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Abstract: UAVs are commonly used in forest fire detection, but the captured fire images often suffer
from blurring due to the rapid motion between the airborne camera and the fire target. In this study,
a multi-input, multi-output U-Net architecture that combines spatial domain and frequency domain
information is proposed for image deblurring. The architecture includes a multi-branch dilated
convolution attention residual module in the encoder to enhance receptive fields and address local
features and texture detail limitations. A feature-fusion module integrating spatial frequency domains
is also included in the skip connection structure to reduce feature loss and enhance deblurring
performance. Additionally, a multi-channel convolution attention residual module in the decoders
improves the reconstruction of local and contextual information. A weighted loss function is utilized
to enhance network stability and generalization. Experimental results demonstrate that the proposed
model outperforms popular models in terms of subjective perception and quantitative evaluation,
achieving a PSNR of 32.26 dB, SSIM of 0.955, LGF of 10.93, and SMD of 34.31 on the self-built forest
fire datasets and reaching 86% of the optimal PSNR and 87% of the optimal SSIM. In experiments
without reference images, the model performs well in terms of LGF and SMD. The results obtained
by this model are superior to the currently popular SRN and MPRNet models.

Keywords: forest fire; image deblurring; MIMO-UNet; dilated convolution; spatial–frequency
domain fusion

1. Introduction

Forests are a vital resource on Earth, playing a crucial role in air purification, noise
reduction, soil and water conservation, natural oxygen production, and climate regula-
tion [1]. However, forest fires, as frequent natural disasters, not only consume trees and
other forest resources but also pose serious threats to humans, animals [2], and the envi-
ronment. Therefore, early detection and mitigation of forest fires is essential [3]. In recent
years, the combination of deep learning techniques with UAV imagery has shown great
potential for advancing forest fire identification [4]. Aerial imagery technology, particularly
the use of UAVs equipped with optical cameras, has emerged as an important tool for
wildfire prevention. These UAVs are capable of real-time monitoring and have gained
popularity due to their versatility [5], high speed, and persistence. Their ability to inte-
grate images from different flight altitudes enables wider coverage and the production of
detailed images, making them the preferred choice for wildfire monitoring [6]. However,
the airborne camera is susceptible to interference from relative motion, attitude changes,
atmospheric turbulence and other factors, resulting in motion blur in captured images [7].
This significantly reduces the visibility of forest fires and the accuracy of feature detection,
segmentation, and object recognition processes. Thus, research on forest fire image deblur-
ring based on deep learning, combined with UAV imagery, holds significant potential for
advancing forest fire recognition [8].
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The image deblurring technology has been extensively studied with systematic and
mature theories and methods. Image deblurring methods can be categorized into blind
deblurring [9–12] and non-blind deblurring [13–16], depending on whether the blur kernel
is unknown or known. Traditional image deblurring methods exhibit certain limitations
when applied to the practical task of forest fire image deblurring. These drawbacks include
the requirement for a significant amount of prior knowledge, the production of low-quality
restored images, and the tendency to introduce ringing artifacts. In response to these
challenges, many researchers have turned to deep learning techniques for image deblurring.
For instance, Schuler et al. [17] employed a deep neural network to estimate the depth
features of a blurred image, subsequently transforming these features into the frequency
domain to estimate the blurring kernel. This approach allowed for non-blind deblurring
using traditional methods. Similarly, Li et al. [18] utilized image a priori information as a
dichotomous classifier, trained by a deep convolutional neural network, to achieve image
recovery. Despite their potential, these methods are constrained by the accuracy of blurring
kernel estimation and exhibit low execution efficiency [19]. While effective for specific
scene models, they lack robust generalization capabilities for addressing more challenging
real-world scene deblurring tasks [20].

Recently, the deep learning community has shifted its focus to exploring end-to-end
blind motion image deblurring strategies [21,22], bypassing explicit blur kernel compu-
tation by directly mapping blurred to clear images. Nah et al. [23] first introduced the
use of the DeepDeblur algorithm to confront the challenge of blurred images in dynamic
scenes. Drawing on the concept of progressing from coarse to fine details, their deep
convolutional neural network was intricately designed to operate across multiple scales.
While the DeepDeblur algorithm significantly enhances image deblurring capabilities, it
is characterized by an exceedingly large number of model parameters [24]. To tackle this
issue, Tao et al. [25] proposed a Scale Recurrent Network (SRN) capable of substantially
reducing computation time by sharing network weights across different scales. Further-
more, Zhang et al. [22] specialized a spatial pyramid-based multilayer network (DMPHN),
which focuses on utilizing cuts instead of downsampling and employing feature map
cascading in the encoder-decoder process, leading to a drastic reduction in the amount of
model computation. KUPYN et al. [26] successively proposed two deep network models by
introducing generative antigrid, DeBlurGAN and DeBlurGANv2, and used the generation
ability of generator adversarial networks (GANs) to restore high-quality clear images. On
this foundation, Zhang et al. [27] innovated by integrating two GANs. The blur GAN
(BGAN) is utilized to generate images that closely resemble real motion blur, while the
deblurring GAN (DBGAN) is employed to learn the process of recovering blurred images.
Cho et al. [28] proposed a multi-input, multi-output U-Net network and introduced asym-
metric feature fusion to effectively merge multi-scale features and gradually improve image
clarity from the lower subnet to the upper subnet.

Despite image deblurring algorithms having made significant progress on mainstream
datasets, it is still challenging to restore real-world blurred images into clear ones.

• Most current methods use an encoder–decoder structure to learn the features of
different receptive fields [29]. However, using many up-sampling and down-sampling
will lead to the loss of texture details, which seriously affects image restoration.

• At present, some image deblurring methods use GAN to obtain realistic texture details,
but this method will lead to unstable network performance.

• Most deblurring methods do not distinguish the feature information from differ-
ent spatial and frequency domains [30], resulting in a poor deblurring effect and
other problems.

To address the aforementioned issues, this study proposes a forest fire image deblur-
ring model based on the MIMO-UNet algorithm. This model effectively reduces motion
blur in UAV images which are captured during forest fire monitoring. The key contributions
of this study are as follows:
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• We propose a multi-branch dilation convolution to enhance the focus of the residual
block. By employing dilated convolutions with different dilated factors, we are able
to capture features from various receptive fields. The integration of the residual
block with the parallel attention block improved the network’s ability to process
multi-scale features.

• To further enhance the deblurring effect, we devise a spatial–frequency domain fusion
module. This module not only extracts the information in the spatial and frequency
domains, but also effectively combines them to reduce information loss.

• We propose a multi-channel convolutional attention residual module, which efficiently
captures image details and context information by processing features of different
scales in parallel. This approach effectively addresses information loss and insufficient
reconstruction quality in the decoder.

• To improve the generalization performance of the model, this study proposes a
weighted loss function which contains multi-scale content loss, multi-scale high-
frequency information loss and multi-scale structure loss. In this way, the internal
texture details of the image and the lost high-frequency information can be recovered,
and the deblurring effect can be enhanced comprehensively.

The rest of the paper is organized as follows: Section 2 describes our dataset, and
the overall network architecture is selected. Section 3 presents the experimental results
and performance analysis, The discussion is provided in Section 4, and finally, Section 5
concludes this paper.

2. Materials and Methods
2.1. Datasets

The blurred and clear images used for training and testing are the basis for the
deblurring study. The blurred image and the clear image must be geometrically aligned;
both images should be taken at the same camera position. This is difficult because the
camera has to be shaken to get a blurry image. In fact, it is hard to obtain motion-blurred
image datasets. Current public datasets in the field of motion blur image restoration include
GoPro [31], Lai, and Kohler datasets.

In this study, we created a forest fire dataset containing motion-blurred images, in-
spired by the generation method of GoPro and Lai datasets in the field of deblurring. To
simulate the Lai dataset creation method, we used 20,000 clear forest fire images and ap-
plied a linear motion-blurred kernel and random noise to them to generate blurred images.
In addition, following the idea of creating the GoPro dataset, we recorded the forest scene
and treated each frame as a clear image. By averaging the clear image of consecutive frames,
we obtained the blurred image and formed clear and blurred image pairs. The forest fire
dataset that we created included a training set of 3000 pairs and a test set of 1000 pairs for
deblurring image testing. Figure 1 shows the forest fire image pairs in different scenarios.
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2.2. Overall Network Architecture

Image deblurring networks such as U-Net [32] and DeblurGan are known for their
good deblurring performance, but these networks also have certain drawbacks and will
be limited in practical application scenarios. This study is to develop a new deblurring
network, which can effectively improve the deblurring performance. MIMO-UNet (multi-
input multi-output UNet) is an improved and extended network based on U-Net structure,
which can better deal with complex image blurring by introducing multi-module and
multi-input and multi-output channels. On the public datasets, MIMO-UNet performs
well in image deblurring, showing high accuracy and robustness in image restoration and
enhancement tasks. Therefore, we selected MIMO-UNet as our base network architecture.

3. The Proposed Method

In this section, we will describe the structure of the network and elaborate the details of
the preprocessing module. There are mainly the multi-branch dilated convolution attention
residual module in the encoder module, the spatial–frequency domain fusion module, and
the multi-channel convolution attention residual module in the decoder module.

3.1. Structural Description of the Network

The network proposed in this study adopts multi-scale input and output with coarse-
to-fine structure strategy. We divide the network into four parts: a preprocessing module
(PM) for shallow feature extraction, an encoder module (EM) for deep information extrac-
tion, a spatial–frequency domain fusion module (SFFM), and a decoder module (DM) for
image restoration and reconstruction, where Bk (k = 1, 2, 3) represents the input blurred
image with multi-scale and Sk (k = 1, 2, 3) represents the output restored image with
multi-scale, as shown in Figure 2.
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EM consists of three sub-encoder modules, i.e., EM1, EM2, and EM3, and it is used
to extract blurred images at different scales. Initially, the input blurred image is scaled to
obtain three blurry images with different scales and resolutions, namely B1, B2, and B3.
Then, EM employs multi-branch dilated convolution attention residual modules (MDAMs)
for feature extraction, enhancing the capture of detailed information. In EM2 and EM3,
feature fusion is optimized using the feature attention module, which integrates features
EMout

k (k = 1, 2) and PMout
k (k = 2, 3). The SFFM merges features across spatial and

frequency domains of different encoder scales before passing them to the decoder, thereby
improving feature utilization and reducing information loss. DM consists of DM1, DM2,
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and DM3. The inputs of DM1 and DM2 are the result of the fusion of the decoder output
of the previous layer with the SFFM module. In addition, we designed a multi-channel
convolution attention residual module (MCAM) in the DM to extract multi-scale feature
information.

3.2. Preprocessing Module

Due to the continuous smoothness and sparsity of the motion-blurred images, it
is essential to employ receptive fields of varying sizes for effective feature extraction.
To address this problem, PM uses multiple convolution modules connected in series
and parallel for shallow feature extraction before EM, where different receptive fields
are captured using different convolution kernel sizes, namely 3 × 3 and effective 5 × 5
(achieved by two cascaded 3 × 3 convolutions). Then, 1 × 1 convolutions are used to
subtly integrate these extracted features. This not only simplifies the output channel but
also enhances the effectiveness of back propagation while mitigating the risk of vanishing
gradients. Integrating local connections that jump between the input and output layers
ensures accurate synthesis of the final output, as shown in Figure 3.
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3.3. The Multi-Branch Dilated Convolution Attention Residual Module

Residual modules in deep neural networks often overlook image blur caused by
limited receptive fields, leading to an irreversible loss of resolution and edge details. To
address this problem, our study proposes an effective multi-branch dilated convolution
attention residual module (MDAM) in EM, in which dilated convolution uses a multi-
branch structure to further enhance image feature expression [33], thereby mitigating blur
and preserving feature information. Multiple MDAM can be interconnected to realize
feature reuse and maximize the utilization feature information. This module comprises
a multi-branch dilated convolution residual module (MDCM) and a parallel attention
module (AM), as shown in Figure 4.
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MDCM consists of two convolution blocks and a dilated convolution block. The
dilated convolution block is composed of multiple dilated convolutions with different
dilated rates in parallel, which can be expressed as:

Fre = δ
(

Hconv
(

Hconv
(

Finput
)))

(1)

Fdr_1 = δ(Hdr_1(Fre)) (2)
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Fdr_3 = δ(Hdr_3(Fre)) (3)

Fdr_5 = δ(Hdr_5(Fre)) (4)

Fdr_cat = Concat
(

Fdr_1 , Fdr_3 , Fdr_5

)
(5)

where Hdr_1, Hdr_3, and Hdr_5 represent the dilated convolution with the dilated factor of
1, 3, 5, respectively, δ represents the ReLU activation function, and Fdr_1, Fdr_3, and Fdr_5
represent the output of the dilated convolution with different dilated factors.

The dilated convolution network introduces the “dilation rate” parameter into the
traditional convolution operation, so that the sampling points inside the convolution kernel
are no longer continuous, but sampled at certain intervals, so as to expand the receptive
field. The dilation rate determines the interval at which the convolution kernel performs
the sampling. A larger dilation rate allows the convolution kernel to span a larger area,
thus expanding the receptive field.

In the last layer of the dilated convolution module, a dilated convolution with a dilated
factor of 1 combines features from different receptive fields, while a 1 × 1 convolution
reduces the number of channels for integration. Finally, we superimpose the fused features
onto the input features to get the output. The output characteristics can be written as:

Fconv = Hconv(Fdr_cat) (6)

Fout = Fconv + Finput (7)

Hconv represents the 1 × 1 convolution layers for information integration. Fconv and
Fout represent convolution feature and output feature, respectively.

To address the issue of non-uniform blur distribution in images and to leverage the
varying importance of information across different spatial and channel dimensions, a novel
parallel attention module (AM) is proposed. This module encompasses three distinctive
branches: one specifically designed for spatial attention, another for preserving the original
image features, and a third branch dedicated to implementing channel attention.

The spatial attention mechanism consists of three cascaded modules composed of a
convolution layer and an activation layer, and the channel attention mechanism consists
of one pooling layer, one activation layer, and one convolution layer, utilizing a 3 × 3
convolution kernel. The formula is as follows:

As = δ(conv(δ(conv(δ(conv(F)))))) (8)

Ac = δ(conv(Pool(F))) (9)

Ap = (As ∗ F) + (Ac ∗ F) (10)

where F is the input feature of the parallel attention module, δ represents the ReLU activa-
tion function, conv represents the convolution, Pool represents the pooling operation, As
is the output of the spatial attention mechanism, Ac is the output of the channel attention
mechanism, and Ap is the final output feature of the parallel attention module.

3.4. Spatial–Frequency Domain Fusion Module

In the traditional U-Net architecture, skip connections directly transfer encoder fea-
tures to the decoder, which will lead to the decoder not being able to make full use of the
multi-scale features generated in EM. Furthermore, based on the multi-scale frequency
reconstruction (MSFR) loss function of MIMO-UNet to recover reduced high-frequency
elements, this study designs a novel multi-scale feature fusion module within the skip
connections, referred to as the Spatial and Frequency Feature Module (SFFM). The EM
outputs three multi-scale features, each divided into two branches. One branch undergoes
2D real-time fast Fourier transform, followed by feature extraction in the frequency domain
with 3 × 3 convolution and ReLU activation. The other branch conducts feature extraction
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in the spatial domain using 3 × 3 convolution and ReLU activation. These branches are
then fused, resized for combining different scale features, and fed into the DM, as shown in
Figure 5.
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3.5. Multi-Channel Convolution Attention Residual Module

The basic task of the decoder is to reconstruct a clear, high-quality image from the feature
representation. However, the problems, such as information loss and suboptimal reconstruction
quality, often occur with conventional decoder modules. To mitigate these challenges, we inte-
grate an innovative multi-channel convolutional attention residual module into DM, as shown
in Figure 6, which effectively captures image details and context information by processing
features of different scales in parallel through a multi-channel structure.
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Each channel consists of a different convolution layer, which is specifically used to
extract the features of the corresponding layer. This approach ensures that irrelevant
information is eliminated, enabling the extraction of deeper and more comprehensive
information through the parallel attention module, as in the encoder. This method, which
combines multi-channel feature extraction and attention mechanisms, not only significantly
reduces the information loss in the reconstruction process, but also improves the overall
quality of the reconstructed image.
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3.6. Loss Function

Based on the structure from coarse to fine, the whole model is divided into three
stages, and each stage can output the restored image. During deblurring, there are losses in
the space and frequency domains as well as structural losses due to the unstable model
training. Therefore, the weighted loss strategy based on multi-scale content loss, multi-scale
high-frequency information loss, and multi-scale structure loss [34] is adopted to ensure
supervision and improve the blurring effect. It is assumed that Sk (k = 1, 2, 3) represents
the output multi-scale restored image, and Rk (k = 1, 2, 3) represents the corresponding real
clear image.

1. Multi-scale content loss

The L1 distance between the real clear picture of different scales and the model
restoration map is used as the multi-scale content loss:

Lc =
3

∑
k=1

∥Rk − Sk∥
1

(11)

The L1 distance does not excessively punish large error values, which is conducive to
preserving the edge features of the image.

2. Multi-scale high-frequency information loss

This study utilizes Fast Fourier Transform (FFT) to quantify the high-frequency infor-
mation loss between the blurred image and the reference clear image:

LF =
3

∑
k=1

∥FFT(Rk)− FFT(Sk)∥ (12)

3. Structural loss

Structural losses can be expressed as:

LS = LSSIM + LMS−SSIM (13)

LSSIM can be expressed as:

LSSIM = 1 − SSIM(P) (14)

Multi-scale structural similarity loss (MS − SSIM) can be expressed as:

LMS−SSIM = 1 − MS − SSIM(P) (15)

P is the middle pixel value of the pixel block.

4. Total loss function

The formula used to calculate the total loss function is as follows:

Ltotal = λALA + λFLF + λSLS (16)

where LC means absolute error (MAE) and LF is multi-scale frequency reconstruction
(MSFR). LS is structural loss (SL), where λC, λF, and λS are set 0.1, 0.01 and 0.08, respec-
tively. The allocation of proportions to each loss is based on the variability of values
obtained for each loss during the training process. Consequently, losses with lower volatil-
ity are assigned a smaller proportion of the model optimization impact. The weighting
coefficients in the equations mentioned above are derived from this approach and deter-
mined experimentally.
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4. Results
4.1. Training Parameters and Environment

The details of the model proposed in this paper and the training hyperparameters
are shown in Tables 1 and 2. Based on our self-built forest fire dataset, several data
augmentation methods are used, including random horizontal flipping, vertical flipping,
and 90-degree rotation. We use the Adam optimizer [35] to optimize the network model;
the training time is set to 800 epochs, and the initial learning rate is set to 0.001. The learning
rate scheduling strategy is the cosine annealing strategy.

Table 1. Experimental environments.

Experimental Environments Details

Program Language Python 3.8
Framework Pytorch 1.13.1

Operating System Windows 11

GPU Type Nvidia RTX 4060 (manufactured by Nvidia
Corporation, Santa Clara, CA, USA)

Acceleration Tool CUDA 11.6

Table 2. Training parameters.

Training Parameters Details

Epochs 800
Batch Size 8

Learning Rate 1 × 10−3

Optimizer Adam
Betas (0.9, 0.99)
Eps 1 × 10−8

4.2. Evaluation Index

Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are used as evalua-
tion indexes to verify the effectiveness of the proposed model. PSNR reflects the degree of
distortion before and after image processing. The larger the value, the smaller the distortion
and the better the deblurring effect. A higher SSIM indicates that the processed image is
more similar to the original image structure information.

However, in practical situations, assessing the effectiveness of deblurring methods using
PSNR and SSIM proves difficult because it is difficult to obtain paired blurred and correspond-
ingly clear images at the same time. Therefore, auxiliary evaluation indexes such as Laplacian
gradient function (LGF) [36] and the sum of modulus of gray difference (SMD) without refer-
ence images are introduced as complementary indices to facilitate the evaluation of the image
definition and deblurring result. Their calculation formula is as follows:

MSE =
1

MN

M−1

∑
i=0

N−1

∑
j=0

[I(i, j)− K(i, j)]2 (17)

PSNR = 10log10

(
MAX2

I
MSE

)
(18)

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (19)

where µx and µy respectively represent the average value of x and y. σx and σy respectively
represent the standard deviation of x and y, σxy represents the covariance of x and y, c1 and
c2 are constant to avoid systematic error due to the zero numerator.
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LGF is an image blur evaluation index without a reference image. The higher the
value, the clearer the image. The formula of Laplacian is as follows:

D( f ) = ∑
y

∑
x
|G(x, y)|

G(x, y) > T
(20)

where G(x, y) is the convolution of the Laplacian operator at pixel point (x, y).
When fully focused, the image is the clearest, and the high-frequency component in

the image is also the most, so the gray change can be used as the basis for image clarity.
The formula of SMD is as follows:

G = | f (x, y)− f (x + 1, y)|+ | f (x, y)− f (x, y + 1)| (21)

D0 = MAX∑
x

∑
y

G (22)

D0 corresponds to the focus position.

4.2.1. Forest Fire Dataset Test

The quality of the image restored by the proposed method and the current popular
deblurring method is evaluated. The validity of the model is assessed using the self-build
forest fire dataset. Test results indicate that, relative to Table 3 and Figure 7 our model
outperforms the other six models in PSNR, and the SSIM [37] is also better, except for being
slightly lower than the MPRNet model. In addition, LGF and SMD are also superior to
other models, indicating that they perform well in defining image edges and texture details.

Table 3. The performance comparison using the self-built forest fire dataset.

Model PSNR SSIM LGF SMD

Deepdeblur 29.04 dB 0.924 8.1 27.99
DeblurGAN-v2 29.30 dB 0.934 8.33 28.10

SRN 30.01 dB 0.941 8.96 30.05
MIMO-UNet 30.35 dB 0.936 8.98 30.13

SDWNet 31.65 dB 0.942 9.91 32.15
MPRNet [38] 32.04 dB 0.958 10.10 33.26

NAFNet 32.13 dB 0.951 10.50 33.90
Ours 32.26 dB 0.955 10.93 34.31
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Upon comparing the results of each image within the dataset, we observed that our
model achieved 86% of the optimal PSNR, 87% of the optimal SSIM, 84% of the optimal LGF,
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and 90% of the optimal SMD. These outcomes collectively indicate the excellent deblurring
effect achieved by our model.

We also analyzed the subjective effect of image deblurring. Figure 8 illustrates the
subjective visual comparison before and after deblurring for diverse forest fire types, such
as surface fires, crown fires, and trunk fires. It is obvious that the image texture of the
proposed model is more clearly visible after deblurring. Furthermore, as showed in Table 4
and Figure 9, our model has demonstrated exceptional performance in handling diverse
forest fire scenarios, and all four quantitative measures are optimal or suboptimal.
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Table 4. Comparison of indicators under different forest fire scenarios.

Image Model PSNR SSIM LGF SMD

Surface Fire

Blurry 26.06 dB 0.6671 8.17 21.19
SRN 27.24 dB 0.7266 10.74 25.88

MPRNet 29.06 dB 0.7863 11.33 27.36
Ours 29.28 dB 0.7922 12.73 28.25

Crown Fire

Blurry 20.31 dB 0.8222 6.72 18.32
SRN 21.14 dB 0.8427 7.37 17.73

MPRNet 23.50 dB 0.8628 8.27 19.7
Ours 25.49 dB 0.8523 9.03 22.76

Trunk Fire

Blurry 23.49 dB 0.8136 7.13 30.76
SRN 24.49 dB 0.8369 12.25 32.17

MPRNet 26.32 dB 0.8805 14.8 34.65
Ours 26.44 dB 0.8839 13.98 35.25
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4.2.2. Real Forest Fire Scene Test

Taking forest fire images captured by drones in Tangzu Village (101◦3′29.2068′′ E,
29◦53′59.28′′ N), Malangcuo Town, Yajiang County, Sichuan Province, China on 31 May 2023,
as an example, the deblurring effects of different models at multiple shooting points were
compared, as shown in Figure 10. It was found that our model can highlight the edge
and texture characteristics of the fire while deblurring the image, which is conducive to
detection and segmentation.

Table 5 and Figure 11 show the comparison of objective quality between the proposed
method and two other blind moving image deblurring models. Because there is no clear im-
age for reference, auxiliary indexes, such as LGF and SMD, are used to evaluate deblurring
performance. Tests show that our model is superior on LGF and SMD.
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Table 5. Forest fire scenes are used to test LGF and SMD.

Title 1 Model LGF SMD

The first forest fire scene

Original image 11.50 38.32
SRN 13.27 44.17

MPRNet 14.31 47.75
Ours 14.50 50.80

The second forest fire scene

Original image 6.16 21.57
SRN 8.24 27.16

MPRNet 9.27 31.71
Ours 10.04 36.49

The third forest fire scene

Original image 2.90 8.42
SRN 3.03 9.01

MPRNet 3.54 11.15
Ours 3.89 13.11
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4.3. Ablation Experiment
4.3.1. Analysis of Layers of Stacked Residuals in Encoder–Decoder

The encoder–decoder module designed in this study is composed of multiple stacked
residuals. To evaluate the influence of the number of residuals on the network performance,
an ablation experiment was conducted on the self-built forest fire dataset for the number
of residuals M, whose values are set as 2, 4, 8, 16, and 20, respectively. The experimental
results are listed in Table 6, and Figure 12 illustrates ablation studies on different numbers
of residual modules. At M = 4, the PSNR and SSIM values were lower. As M increased,
PSNR and SSIM also increased. When M = 16, PSNR and SSIM were corresponding. If the
value was greater than 16, PSNR and SSIM increased smoothly. Considering the running
speed of the model and the defusing performance, the M value used in the model was 16.

Table 6. Ablation studies on different numbers of residual modules.

M 2 4 8 16 20

PSNR 28.91 29.86 30.65 32.26 32.31
SSIM 0.921 0.933 0.941 0.955 0.958
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4.3.2. Network Module Combination

In this study, the model designs different modular combinations of self-built forest
fire datasets to prove the validity of SFFM, MDAM, MCAM, and PM. Each combination
scheme maintains the same training parameter environment and adopts the same PSNR
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and SSIM indicators to evaluate the performance of each module, where the baseline is
a multi-input and multi-output U-Net network (MIMO-UNet), as shown in Table 7 and
Figure 13. Ablation studies with different module combinations list the index comparison
data of different module combination structures. Experiments have demonstrated that the
utilization of SFFM has led to a significant improvement in PSNR and SSIM. Building upon
this foundation, MDAM and MCAM in the encoder–decoder component also improve
the deblurring ability of the model. Additionally, PM also effectively contributed to the
improvement of the deblurring effect. The results show that the above modules can
improve the deblurring performance of the model and help restore the image with more
detailed information.

Table 7. Ablation studies with different module combinations.

Baseline SFFM MDAM +
MCAM PM PSNR SSIM

√
30.28 dB 0.936√ √
31.23 dB 0.941√ √ √
31.65 dB 0.950√ √ √ √
32.26 dB 0.955
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5. Discussion

Forest resources are crucial ecological assets essential for the survival of human society.
Detection of forest fires holds significant importance in safeguarding the ecological security
of a country. With the advancement of information technology, the utilization of drones for
forest fire detection is on the rise [39], accompanied by escalating demands for high-quality
aerial imagery. The issue of motion blur often arises during UAV image capture while
in flight. Currently, numerous deep learning-based methods exist for image deblurring,
but they exhibit certain limitations. Therefore, this study proposes a comprehensive
investigation into the deblurring challenge encountered in forest fire images. Leveraging
the inherent strengths of deep learning in end-to-end image deblurring, we propose novel
image deblurring models based on the MIMO-UNet algorithm.

To address the challenge of insufficient clear-blurred image pairs in forest fire scenes, this
study generated a dataset comprising such pairs. The comparative experiments are shown
in Table 7 and Figure 13. Ablation studies with different module combinations demonstrate
that the enhanced SFFM, MDAM, MCAM, and PM methods notably enhance both PSNR
and SSIM metrics in our self-built forest fire dataset. Our model demonstrated exceptional
performance compared to other models, with a slightly lower SSIM of 0.03 compared to the
MPRNet model. We attribute this difference to MPRNet’s utilization of a multi-stage progressive
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restoration strategy. Specifically, the original-resolution subnetwork (ORSNet) in the final stage is
believed to enhance image quality without sacrificing image structure and semantic information.
Therefore, in our future endeavors, we aim to prioritize the reduction of semantic information
loss and enhancement of deblurring performance.

In this study, it was found that there was still a certain gap between the subjective
visual perception of the deblurred image and the effect reflected by the objective evaluation
index. How to establish an image restoration quality evaluation index more in line with
subjective perceptions is a problem that needs to be solved. In future work, we intend to
use machine learning techniques to assess image quality without reference to enabling a
more comprehensive assessment of blurring results. The model presented in this paper still
requires extensive training time on high-configuration computers. However, computational
complexity and training duration can be diminished through optimization of the network
structure. Given that edge computing devices typically possess lower computational
power compared to conventional computers, the model can be further enhanced through
techniques such as quantization and pruning. These methods compress the model size
or employ a more lightweight network structure, consequently reducing computational
demands. As a result, the network model can be efficiently deployed and recovered on
edge computing devices.

Based on the forest fire detection system made by our team [40,41] (the whole system
consists of a UAV, a Raspberry Pi controller, an OAK-D camera, and a GPS module), we
aim to build a forest fire detection model based on multi-task learning, consisting of 3 tasks
(a deblurring task, a detection task, and a segmentation task). In order to enhance the user
experience and ease of operation, we intend to build a cross-platform HMI using PyQt5.
This design not only improves the utility of the system, but also ensures reliability and
stability in the field environment. By deploying our models on UAVs, we can achieve true
real-time recognition and response capabilities to more effectively monitor and deal with
emergencies such as forest fires. This integrated solution will unlock new potential for
forest fire prevention and improve the ability to respond to disasters in a timely manner,
thereby enhancing the protection of human life and property.

6. Conclusions

In this study, we successfully built and validated an innovative spatial–frequency do-
main fusion network model with significant improvements over MIMO-UNet to optimize
image deblurring tasks. By introducing an advanced MDAM in EM, we not only increased
the receptive field of the model, but also effectively suppressed redundant information,
thereby improving the overall performance of the network. In addition, in the multi-scale
feature fusion module, we abandoned the traditional U-Net jump connection module and
adopted a strategy of combining spatial domain and frequency domain information, which
significantly reduced the information loss in the feature fusion process and improved
the recovery with more detailed characteristics. MCAM in DM improved the reconstruc-
tion of local and contextual information. During model training, we used the weighted
loss function, which not only improved the stability of the model but also optimized the
performance of image blurring.

By training and testing the self-built forest fire dataset, our model outperformed
the comparison model in various performance indices and achieved excellent results in
experimental comparison. Especially when processing forest fire images, our model could
highlight the texture details of recovered images, which is of great importance for wildfire
monitoring and management. The LGF and SMD were used to evaluate the deblurring
effect of forest fire images in real scenes, and our model has achieved the best performance
in comparative experiments. The conclusive experimental findings show that the proposed
forest fire image deblurring model has a PSNR of 32.26 dB, SSIM of 0.955, LGF of 10.93,
and SMD of 34.31. In experiments without reference images, the model performs well in
terms of LGF and SMD. It is worth noting that, compared with other baseline models and
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other commonly used image deblurring models, this model is generally improved in terms
of indicators.
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