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Abstract: In this study, the rotating welding process of Chinese fir (Keteleeriafortunei) in Guizhou,
China, was systematically analyzed. The effects of rotating welding conditions, including the dowel-
to-guide hole diameter ratio, welding time, depth, base surface, angle, and dowel type, on the
performance of welded Chinese fir were explored. Moreover, the physical and chemical changes
oftheChinese fir interface during welding were revealed by Fourier-Transform Infrared Spectroscopy
(FT-IR), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), and Scanning Electron
Microscopy (SEM). The results indicated the following: (1) The rotating welding technology can
quickly achieve a strong connection between wood through friction heat without chemical adhesives
and compared with traditional wood connection technology such as gluing or mechanical fixing;it
has the advantages of simple operation, high production efficiency; and environmental friendliness.
(2) Aftertherotating welding, the wood underwent significant pyrolysis, especially the degradation
of hemicellulose. The heat generated in the welding process caused good melting and mechanical
interlocking between the dowel and the wall of the guide hole, but it was also accompanied by
afriction loss of the dowel and the substrate. (3) The welding parameters affected the wood’s
connection strength and stability by altering heat production, distribution, transfer, and frictional
losses. The impact of the dowel-to-guide hole diameter ratio had a great influence on the connection
strength. When the diameter ratio was 1:0.7, the tensile strength was the highest, reaching 2.27 MPa.
(4) The analyses of XPS, FTIR, XRD, and SEM proved thatthechemical composition changes at the
interface, leading to a more structured crystalline bond and enhanced connection strength due to
fiber entanglement and interlocking. This research providesatheoretical and experimental basis
forthefurther innovation and development of wood processing technology and provides a new
technical path forthegreen manufacturing of wood structure buildings.

Keywords: Chinese fir dimension lumber; rotational welding; welding parameters; heat generation;
heat transfer; wood degradation

1. Introduction

Because of its excellent insulation, environmental protection, energy saving, and safety,
wood structure buildings have been widely recognized and promoted around the world.
As a country rich in forestry resources, Chinese fir has been widely used in the furniture and
construction industries due to its lightweight and easy processing [1–7]. Especially in the
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Guizhou Province, Chinese fir is not only the main economic forest species but is also the
main building material of traditional wooden dwellings with national characteristics [8–10].
According to statistics, Chinese fir occupies an important share ofChina’s forest resources,
and its annual growth rate and cutting amount are at the forefront, indicating its core
position in the domestic forestry industry [11–15].

Traditional furniture and architectural joints, like mortise and tenon, round dowel
joints, metal connectors, and glue joints, while prevalent, face challenges like complex
production processes, significant wood loss, metal corrosion, and low efficiency [16–21]. In
order to solve these problems, wood welding technology, as an emerging environmentally
friendly and efficient connection technology, has attracted the attention of researchers and
industry [22–26]. Since wood welding technology was first proposed by Suthoff [27], it has
experienced the development of various technologies from linear friction welding to rotary
friction welding, ultrasonic wood welding, and laser wood welding [22,28–31].

Rotary friction welding is regarded as an important innovation in wood joining
technology because of its instantaneous bonding characteristics and superior environmental
performance [32–35]. The rotary friction welding technology softens the lignin through the
friction heat generated by the contact of the high-speed rotating wood tenon with the wood
substrate, thereby enabling rapid bonding of the wood without the need for any adhesive.
This technology not only improves the fastness and durability of the connection but also
significantly improves the production efficiency, which is an ideal choice for industrial
large-scale production [36–44]. In recent years, with the increasingly strict environmental
regulations and the continuous growth of wood construction demand, the research and
application of rotary friction welding technology have been greatly promoted.

In this study, the application potential of rotary welding technology in the connection
of Chinese fir and the influence of process parameters on the connection performance were
explored, aiming to provide theoretical and practical support for the wider application of
Chinese fir and the green manufacturing of wood structure buildings.

2. Materials and Methods
2.1. Materials

Chinese fir (Keteleeriafortunei) wood, which is a common forest resource with a solid
structure and interleaving fiber, is suitable for wood construction and furniture manufactur-
ing. Chinese fir in Guizhou is chosen as the research object because it has a wide planting
area and important economic value in the local area. The Chinese fir is produced in the
Pingba District near Anshun, Guiyang, China, with a geographical position of 106.43◦ E
and 26.34◦ N. The Chinese fir wood is approximately 25 years old, with an average air-dry
density of 0.42 g/cm3 and a moisture content of 12%. The dowels employed include the
Schima superba with an average air-dry density of 0.67 g/cm3, Beech with 0.64 g/cm3,
and Eucalyptus with 0.73 g/cm3, all bought from the market and maintaining an average
moisture content of 12%.

2.2. Pretreatment of Chinese Fir Dimension Lumbers

The samples of Chinese fir dimension lumber that met the standards were selected,
and the surface was cleaned and dried to ensure that the surface of the samples was clean
and smooth. Then, the sample was cut into a standard size of 50 mm (length) × 40 mm
(width) × 30 mm (thickness), in order to ensure the repeatability and comparison of the
experiment.The sampling areas on the cross-section or length of the Chinese fir logs were
accurately measured and marked using professional measuring tools. Appropriate sawing
or cutting tools were employed to cut along the marked lines in order to extract the target
samples. The obtained samples underwent proper processing, which involved smoothing
the surfaces, removing sawdust, and marking the sample information, to prepare them for
subsequent testing or analysis. Depending on the requirements, the processed samples
were appropriately packaged and preserved to protect against environmental factors such
as humidity, temperature, and light exposure.
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2.3. Welding Parameters Setting

According to the pre-test results, a series of specific parameters were adopted to ensure
the stability and comparability of the welding effect, as shown in Table 1.

Table 1. Welding process parameter setting.

Parameters Set Value

Diameter ratio of dowel to guide hole 1:0.9, 1:0.8, 1:0.7
Standing time of welding 0 s, 1 s, 2 s

Welding depth 15 mm, 20 mm, 25 mm

Welding surface Cross section, radial section,
and tangential section

Welding angle 30◦, 45◦, 60◦, 90◦

Dowel type Schima superb, Beech, Eucalyptus

2.4. Preparation of Welded Chinese Fir Dimension Lumbers and the Test

Chinese fir specimens were conditioned under constant temperature and humidity
with good ventilation for six months to stabilize their moisture content at approximately
12%. Samples free of knots, cracks, decay, and discoloration were selected as the base
material for welding. As shown in Figure 1, a ProxxonTyp 28 21 drill press (Proxxon,
Stuttgart, Germany) was used to drill guide holes in the radial plane of the fir base material,
with a speed of 2400 rpm, hole diameter of 8 mm, and depth of 20 mm. The dowels were
then fixed to the drill press, aligned with the center of the guide holes, and rotationally
welded at the same speed to a depth of 20 mm. According to the literatures [45–47], a
WDS-50KN universal testing machine was used at a uniform loading speed of 2.5 mm/min
to test the tensile strength of the rotational welding joints. Stress–strain curves were
recorded for mechanical analysis, with the final tensile pull-out strength being the average
of 24 specimens. The maximum and minimum values were deleted, and then the rest of
the samples were averaged. The standard deviation was less than 5%.
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Figure 1. Diagram of wood dowel rotation welding.

2.5. Fourier-Transform Infrared Spectroscopy (FT-IR)

The molecular structure and functional groups of the welding interface were studied,
and the chemical changesthatoccurred during welding were analyzed using a Varian 1000
(Varian, PaloAlto, CA, USA) infrared spectrometer [45–47]. The parameters for the analysis
were as follows: wavenumber range of 400 to 4000 cm–1; resolution set at 4 cm–1; 32 scans
per sample; ambient temperature maintained between 22 and 25 ◦C; and relative humidity
of ≤60%.
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2.6. X-ray Photoelectron Spectroscopy (XPS)

The chemical composition and element state of the welding interface and the chem-
ical reaction that occurred in the welding process were investigated [45–47].The study
utilized an X-ray photoelectron spectrometer (ThermoFischer, Waltham, MA, USA, model
ESCALAB 250Xi) for analysis. The excitation source was a Ka line (Al: photon energy
hv = 1486.6 eV). Full spectrum scans were conducted with a pass energy of 100 eV and a
step size of 1 eV, while high-resolution scans had a pass energy of 50 eV and a step size
of 0.05 eV. Samples were etched with argon ions for 10 s, followed by calibration of all
binding energies using C1s = 284.80 eV as a reference. Data analysis was performed using
Advantage 5.948 software.

2.7. X-ray Diffraction (XRD)

The crystal structure of the welding interface was analyzed, and the possible crystal
phase change during welding was studied.The crystallinity of the Chinese fir base material
at the welding site was analyzed using a TTR XRD from Rigaku Corporation, Tokyo, Japan.
The parameters included a Cu target (λ = 0.154060 nm), a 2θ scanning range of 5 to 90◦, step
size of 0.02◦, scanning rate of 5◦/min, tube current of 120 mA, and tube voltage of 40 kV.

2.8. Scanning Electron Microscopy (SEM)

The morphology and microstructure of the welding interface were observed, and
the bonding condition and defects of the welding interface were analyzed [45–47].The
microscopic structure of the welding site and cross-section of the Chinese fir base material
was observed using a Hitachi S-3400N Scanning Electron Microscope (Tokyo, Japan). An
acceleration voltage of 12.5 kV was chosen, and the specimen surfaces were gold-sputtered
for observation. Images at various magnifications (50×, 100×, 200×, 500×, 1000×, and
2000×) were captured and saved from the SEM.

3. Results and Discussion
3.1. Effect of Dowel-to-Guiding Hole Diameter Ratio on Welded Wood Performance

The impact of the dowel-to-guide hole diameter ratio on the performance of welded
wood is exquisitely captured in Figure 2, which comprises three insightful sub-figures.
Figure 2a demonstrates significant differences between the stress–strain curves of unwelded
and welded wood, highlighting significant disparities. In unwelded wood, the stress–
strain curve initially ascended to a peak, subsequently experiencing a precipitous decline,
followed by fluctuations with a progressively diminishing amplitude. This behavior is
attributed to the frictional forces between the wood fibers, reminiscent of those observed
in connections made with round steel nails [4,11,20]. The rapid decline in the curve is
attributed to the maximum static friction force prior to dowel extraction, where the primary
tensile resistance originates from this maximal static friction (reaching the limit strength at
the peak of static friction). As the dowel gradually extracts, the static friction transitions to
kinetic friction. However, the contact area between the dowel and the substrate diminishes,
leading to a reduction in kinetic friction that eventually transitions back to a smaller static
friction. Throughout this process, the alternating static and kinetic frictions continuously
erode the strength, resulting in the stress–strain curve’s fluctuating yield with progressively
diminishing peaks. Some studies attribute this oscillatory yielding phenomenon to stick-slip
behavior [48,49], where the dowel extraction causes relative movement between the dowel
and the substrate, necessitating overcoming the unevenness of the friction pair’s rough
surface, leading to fluctuations in frictional force, indicative of the repeated transitions
between dynamic and static friction.

The welded Chinese fir’s stress–strain curve lacks oscillatory yielding, suggesting its
connection strength is not primarily friction-based. Figure 2b shows the dowels turning
conical, indicating intense friction during welding, leading to increased temperature and
lignin softening and melting. This process, involving partial entanglement, contributes
to the wood’s strength. However, the strength of these connections is initiated by friction
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but not exclusively derived from it, implying a more complex interplay of factors in the
strength of welded wood.
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Figure 2c reveals that the highest tensile resistance is achieved with a diameter ratio of
1:0.7, reaching 2.27 MPa. With a ratio of 1:0.8, the tensile resistance decreased to 1.90 MPa,
further reducing to 1.11 MPa with a ratio of 1:0.9, slightly higher than the connection
strength of unwelded wood (diameter ratio 1:0.8) at 1.13 MPa. This indicates that a greater
connection strength can be obtained through pure dowel welding than through unwelded
connections. It was caused by the following: (1) Friction heat generation and distribution:
When the diameter is relatively small, the contact between the dowel and the guide hole
is closer, resulting in the concentrated generation of friction heat and a more uniform
heat distribution. This increases the degree of softening of the lignin and promotes the
fusion and mechanical interlocking of the wood fibers, thus improving the firmness of the
connection. (2) Fiber melting and mechanical interlocking: When the diameter is small,
friction heat can make the fiber on the surface of the dowel reach the melting temperature
faster, promoting the rearrangement and mosaic of the fiber. A larger diameter ratio may
result in insufficient heat to completely soften the lignin, thus affecting the quality of
the weld. (3) Heat transfer: When the dowel diameter is larger, the heat generated by
welding is lower, and the heat conduction is blocked, resulting in a lower temperature in
the welding zone.

To sum up, the diameter ratio of the wood dowel to the guide hole plays a key role
in the welding process, and too large or too small a diameter ratio is not conducive to
the generation, distribution, transfer of heat, and fusion between wood fibers. Therefore,
in practical applications, it is necessary to optimize the diameter ratio to ensure the best
welding effect and the highest connection strength.

3.2. Effect of Welding Standing Time on the Performance of Welded Wood

The study depicted in Figure 3 investigates the influence of dwell time during rota-
tional dowel welding at a predetermined depth on wood performance. Figure 3a reveals
that the tensile pull-out strength is highest with no dwell time (1.88 MPa), and decreases as
dwell time extends, dropping to 1.28 MPa at 1 s and further to 0.85 MPa at 2 s. This decline
in strength withanincreased dwell time suggests that excessive heating in the welding area
may cause wood damage, reducing tensile strength. The further decrease at 2 s could be
due to more severe thermal damage or degradation, potentially compromising the wood’s
fibrous structure and reducing the effective mechanical interlocking between the dowel
and the hole wall.
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strength, (b) status of welded wood.

Figure 3b demonstrates a clean substrate surface at zero seconds dwell time, with an
increase in charring observed at two seconds. Longer dwell times result in more severe
dowel burning and a tendency for the dowel to become more conical, leading to unevenness
and increased gaps at the interface. This suggests a competitive dynamic in the welding
process; effective melting and mechanical interlocking between the dowel and the hole
wall enhance connection strength, while the heat generated by welding can cause wood
damage, reducing the strength of the connection. Brief welding may suffice for optimal
melting and interlocking without causing excessive thermal damage, whereas longer dwell
times can increase the potential for thermal decomposition and carbonization of the dowel,
weakening the connection.

3.3. Effect of Welding Depth on the Performance of Welded Wood

The impact of the rotational welding depth of dowels on the performance of welded
wood is shown in Figure 4. As illustrated in Figure 4a, the connection strength increases
from 1.44 MPa at 15 mm to 1.83 MPa at 20mm but plateaus at 1.82 MPa at a 25 mm depth.
This suggests that while increased depth theoretically enlarges the contact area, enhancing
mechanical interlocking, adepth increment beyond 20 mm does not significantly improve
strength. This could be due to consistent dowel friction wear and uneven heat distribution
at greater depths, underscoring the importance of optimal depth for quality welding.
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Figure 4b reveals minimal dowel wear and tighter interlocking between the dowel
and hole wall at a 20 mm depth. This depth appears to balance material wear and heat
distribution effectively, fostering a conducive environment for thermal decomposition
and fusion without excessive heat loss or uneven transfer. However, a depth of 25 mm
may surpass the ideal welding depth, leading to inconsistent heat distribution and poten-
tially affecting tensile strength due to overheating or insufficient heating. The observed
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increase inthestandard deviation at greater depths hints at the variability in connection
strength, possibly linked to the complexity of manual operations or material inconsistencies.
Therefore, the selection of an appropriate welding depth is essential for achieving optimal
welding performance.

3.4. Effect of Welding Base Surface on Welded Wood Performance

Figure 5 presents the performance test results of welded wood on cross-cut, radial-cut,
and tangential-cut surfaces. As Figure 5a,c shows, the stress–strain curve trends during
dowel extraction are consistent across these surfaces. The radial-cut surface exhibited the
highest tensile pull-out strength (1.85 MPa), followed by the tangential-cut (1.1 MPa), and
the lowest in the cross-cut surface (0.97 MPa).
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The anisotropic nature of wood, characterized by variations in density, porosity,
and fiber alignment across different base surfaces, significantly impacts heat conduction
and distribution during the welding process. This, in turn, influences the quality of the
weld. On cross-cut surfaces, where fibers predominantly run parallel to the longitudinal
axis and are interconnected by hydrogen bonds, the dowel aligns with these fibers. This
orientation means that frictional forces are largely dependent on fiber compression, leading
toacomparatively lower tensile strength. Elements such as growth rings and rays can induce
uneven heating and thermal stress concentration in the welding area, potentially causing
cracks or insufficient welding. Moreover, the compression force exerted during the cooling
phase post-welding is perpendicular to the fiber direction on cross-cut surfaces, which may
preventthetight interlocking of fibers and consequently decrease tensile strength.

In radial-cut and tangential-cut surfaces, the dowel imparts a shearing action on wood
fibers. This shearing effect means that friction is largely influenced by the wood fibers’
resistance to shear, leading to a notably higher tensile strength compared to cross-cut
surfaces. The radial-cut surface, with its fiber alignment parallel to the welding pressure,
facilitates tighter fiber entwining and interlocking, which accounts for its superior tensile
strength over the tangential-cut surface. Variations in earlywood and latewood, arrange-
ment patterns, lignin content, and microfibril orientation in radial and tangential cuts also
contribute to differences in tensile strength [4,11,28–31].

The different welding base surfaces’ performance variation underscores the impor-
tance of the substrate fibers’ direction on heat generation and transfer, as well as the
interlocking of melted products. In practical applications, selecting the correct base surface
is vital for ensuring optimal welding quality and the strength of the connection. This
decision is pivotal, as it directly impacts the effectiveness of the welding process and the
durability of the welded joint.
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3.5. Effect of Welding Angle on the Performance of Welded Wood

The relationship between the rotational welding angles of dowels and the performance
of welded wood is depicted in Figure 6. It was observed that at 90◦, the tensile pull-out
strength peaked at 1.89 MPa. However, this strength decreased to 1.12 MPa at 60◦ and
dropped further to the lowest point of 0.9 MPa at 45◦. Interestingly, an increase in strength
to 1.67 MPa was noted at 30◦. This trend suggests that while the contact area between
the dowel and guide hole grows with a decreasing welding angle, the tensile strength
demonstrates a non-linear relationship, initially decreasing and then increasing.
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In Figure 6c, the welding at 90◦ shows the smallest contact area and relative depth,
concentrating the heat and maximizing strength. At 60◦ and 45◦, the increased contact area
and depth facilitate efficient heat distribution and wood thermal degradation, affecting
tensile strength. A significant strength increase from 45◦ to 30◦, by 67%, suggests enhanced
fiber entanglement and mechanical interlocking due to the largest contact area and depth.
The welding at 90◦ involves the radial surface, whereas, at 60◦, 45◦, and 30◦, it is a mix of
cross-cut and tangential-cut surfaces, resulting inalower strength than radial-cut welding.
Stability in welding performance at 90◦ is also evident from Figure 6b.

The welding angle significantly affects heat distribution in the process, influencing
the thermal decomposition and formation of chemical bonds between the dowel and
substrate. It also alters the internal stress distribution within the wood, impacting the
fiber’s interlocking mechanism and overall strength. Consequently, the choice of welding
angle is vital for the strength of the welded wood joints. Ensuring the selection of an
appropriate welding angle is crucial to maintaining the quality of welding and the strength
of the joints in practical applications.

3.6. Effect of Different Dowels on the Performance of Welded Wood

The welding performance of Schima superba, Beech, and Eucalyptus dowels shows
distinct results, as illustrated in Figure 7. Eucalyptus dowels demonstrated the highest
tensile pull-out strength at 2.13 MPa, surpassing Schima superba at 1.85 MPa and Beech
at 1.38 MPa, indicating the most robust joint strength in Eucalyptus. This superior perfor-
mance is attributed to the greater density and hardness of Eucalyptus, which contributes to
enhanced stability and joint strength during welding. Further, Eucalyptus dowels maintain
their shape better during the welding process, with minimal charring or deformation,
and exhibit a smoother surface. The connection interface showed a tighter fit, and cross-
sectional views displayed increased melting and interlocking of fibers, enhancing the
mechanical interlocking.
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Figure 7. The influence of different tenon-and-mortise joints on the performance of welded wood.
Note: (a) Connection strength, (b) status of welded wood.

Beech and Schima superba, despite their similar densities, exhibited notable differences
in tensile strength. Beech’s tensile strength was approximately 25% lower than that of
Schima superba, with a more significant standard deviation. This discrepancy is primarily
due to the coarser surface texture of Beech, which leads to increased wear during the
rotational welding process, adversely affecting the connection’s strength and stability.
Furthermore, the variations in thermal decomposition temperatures and the nature of the
decomposition products of different wood types can impact the structural integrity and
strength of the welded interface. These findings underscore the importance of selecting
appropriate dowel materials and welding parameters to ensure optimal performance in
wood welding connections.

3.7. XPS Analysis

XPS analysis is a surface analysis technique that identifies the surface chemical com-
position and the chemical state of elements by measuring the binding energy of elements
on the surface of a material. It is essential to understand how materials respond to external
processing, such as welding, at both chemical and physical levels. The use of XPS in this
study can reveal chemical changes on wood surfaces during welding, especially surface
modifications related to wood welding techniques, such as oxidation–reduction reactions,
the formation or breaking of chemical bonds, and so on.

Figure 8 displays the X-ray photoelectron spectroscopy (XPS) full spectrum for both
unwelded and welded wood. The unwelded wood’s atomic percentages for carbon, oxygen,
and nitrogen are consistent with its primary components of cellulose, hemicellulose, and
lignin. Welded wood shows a marginal variation in these percentages, reflecting a slight
decrease in carbon and increases in oxygen and nitrogen. These changes imply that
welding’s intense heat and pressure have modified the surface chemistry of the wood,
potentially altering its chemical structure and forming new chemical bonds.
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Figure 9 presents high-resolution spectra for C1s, O1s, and N1s of both unwelded
and welded wood, revealing significant chemical state alterations on the wood surface
post-welding. From the C1s spectral, it can be seen that the spectral lines of unwelded
wood and welded wood wereslightly different in terms ofthecarbonization environment.
This suggests that welding may lead to changes in the chemical environment of the surface
carbon compounds, such as the increase or decrease in C-O and C=O bonds [45,46]. This
change may be due to the thermal decomposition of wood components, such as lignin
and cellulose, caused by high temperatures during the welding process. The O1s spectral
shows that welded wood hadmore oxidation forms than unwelded wood, such as C=O
and O-C=O [47,48]. This indicates that the welding process may increase the degree of
oxidation of the wood surface, which may be related to the contact of oxygen and the high-
temperature environment during the welding process. The N1s spectrum of unwelded
wood showedapeak of C-NH2 functional groups, and the welded wood showeda new
O=N-O peak, indicating that the welded wood shows a more complex nitrogen chemical
environment than the unwelded wood, possibly due to the materials used in the welding
process or the nitrogen sources in the environment.
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In essence, the welding process, characterized by elevated temperatures and pressures,
potentially alters the chemical composition of the wood’s surface. This alteration encom-
passes modifications in chemical structures and the emergence of new chemical bonds,
reflecting the profound impact of the welding conditions on the wood’s chemistry.

3.8. XRD Analysis

XRD analysis is mainly used to evaluate the crystal structure of materials, especially
in exploring the effect of the welding process on the crystal structure of wood. In this study,
XRD analysis can reveal the changes in the crystal structure of Chinese fir before and after
welding, which helping to understand how the physical and chemical changes during
welding affect the structure and final properties of the material.

Figure 10 shows the XRD curves of unwelded and welded wood. The XRD showed
a significant difference in the crystal structure of the unwelded and the welded Chinese
fir. The unwelded wood showed a lower crystallinity (13.6%), while the crystallinity of
the welded wood increased significantly to 69.4%. This suggests that the high tempera-
tures generated during welding may prompt some of the amorphous regions in the fir to
rearrange into a more ordered crystal structure. The peaks of the welded wood at 22.2◦

and 34.5◦ are obvious, and these peaks correspond to the enhancement of the reflection of
the specific crystal surface, indicating that the formation or growth of the crystal surface
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may be promoted during the welding process. The ordering of the crystal structure after
welding usually means that the mechanical properties of the material may be improved,
such as increased hardness and increased compressive strength. The increased crystallinity
may also have a positive impact on the thermal stability and durability of the material. The
change incrystal structure is directly related to the quality and durability of the welded
area. The more ordered crystal structure helps to improve the load transfer capacity and
environmental resistance of wood joints.
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Figure 10. XRD curves of wood surface.

3.9. FTIR Analysis

Figure 11 illustrates the infrared spectral analysis of Chinese fir wood, both unwelded
and welded. The spectral profile, dominated by cellulose, lignin, and hemicellulose, reveals
distinct peaks: O—H stretching vibrations at 3417.4 cm–1, C—H stretching in various
groups at 2906.7 cm–1, and the characteristic C=O stretching of hemicellulose and lignin
at 1732.0 and 1650.7 cm–1, respectively. Additionally, the spectrum indicated lignin’s
phenylpropane structure through C—C vibrations between 1426.0 and 1511.5 cm–1 and
C—O bending at 1270.3 cm–1. Cellulose’s signature wasevident in C—O—C and C—OH
vibrations at 1157.9 and 1110.5 cm–1, complemented by C—O stretching peaks at 1059.8
and 1032.5 cm–1. Further, the C—H bending of cellulose, hemicellulose, and mannose were
observed at 896.7 and 811.0 cm−1, with lignin’s phenylpropane structure C—H bending in
the 526.3 to 668.9 cm–1 range.
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In the welded Chinese fir interface, the diminished intensities at 3417.4 and 2906.7 cm−1

indicate lignin’s thermal decomposition during welding [50–53]. This process results in
dehydration among hydroxyl groups in cellulose’s amorphous sections, as evidenced
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by reduced hydroxyl concentrations near 3417.4 cm–1. Hemicellulose demonstrated no-
table thermal instability, reflected bythe significant decrease in peak intensities at 1732.0,
1059.8, 896.7, and 811.0 cm–1, with its content markedly diminished. Lignin, however,
exhibited comparative stability throughout the process, suggested by minimal peak varia-
tions.The spectral analysis revealed minimal fluctuations within the 1426.0~1511.5 cm–1 and
526.3~668.9 cm–1 ranges, indicating lignin’s relative stability amidst the welding process.
These findings suggest the absence of pronounced degradation in lignin’s structure, under-
scoring its resilience to the thermal conditions encountered during welding. Interestingly,
the peaks at 1157.9 and 1110.5 cm–1 were pronouncedly enhanced, implying that cellulose
remains structurally intact, possibly even undergoing increased intermolecular entangle-
ment and crosslinking under welding conditions, thereby augmenting its crystallinity.
Thus, the welding process primarily leads to moisture evaporation and hemicellulose
thermal decomposition, potentially inducing a reconfiguration of the molecular structure
in lignin and cellulose, as manifested in the altered characteristic absorption peaks in the
infrared spectrum.

3.10. SEM Analysis

Figure 12 provides SEM imagery of both unwelded and welded wood at the welding
junction. The unwelded wood exhibited a smooth surface at a magnification of ×4000,
while at ×1000, additional surface details became evident, maintaining uniformity. At a
broader view of ×150 magnification, the overall surface condition wasshown, displaying
a clear wood texture. This contrast in surface detail at varying magnifications offers a
comprehensive view of the wood’s structural changes at the microscopic level, particularly
evident in the welding point’s transformations.
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Figure 12. SEM image of welding sites. Note: (a) control; (b) standing time of 0s; (c) standing time of
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In the welded wood at 0 s of dwell time, the SEM images at a magnification of ×4000
revealed the onset of microstructural changes, characterized by small melting areas. The
finer melting textures observed at ×1000 magnification indicate the commencement of
welding, with a relatively confined heat-affected zone. At a lower magnification of ×150,
the imagery showed minimal macroscopic alterations, underscoring the limited impact of
short-duration welding on the wood’s overall structure. This suggests that brief welding
durations initiate subtle yet distinct changes at the micro level.

At 1 s of dwell time, the SEM images at ×4000 magnification revealed more pro-
nounced melting and solidification, indicating intensified welding effects. At ×1000,
distinct heat-affected and molten textures wereevident, marking the progression of the
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welding process. The macroscopic distinction between welded and unwelded areas became
apparent at ×150 magnification. At 2 s, the ×4000 magnification displayed extensive
solidified textures, signifying substantial thermal effects and material flow. The ×1000 mag-
nification showed clear molten pools and solidification textures, while at ×150, the most
pronounced macroscopic welding effects werevisible with distinct boundaries between
welded and unwelded areas.

In conclusion, the initial phase of dowel welding in wood exhibits minor microstruc-
tural changes, primarily due to the formation of small melt pools that rapidly cool. Pro-
longed welding times increased heat generation, and which resulted in larger melt pools
and more pronounced heat-affected zones. This escalation in heat and melting significantly
alters the microstructure, with potential implications for the wood’s crystalline structure,
illustrating the crucial balance between welding duration and microstructural integrity.

Figure 13’s SEM images distinctly showcase the interface between unwelded and
welded wood. In the unwelded wood, the edges where the dowel and substrate meet were-
sharply defined, without any noticeable blending of materials or changes in morphology.
The ×50 magnification highlighted a pronounced gap between the dowel and substrate,
and this gap wasfurther detailed in the ×100 magnification, showcasing the stark difference
in the interaction at the interface in unwelded wood.
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In the welded wood, SEM images depicted a less distinct interface, signaling a level of
material fusion. This was evident in both ×50 and ×100 magnifications, where the wood
fibers wereseen to be tightly connected and entwined, highlighting a significant microscopic-
scale dissolution and embedding. The visual data thus underscores the substantial change
in wood structure upon welding, reflecting the intricacies of the welding process at a
microscopic level.

The high temperatures generated during welding lead to the melting of wood fiber
surfaces, enhancing the interface’s compactness as fibers intertwine and embed into each
other. This process creates a complex physical structure at the welding interface, where
mechanical interlocking between fibers increases bonding strength. Additionally, the heat
softens the wood fibers, causing partial decomposition and releasing components like lignin,
cellulose, and hemicellulose. These components may undergo chemical changes under
high temperatures, forming new chemical bonds that strengthen the adhesion between
the dowel and substrate. The pressure applied during welding also promotes tighter fiber
contact and mechanical interlocking. As the wood cools post-welding, the softened material
solidifies, locking in the physical combination and forming a stable welded joint. Overall,
the welding process’s heat and pressure not only facilitate physical interlocking among
wood fibers but may also enhance interface bonding strength through chemical changes.
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4. Conclusions

This study, utilizing Guizhou’s native Chinese fir, focused on how factors such as
dowel-to-guide hole diameter ratio, welding time, depth, base surface, angle, and dowel
type influence the performance of welded Chinese fir. It analyzed the physical and chemical
changes at the welding interface. The key findings include the following:

(1) Significant thermolysis, especially in hemicellulose, occurred post-rotational welding.
The generated heat facilitated good melting and mechanical interlocking between the
dowel and hole wall, coupled with frictional losses of the dowel and substrate;

(2) The aforementioned factors variably affect the welding wood’s connection strength
and stability through their influence on heat generation, distribution, transfer, and
frictional losses. Nevertheless, the mechanism of friction temperature influence is
very complicated; more in-depth and systematic studies arenecessary in the follow-
ing work;

(3) Changes in the chemical composition at the welding interface were observed, with
more orderly crystalline binding and tight, gapless joints enhancing the connec-
tion strength;

(4) This study underscores the industrial production potential of welded Chinese fir and
lays the foundation for enhancing welding techniques and performance.
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