koidz. (sp31).

The trait factors for these tree species were obtained from the literature. Due to
limitations in data acquisition, the trait factors compiled in this study include the following:
wood density (WD), maximum height (H), leaf area (LA), specific leaf area (SLA), leaf
dry matter density (LMA), leaf dry matter content (LDMC), leaf carbon concentration
(Cmass), leaf nitrogen concentration (Nmass), leaf phosphorus concentration (Pmass),
leaf potassium concentration (Kmass), area-based nitrogen content (Narea), area-based
phosphorus content (Parea), and area-based potassium content (Karea).

2.2.5. Tree Species Phylogenetic Data

To evaluate the extent to which tree species niches reflect phylogenetic relationships,
phylogenetic data for the species were required. These data typically take the form of a
phylogenetic tree, usually constructed by running genomic sequence data through phylo-
genetic analysis software and then generating a phylogenetic correlation matrix to describe
the phylogenetic relationships among the species.

The procedure for generating the phylogenetic tree for the 31 tree species in this study
began with obtaining protein molecular sequences for the species from the National Center
for Biotechnology Information (www.ncbi.nlm.nih.gov, accessed on 12 December 2023).

www.SoilGrids.org
www.ncbi.nlm.nih.gov
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Due to the limitation of protein molecular sequence data for different organs of these
31 tree species, the chosen organ was the mature enzyme K (maturase K [chloroplast]) in
tree leaves. Then, the Molecular Evolutionary Genetics Analysis software (MEGA_X_10.2.4)
was used to perform phylogenetic analysis on the protein molecular sequence information
of these tree species and generate usable phylogenetic tree files in NWK format. The
finalized phylogenetic tree for these 31 tree species is shown in Figure 2.
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2.3. Methods

A multivariate hierarchical generalized linear mixed model for 31 tree species in Jilin
Province was constructed to study the relationship between environmental variables and
the distribution of tree species, i.e., the niches of tree species, and further to elucidate the
relationship between tree species niches, tree species traits, and phylogenetic trees.



Forests 2024, 15, 1026 6 of 17

2.3.1. Model Structure Setup and Fitting

Given that the structure of multiple tree species community data is of a presence–
absence type, meaning the dependent variable is a 0–1 variable, the error distribution type
of the model was chosen to use a probit link function, considering spatial random effects
based on the geographic coordinates of the plots. To more comprehensively study the
relationship between environmental covariates and spatial random effects, three types of
model forms were considered. The first type is the full model (FULL), which includes both
environmental covariates and spatial random effects of the plots. The second type is the
environmental factor model (ENV), which includes only environmental covariates without
the spatial random effects of the plots. The third type is the spatial factor model (SPACE),
which includes only spatial random effects without environmental covariates. All three
model structures introduced tree species traits and phylogenetic relationships.

After setting up the HMSC model structure, the parameter estimation phase requires
fitting the data using the sampleMcmc function. Two MCMC chains were set, i.e., nChains
= 2, with a sampling step size of 10 (thin = 10), and sampling 1000 times for each parameter
(samples = 1000), discarding the first 5000 estimates (transient = 5000). Considering the
spatial random effects and the sample size exceeding 1000, the computational complexity
increased sharply, making the computation infeasible. Therefore, when dealing with the
spatial structure, the Nearest Neighbor Gaussian Process (NNGP) was used. In this case,
the parameter Method was set to “NNGP” and the corresponding parameter neighbors
were set to the standard number, 10 according to the literature [25].

2.3.2. Variable Selection

In terms of variable selection, it is hypothesized that several typical predictive variables
could influence the occurrence or abundance of species. Among these variables, some might
have no impact, or some might be collinear with other predictive variables, thus carrying
redundant information. Increasing the number of variables in the model raises the risk of
over-parameterization, thereby increasing the risk of overfitting. Therefore, it is generally
recommended to pre-select as few variables as possible, ensuring that the information
content of these variables is maximized, and they are mutually independent [26]. In
summary, at the first step, the most ecologically meaningful predictive variables should be
selected, and predictive variables closely related to other predictors should be excluded to
eliminate the multicollinearity among predictive variables.

In this study, environmental variables include 66 climatic factors (10 annual variables,
8 seasonal variables, and 48 monthly variables), 11 soil factors, and 7 site factors. Based
on the principles analyzed above, using the results of previous work and considering
ecological significance, along with the importance ranking in machine learning’s random
forest algorithm, a selection is made. Liu found a significant response relationship be-
tween common tree species and forest types in Jilin Province and environmental factors,
quantitatively measuring the impact of environmental variables on the distribution of tree
species or forest types: climate > site > soil, indicating that climate is the most critical factor
affecting vegetation distribution [4]. The specific environmental factors ranking (only top
five selected) are as follows: the highest temperature of the hottest month, the average
temperature of the hottest quarter, elevation, annual average temperature, and the average
temperature of the coldest quarter. Soil factors have a smaller impact, but for conifer
species, the significant ones are as follows: soil pH, bulk density, exchangeable hydrogen
ions, exchangeable calcium ions, and available phosphorus. Machine learning with the
data in the study is used to establish the relationship between tree species distribution
and these environmental factors, employing the random forest algorithm. Based on the
importance ranking, the top 10 influencing factors for each tree species are selected, and the
frequency of each influencing factor is counted. The recommended results include climate
factors NFFD, AHM, Eref, MCMT, TD, site factor ELE, soil factors bdod, soc, cfvo, and
phh2o. Finally, to avoid variable collinearity, a correlation analysis is conducted for the
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shortlisted environmental variables, excluding variables with a correlation coefficient of 0.7
or above.

Therefore, from the environmental variables, seven climatic factors were selected:
the average temperature of the hottest quarter (Tave_JJA), rainfall of the hottest quarter
(PPT_JJA), number of frost-free days per year (NFFD), annual humidex (AHM), evapotran-
spiration (Eref), average temperature of the coldest month (MCMT), and the temperature
difference between the hottest and coldest months (TD). One site factor was selected: eleva-
tion (ele). Four soil factors were selected: bulk density of soil particles (bdod), soil organic
carbon content (soc), proportion of coarse fragments (cfvo), and soil pH value (phh2o). The
specific value distributions are shown in Table 1.

Table 1. Summary statistics of environmental variables and tree species functional traits in this study.

Variable Unit Mean Standard Deviation Min Max

Tave_JJA ◦C 19.01 1.38 12.60 22.80
PPT_JJA mm 448.73 66.99 277.00 690.00

NFFD / 172.10 10.37 129.00 202.00
AHM / 19.18 3.76 7.90 44.00
Eref / 688.20 32.97 401.00 839.00

MCMT ◦C −15.89 0.94 −19.10 −10.50
TD ◦C 36.22 1.29 32.00 40.50
ele m 666.38 261.69 90.00 1860.00

bdod kg/dm3 132.57 3.43 118.84 144.05
soc g/kg 269.52 56.43 65.96 516.38
cfvo cm3/100 cm3 235.78 37.38 81.78 407.60

phh2o pH 60.25 2.22 52.23 83.14
H m 24.68 9.56 8.00 50.00

WD g/cm3 0.50 0.11 0.32 0.71
LA m2 0.00 0.01 0.00 0.04

LMA kg/m2 0.08 0.08 0.02 0.38
Cmass g/kg 407.84 82.73 240.20 512.77
Nmass g/kg 17.67 7.01 2.20 30.86
Pmass g/kg 1.65 0.65 0.67 3.86
Kmass g/kg 12.42 6.31 5.02 30.25

This study includes thirteen tree species functional traits: wood density (WD), maxi-
mum tree height (H), leaf area (LA), specific leaf area (SLA), leaf dry matter density (LMA),
leaf dry matter content (LDMC), leaf carbon concentration (Cmass), leaf nitrogen con-
centration (Nmass), leaf phosphorus concentration (Pmass), leaf potassium concentration
(Kmass), area-based nitrogen content (Narea), area-based phosphorus content (Parea), and
area-based potassium content (Karea). Based on pair scatter plots and correlation analysis,
it was found that SLA and LMA are inversely related, LDMC is related to Cmass, Nmass,
and Kmass, and the relationship between Nmass and Narea is related to LA. Considering
the meanings of these indicators, there were eight tree species trait factors selected for this
study: H, WD, LA, LMA, Cmass, Nmass, Pmass, and Kmass.

2.3.3. Model Evaluation Metrics

Changing the structure of the HMSC model will produce different joint species dis-
tribution models, requiring the evaluation of the fitting effectiveness and predictive ca-
pability of different HMSC models. The predictive capability can be assessed through
cross-validation. The chosen evaluation metrics are the Area Under the Receiver Operating
Characteristic (ROC) Curve (AUC) and Tjur R2 [27].

AUC is a performance metric that measures the excellence of a learner, quantifying
the classification capability expressed by the ROC curve. The larger the AUC, the better
the classification capability, the more reasonable the output probabilities, and the more
sensible the order of results. The AUC value has a range of [0, 1], with an AUC greater than
0.5 indicating that the model’s fit is superior to random guessing [28]. Tjur R2 is primarily
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used to evaluate logistic regression models and is similar to the coefficient of determination
R2 used in ordinary regression models [29,30].

Tjur R2 =
1
2
(

n
∑

i=1
(π̂i − y)2 −

n
∑

i=1
(yi − π̂i)

2

n
∑

i=1
(yi − y)2

+ 1)

In the formula, yi represents a binary response variable, in which yi = 1 means presence
and yi = 0 means absence. y represents the average value of yi, and π̂i represents the
predictive probability value of occurrence for species i. n represents the total number of
data records.

2.3.4. Data Analysis Tools

The software or dataset used for data processing and analysis in this study includes R
4.3.2, ClimateAP V3.10, SoilGrids V2.0, and MEGA_X_10.2.4. Details are as follows: R pack-
ages, with dplyr for data processing [31], ggplot2 for plotting [32], Hmsc for analyzing joint
species distribution data [33], ClimateAP for obtaining climate data for permanent sample
plots, SoilGrids for obtaining soil data for permanent sample plots, and MEGA_X_10.2.4
for generating phylogenetic trees of tree species.

3. Results
3.1. Tree Species Distribution Patterns

The richness (frequency of occurrence of tree species within permanent sample plots)
and prevalence (proportion of plots in which a given tree species appears out of the total
surveyed plots) distributions of these 31 tree species are shown in Figure 3. The richness of
tree species varies significantly across plots, ranging from 1 to 18 (plots with ≤3 species
account for 18.77%, and those with >10 species account for 16.50%). The prevalence of tree
species ranges from 5% to 60%, reflecting that the tree species selected in this study include
both common and rare species (top three prevalent common species—Acer mono 59.78%,
Quercus mongolica 55.03%, Tilia amurensis 54.37%; top three prevalent rare species—Salix
matsudana 3.35%, Populus tremula 3.93%, Pinus sibirica 4.08%).
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3.2. Model Interpretability and Predictive Power
3.2.1. Overall Evaluation of Interpretability and Predictive Power of the Three Models

For the models FULL, ENV, and SPACE, their interpretability was evaluated by cal-
culating two indicators, AUC and Tjur R2. Cross-validation was conducted based on plot
numbers using a two-fold sampling method, and both AUC and Tjur R2 were calculated to
evaluate the models’ predictive power (Table 2).
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Table 2. The evaluation of HMSC model.

Models
Fitting Cross Validation

AUC Tjur R2 AUC Tjur R2

Model FULL 0.8325 0.2326 0.6940 0.1412
Model ENV 0.7664 0.1454 0.7528 0.1399

Model SPACE 0.7297 0.1346 0.6719 0.0705

Table 2 indicates that, in terms of model fitting, the AUC and Tjur R2 metrics show con-
sistent results, reflecting that, in terms of interpretability, model FULL > model
ENV > model SPACE. However, in the cross-validation, the performance of model SPACE
was slightly worse than the other two models. The AUC metric shows that model ENV
performed better than model FULL, but the Tjur R2 metric shows that its performance was
slightly worse than model FULL. By comparing the evaluation results of cross-validation
and model fitting, it can be seen that spatial random effects significantly improve the
model’s fitting effectiveness (AUC increased by 8.62%, Tjur R2 increased by 60.04%), but
its predictive effect is not ideal (AUC actually decreased by 7.81%, Tjur R2 increased by
0.97%). The inclusion of spatial random effects in model FULL led to a significant drop
in both AUC and Tjur R2 metrics in cross-validation (AUC decreased by 16.64%, Tjur R2

decreased by 39.30%). The cross-validation indicators for model ENV were close to those
of the model fitting (AUC decreased by 1.78%, Tjur R2 decreased by 3.79%), indicating
that this model maintains consistency in both interpretability and predictive power. At
first glance, the interpretability of model SPACE being greater than zero is questionable
since it does not contain environmental covariates, but it does have a spatial random effects
part, which contributes to its interpretability. However, the random effects part has limited
help in predicting new plots (AUC decreased by 7.92%, Tjur R2 decreased by 47.62%), as
shown by the predictive power of model SPACE based on cross-validation (Tjur R2 value
is 0.0705), suggesting there is overlap in information between environmental covariates
and spatial coordinates. In summary, whether considering interpretability or predictive
power, and whether evaluated by AUC or Tjur R2 for model fitting effectiveness, model
FULL and ENV perform as expected without overfitting, while model SPACE might have
overfitting issues.

3.2.2. Evaluation of Interpretability and Predictive Power by Tree Species

Combining the model forms—model FULL (model 1), model ENV (model 2), and
model SPACE (model 3)—with the type of model prediction, i.e., interpretability (MF) and
predictive power (MFCV), six combination schemes are formed. The evaluation of these
31 tree species using AUC and Tjur R2 metrics is displayed in Figure 4. The results reflected
by the AUC and Tjur R2 metrics for the distribution of the 31 tree species are consistent
across all models, indicating that, within the same model, interpretability exceeds predictive
power. This outcome is expected since interpretability uncovers all the information within
the data. The interpretability and predictive power of the 31 tree species in model ENV are
almost identical, resembling the predictive power of model FULL, suggesting that model
ENV has stable extrapolation capabilities.

There are significant differences in the HMSC model fits among the 31 tree species in
the study area, with AUC and Tjur R2 metrics showing a consistent pattern of differences
between interpretability and predictive power: model FULL > model SPACE > model ENV.
For example, considering AUC values, the top three species with the largest difference in
model FULL are as follows: Pinus sibirica (sp7, 0.48), Pinus sylvestris (sp5, 0.29), and Ulmus
pumila (sp12, 0.28). The top three species with the largest difference in model SPACE are as
follows: Acer ukurunduense (sp21, 0.14), Betula ermanii (sp16, 0.13), and Acer ginnala (sp23,
0.12). The top three species with the largest difference in model ENV are as follows: Populus
tremula (sp30, 0.05), Pinus sibirica (sp7, 0.05), and Salix matsudana (sp31, 0.04). Furthermore,
in terms of consistency and good fit between model interpretability and predictive power,
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the results for tree species in model FULL and ENV are consistent, including Picea jezoensis
(sp3), Abies nephrolepis (sp4), and Acer ginnala (sp23). Notably, in model SPACE, Picea
jezoensis (sp3), Abies nephrolepis (sp4), Betula ermanii (sp16), and Acer ginnala (sp23) all
exhibit the best interpretability and predictive power, even exceeding model FULL. Among
the more prevalent tree species, those with good interpretability and predictive power
in model FULL include the following: Pinus koraiensis (sp1, MF: 0.83, MFCV: 0.76), Tilia
amurensis (sp10, MF: 0.89, MFCV: 0.73), Ulmus laciniata (sp13, MF: 0.92, MFCV: 0.73), Betula
ermanii (sp16, MF: 0.91, MFCV: 0.81), Acer ukurunduense (sp21, MF: 0.92, MFCV: 0.76), and
Acer pseudosieboldianum (sp25, MF: 0.89, MFCV: 0.77).
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3.3. Variance Contribution of Environmental Covariates

The study first investigates the variance contribution of environmental covariates to
the models, i.e., variance partitioning for these three model types. Since model SPACE
only contains spatial random effects, all explained variance is attributed to random effects.
Therefore, comparisons between model FULL and ENV will more clearly demonstrate
the importance of environmental covariates and spatial random effects in explaining
community ecosystems.

The environmental covariates are grouped as follows: average temperature of the
hottest quarter (Tave_JJA), rainfall of the hottest quarter (PPT_JJA), number of frost-free
days per year (NFFD), annual humidex (AHM), evapotranspiration (Eref), average temper-
ature of the coldest month (MCMT), and the temperature difference between the hottest
and coldest months (TD) are grouped as climate variables; elevation (ELE) as a site variable;
and bulk density of soil particles (bdod), soil organic carbon content (soc), proportion of
coarse fragments (cfvo), and soil pH value (phh2o) as soil variables. For simplicity, the
intercept is allocated to climate variables. The variance contribution rates of the model
components are shown in Table 3. It is observed that the ranking of environmental factors
explaining model variance is as follows: climate > site > soil. The two components of
environmental change (climate and site) explain a significant portion of the model vari-
ance, with soil factors being the weakest. The variance contribution of spatial random
effects is also significant, with the importance of specific environmental factors varying by
tree species.

Table 3. The variance partition of models FULL, ENV, and SPACE.

Models Climate Site Soil Random

Model FULL 0.5742 0.1275 0.0914 0.2069
Model ENV 0.7322 0.1617 0.1061 0.0000

Model SPACE 0.0000 0.0000 0.0000 1.0000

The variance contribution results of model ENV also indicate that the ranking of envi-
ronmental factors explaining model variance is as follows: climate > site > soil, consistent
with what is shown by model FULL. Two species are dominated by site factors, each with
a variance contribution rate of over 45%, specifically Ulmus japonica (sp11, 0.62) and Tilia
amurensis (sp9, 0.47), with the remaining 29 species being dominated by climate factors. The
results of the variance partitioning indicate that model FULL has a substantial dependency
on spatial random effects for some species, which also explains the performance differences
between it and model ENV. Moreover, climate change explains nearly five times the model
variability than site changes.

3.4. Tree Species Niches

To examine the differences between the niches of tree species, this study utilized
a visualization method to display the response relationships of the 31 tree species to
environmental covariates in model FULL, representing the niches of tree species (Figure 5).
Figure 5 provides strong statistical support for the posterior distribution, showing either
positive (red) or negative (blue) relationships, indicating clear environmental filtering
signals. For most tree species, there is a significant parabolic relationship between their
presence and the average temperature of the hottest quarter. Due to the negative coefficient
of the quadratic term, there is an optimal temperature for their existence. Their responses
to environmental factors (rainfall in the hottest quarter PPT_JJA, annual humidex AHM,
average temperature of the coldest month MCMT, the temperature difference between
the hottest and coldest months TD, and soil pH value phh2o) are negative, while their
preferences for the number of frost-free days per year NFFD, evapotranspiration Eref,
elevation ele, bulk density of soil particles bdod, soil organic carbon content soc, and the
proportion of coarse fragments cfvo vary. In terms of the relationship between various
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tree species and environmental covariates, Larix olgensis (sp6), Ulmus japonica (sp11), Betula
platyphylla (sp15), and Acer triflorum (sp24) show a more positive response.
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The visualization results of tree species niches in model ENV are similar to those in
model FULL, with the difference being that the response of some tree species to environ-
mental covariates shifts from positive to non-correlated. For instance, in model ENV, the
response relationship to the number of frost-free days per year (NFFD) for Tilia amurensis
(sp10), Acer triflorum (sp24), and Fraxinus rhynchophylla (sp27) show non-correlation. Ulmus
japonica (sp11)’s response to the annual humidex AHM and Acer triflorum (sp24)’s response
to evapotranspiration Eref are non-correlated.

4. Discussion
4.1. Relationship between Tree Species Niches and Traits—Phylogeny

The HMSC models tree species niches (parameters β) as a function of tree species
traits (regression parameters γ) and phylogeny (phylogenetic signal parameters ρ); thus,
these connections can be explored by plotting parameter estimates for tree species com-
munities [16]. First, we investigate whether there is a correlated relationship between tree
species niches and their traits and phylogeny in model FULL (Figure 6). At a posterior
distribution statistical support level of 0.95, it indicates that the response of tree species
to environmental covariates (average temperature of the coldest month MCMT and the
temperature difference between the hottest and coldest months TD) is positively correlated
with tree species traits (leaf dry matter density, LMA, and leaf nitrogen concentration,
Nmass), while elevation, ele, is negatively correlated with leaf nitrogen concentration,
Nmass, and the proportion of coarse fragments, cfvo, is negatively correlated with maxi-
mum tree height, H (Figure 6 left). When reducing the statistical support level to 0.85, a
richer relationship between tree species niches and traits is observed (Figure 6 right). The
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relationships revealed by model ENV are mostly consistent, for example, at the 0.95 level,
elevation, ele, is not correlated with leaf nitrogen concentration, Nmass.
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Another method of examining the impact of tree species traits is to evaluate how much
variation they explain in the response of tree species to their environmental covariates
(Table 4). Leaf dry matter density, LMA, leaf nitrogen concentration, Nmass, and maximum
tree height, H, explain a significant portion of the environmental covariate variation, while
the remaining tree species traits only explain a small part of the environmental covariate
variation; this is consistent with the patterns presented in Figure 5. Further quantification
of the variance in the occurrence dependent variable of tree species explained by tree
species traits reveals the same pattern, i.e., the contribution to explained variance is not
high (0.1832 for model FULL and 0.1797 for model ENV). Comparing models FULL and
ENV, the former shows a slight improvement in the degree to which tree species traits
explain the variance of environmental covariates and the occurrence dependent variable,
which may be due in part to the contribution of spatial random effects in model FULL.

Table 4. The explanatory power of species traits.

Models Model FULL Model ENV

Environmental covariates

Intercept 0.3291 0.2521
Tave_JJA 0.0881 0.0659
Tave_JJA2 0.1521 0.0935
PPT_JJA 0.1458 0.1254

NFFD 0.0684 0.0839
AHM 0.0541 0.0471
Eref 0.0405 0.0494

MCMT 0.4355 0.4569
TD 0.4393 0.4522
ele 0.3504 0.3229

bdod 0.0418 0.0444
soc 0.0394 0.0406
cfvo 0.2119 0.1812

phh2o 0.0677 0.0515
Species occurrence 0.1832 0.1797

Further, examining the strength of the phylogenetic signal in tree species niches, the
percentiles of the parameter for the phylogenetic signal are statistically obtained from the
posterior distribution. (Model FULL: 2.5%, 0.24; 50%, 0.48; 97.5%, 0.67. Model ENV, 2.5%,
0.31; 50%, 0.55; 97.5%, 0.71.) This clearly indicates the presence of a phylogenetic signal
within the tree species niches. This suggests that the trait factors affecting tree species
niches that are missing in the data have a phylogenetic structure [16,34]. Additionally,



Forests 2024, 15, 1026 14 of 17

the average value of the parameter representing the strength of the phylogenetic signal in
model FULL is 0.47, slightly lower than 0.54 in model ENV, indicating that spatial random
effects reduce the impact of missing tree species trait factors on tree species niches to some
extent [16].

4.2. Impact of Introducing Tree Species Traits and Phylogenetic Trees on Prediction

The HMSC model uses tree species trait data to estimate parameters reflecting the
response of tree species traits on their niches and uses tree species phylogenetic information
to estimate parameters indicating the strength of the phylogenetic signal in tree species
niches. These two parameters integrate tree-level information into community-level pa-
rameters, hence incorporating tree species traits and phylogeny into the model helps to
synthesize information extracted from community data. However, whether the introduc-
tion of tree species traits and phylogeny can enhance the predictive ability of the HMSC
model still needs to be assessed [16]. To this end, a new model, NTP, which does not include
information on tree species traits and phylogeny, was set up on the basis of model FULL
and applied to the same data. The predictive evaluation metrics AUC and Tjur R2 of both
models were then compared in cross-validation (Figure 7).
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The comparison between model FULL and NTP (Figure 7) shows that the patterns
reflected by the indicators AUC and Tjur R2 are consistent. The predictive ability gap
between model FULL and NTP is very small, and this difference diminishes as the preva-
lence of tree species increases. On average, the model including tree species traits and
phylogeny performs better, especially for rare tree species that are typically difficult to
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predict accurately. This is because the introduction of traits and phylogeny allows the
model to borrow information from other tree species, especially those with similar traits
and closely related phylogenies. For tree species that occur infrequently in the data, this
minor information can make a significant difference [34]. In contrast, tree species with
sufficient data do not need to borrow information from others, which explains why the
difference between the two models decreases when the species prevalence approaches 0.3.

As mentioned above, the introduction of tree species traits and phylogeny in the HMSC
model can enhance the predictive ability for evaluating tree species occurrence. However,
the contribution of tree species traits to explain the variation of tree species occurrence is
not high, and there are phylogenetic signals in tree species niches, which means that the
relevant tree species traits affecting tree species niches are missing in the data. Therefore, it
is necessary to find suitable tree species traits for improving the prediction of tree species
occurrence, especially for rare tree species in further study [34]. Additionally, we can
use tree species traits and phylogeny in the HMSC model to study the biotic relationship
between tree species in following research [22,35].

5. Conclusions

This study employed the widely used hierarchical modeling of species communities
(HMSC) to fit the distribution data of multiple tree species in Jilin Province. The data
types included the presence or abundance of tree species from the ninth National Forest
Inventory in 2014, environmental factors corresponding to the plots (site, soil, or climate
data), tree species functional traits (maximum tree height, wood density, and leaf area
index, etc.), phylogenetic relationships of tree species, and the geographic coordinates of
the plots. A joint species distribution model for multiple tree species was constructed,
including model structure design, selection of predictive factors, MCMC convergence test
of model parameters, and model evaluation and comparison. The HMSC fitting determined
environmental factors or tree species trait factors, establishing the joint species distribution
model with the best fitting effect. Finally, the application and extension of the constructed
joint species distribution model included interpreting tree species niches, studying the
relationship between tree species niches and tree species traits and phylogeny, and the
results of model comparison indicating that the information conveyed by environmental
and spatial predictors overlaps to some extent. Therefore, the choice between model
FULL and ENV should be based on the purpose of the model’s use, not the difference in
predictive ability.
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