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Abstract: Exploring the geographical distribution of forestry pests is crucial for formulating pest
management strategies. Cyrtotrachelus buqueti (Guer) stands out as one of the primary pests among
China’s forestry hazards. This study employs the MaxEnt model, along with 19 bioclimatic variables
and habitat characteristics, to predict the current and future distribution of C. buqueti under three
typical emission scenarios for 2050 and 2070 (2.6 W/m2 (SSP1-2.6), 7.0 W/m2 (SSP3-7.0), and
8.5 W/m2 (SSP5-8.5)). Among the 19 bioclimatic variables, BIO 14 (precipitation of the driest
month), BIO 8 (mean temperature of the wettest quarter), Elev, slope, and aspect were identified as
significant contributors. These five variables are critical environmental factors affecting the suitability
of habitats for C. buqueti and are representative of its potential habitat. The results indicate that
C. buqueti predominantly inhabits southern regions such as Chongqing, Guizhou, Yunnan, Sichuan,
Guangxi, Shaanxi, Hubei, Hainan, and Taiwan. Among them, Chongqing, Guizhou, and Yunnan are
the primary distribution areas of high suitability. In the future, the centroid’s movement direction
will generally shift southward, with an expansion trend observed in the distribution areas of each
province. This study enhances researchers’ understanding of forestry pest dynamics and promotes
proactive management strategies to mitigate their impact on forest ecosystems and agricultural
productivity.

Keywords: Cyrtotrachelus buqueti; forestry nuisance species; potential distribution; MaxEnt model;
future climate scenarios

1. Introduction

Cyrtotrachelus buqueti (Guer) (Coleoptera: Curculionidae), also known as the bamboo
snout beetle, belongs to the Cyrtotrachelus family, Curculionoidea superfamily, and
Coleoptera order. It is widely distributed in Southeast Asian countries such as China,
Vietnam, Myanmar, and Thailand [1,2]. In April 2003, C. buqueti was included in the List of
Forest Pests of China [3]. This pest mainly damages plants in the bamboo subfamily and
is currently one of the most significant pests in bamboo forests. Its damage rate to dense
bamboo forests can range from 50% to 90% [4]. As a notable forestry pest, C. buqueti has
become a key limiting factor in the development of bamboo forests for papermaking, resulting
in significant economic losses and impacting ecological development [2,5]. Currently, the
survival of 28 different types of bamboo is threatened by it, especially in the Bambusa,
Dendrocalamopsis, and Dendrocalamus genera. The surface of the leaves that have been
attacked by it shows irregularly shaped bite marks of varying sizes, and sometimes, the
entire leaf is consumed, resulting in extensive damage. This can also lead to the formation
of brown or black spots at the damaged areas on the leaves, caused by the oxidation of
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the tissues after being damaged. The larvae of C. buqueti show a greater preference for
bamboo during the bamboo shoot period [6], particularly targeting Phyllostachys edulis
(Carrière) J. Houz., Dendrocalamopsis oldhami (Munro) Keng f., Bambusa textilis McClure,
Bambusa pervariabilis McClure, Bambusa grandis (Q. H. Dai & X. L. Tao) Ohrnb., and other
sympodial bamboo species [7]. However, in areas of food scarcity, the larvae may also feed
on other clumping bamboos such as Neosinocalamus affinis and Bambusa textilis [4,8]. Before
burrowing into the soil, the larvae of C. buqueti primarily inhabit the concealed shoots,
which is one of the reasons that they tend to feed on bamboo shoots [9]. Interestingly,
C. buqueti requires only about 20 days of feeding during its larval stage to sustain its energy
needs throughout its entire lifespan [10]. Subsequently, during the mature larval stage,
C. buqueti burrows underground, undergoing three developmental stages—mature larva,
pupa, and adult—before emerging as an adult the following year. Upon emergence, the
adults concentrate their activities, such as feeding, mating, and egg-laying, at the tips
of bamboo shoots [11,12]. C. buqueti belongs to the Coleoptera order, a group of insects
characterized by having thick and hard forewings. This feature allows them to greatly
reduce abdominal movement during flight, thereby reducing energy consumption. At
the same time, C. buqueti possesses soft hindwings. While crawling on the ground, they
can fold them and tuck them under their hard forewings, serving as a protective measure.
Particularly notable is the intricate venation structure of the hindwings, allowing them
to fully expand during flight and achieve joint self-locking [13]. This structure enables
them to control yaw direction during flight, allowing for agile movement within dense
bamboo forests [14]. In addition, the proboscis of C. buqueti also possesses powerful drilling
capabilities. This is attributed to its proboscis being a rigid keratinous structure, endowed
with excellent mechanical properties such as high specific strength and stiffness [15,16].
The ability of this pest to survive in hard and dense bamboo forests is precisely due to these
morphological features.

Bamboos belong to the Bambusoideae subfamily within the Poaceae family. This
plant is a natural organic polymer material [17,18], playing a significant role in ecology,
economy, and culture worldwide, especially in the tropical regions of Asia, the Americas,
and Africa [19]. The utility of bamboos is further evidenced by their wide range of
applications, rapid growth, and potential for sustainable harvesting [20]. Bamboo is
known to have over 4000 traditional uses and over 1500 commercial applications. For
instance, it is utilized as fuel and in the construction of furniture materials [21]. In
particular, in Southeast Asian countries, bamboo has a long history of being used as
construction and furniture materials [17]. Due to its fast growth rate and sustainable
harvesting characteristics, bamboo has become an alternative source of industrial fibers
and renewable energy [22]. Furthermore, research indicates that bamboo also plays a role
in restoring soil fertility [23–25]. The aforementioned utilization of bamboo primarily
relies on its woody cellulose fibers, which are important biomass resources [26]. It is
noteworthy that C. buqueti primarily causes damage to bamboo through its degrading
effect on its woody cellulose fibers [10]. Furthermore, research suggests that C. buqueti is
capable of degrading bamboo woody cellulose both internally and externally [26]. Due to
the fact that both larvae and adults primarily feed on bamboo shoots, which are rich in
woody cellulose fibers, research speculates that C. buqueti utilizes bamboo woody cellulose
for its growth and development [27]. Compared to other types of bamboo, clumping
bamboo has unique development value. Clumping bamboo refers to bamboo plants
that grow in clusters or dense stands. These bamboos typically grow closely together
in dense groves or communities, with their stems closely spaced, forming thickets of
bamboo. Its difference lies in the absence of an extensive rhizome system; thus, it does
not expand its growing area extensively, making it easier to manage [28]. However,
C. buqueti exhibits a distinct preference for this uniquely valuable clumping bamboo,
posing a significant threat. Therefore, prevention and control efforts for C. buqueti merit
a multifaceted approach. Conventional control methods primarily involve chemical,
physical, and biological measures, all of which are reactive measures implemented in
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areas already affected by infestation. However, this study focuses on predicting areas
susceptible to infestation due to climate change. It offers preventive measures for regions
that may face infestation in the future.

Species distribution models (SDMs), also known as environmental niche models, are
primarily used to determine the presence or absence of target species within a specific area.
These models also aim to predict and assess the spatial distribution and redistribution of
species under environmental changes [29]. Furthermore, it can utilize observed distribution
data to deduce the ecological preferences of species and create maps to illustrate their
potential distribution. The application scope of SDMs spans from studying the impacts of
human activities on climate change to predicting biological invasions. It is typically created
by associating known species occurrence (or presence–absence) data with information about
environmental conditions at these locations [30]. SDMs rely on available occurrence records
to explore the relationship between observed species presence and potential environmental
parameters that directly or indirectly influence species distribution in known areas. It
utilizes this information to predict the likelihood of species occurrence in other regions [31].
In this study, to predict the target species, we opted for a highly efficient and extensively
employed method in SDMs, namely the maximum entropy model (MaxEnt). MaxEnt
is a method that relies on background information and has been successfully applied in
multiple fields [32]. It is widely used to address increasingly complex issues across various
fields, such as ecology and geography [33], epidemiology [34], conservation biology [35], and
invasion biology [36]. However, this paper primarily utilizes MaxEnt for prediction, niche
modeling, species forecasting, and habitat suitability assessment. MaxEnt only necessitates
widely available presence-only data for preliminary species distribution data [37]. It can
generate robust predictive models with a small amount of presence-only data, primarily due
to the principles of the model, a powerful technique for estimating the probability model
state [38]. In particular, other models may suffer from complexity in operation and modeling.
However, the statistical and computational complexity of MaxEnt has been overcome by
the practical simplicity of the powerful, platform-independent, and free Java™ tool known
as maxent.jar. This significantly lowers the accessibility threshold. The relevant digital
ecological data can largely be leveraged, such as the Global Biodiversity Information Facility
(GBIF) (https://www.gbif.org, accessed on 3 April 2024), along with various geographic
information systems, which can be integrated [39]. Overall, it is characterized by a small
sample size, strong operability, and high reliability in predictive performance.

This study employs the MaxEnt model, combined with 19 bioclimatic variables and
three terrain factors, to predict the geographical distribution of C. buqueti from multiple
perspectives. The aim is to explore the future dynamic distribution patterns in areas already
affected by infestation, as well as the level of risk in undiscovered regions. Furthermore, key
influencing factors are identified based on the prediction results, providing scientific insights
from a geographical distribution perspective for the control and prevention of C. buqueti.

2. Materials and Methods
2.1. Species Presence Records and Selection Criteria

In total, this study collected 379 occurrence records of C. buqueti. These data were
primarily obtained from the Global Biodiversity Information Facility (GBIF: https://www.
gbif.org, accessed on 3 April 2024) database. In addition to online databases, distribution
point data from actual surveys were also retrieved from the relevant literature in the
CNKI and Web of Science databases. Occurrence records without precise geographical
information were excluded. The remaining occurrence records underwent spatial analysis
using the ArcGIS tool to estimate distances between distribution points, ensuring that the
straight-line distance between two points was greater than 10 km to identify duplicates,
which were subsequently removed. To avoid overfitting, ENMTools v1.3 (https://www.
example.com/enmtools, accessed on 20 April 2024) was used to retain only one occurrence
record for each 5 × 5 km grid. Finally, 374 occurrence records of C. buqueti were selected
for modeling using the MaxEnt model.

https://www.gbif.org
https://www.gbif.org
https://www.gbif.org
https://www.example.com/enmtools
https://www.example.com/enmtools
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2.2. Environmental Variables and Selection Criteria

The environmental variables involved a total of 22 variables. They consisted of two
parts: three terrain factors and 19 bioclimatic variables (BIO 1–BIO 19) (Table 1). The
global elevation (DEM) data were sourced from the National Centers for Environmental
Information (NCEI) of the National Oceanic and Atmospheric Administration (NOAA)
(https://www.ngdc.noaa.gov/, accessed on 3 April 2024). The 19 bioclimatic variables
were obtained from the current and future datasets of the WorldClim global climate
database (http://www.worldclim.org/, accessed on 3 April 2024). The current climate
data were selected from the period between 1970 and 2000. The future climate data were
derived from two time periods: the 2050s (2041–2060) and the 2070s (2061–2080). The
future data utilized the second-generation National Climate Center’s Medium-Resolution
Climate System Model (BCC-CSM2-MR). Regarding the future climate scenario data, three
socio-economic pathways, namely SSP1-2.6, SSP3-7.0, and SSP5-8.5, from the Sixth Coupled
Model Intercomparison Project (CMIP6), were selected. These pathways represent different
levels of greenhouse gas emissions, aiming to simulate the future distribution of the target
species, representing minimal-, moderate-, and maximum-emission scenarios [40].

Table 1. Three terrain factors and 19 bioclimatic variables.

Abbreviation Description

BIO 1 Annual mean temperature (◦C)
BIO 2 Mean diurnal range (monthly mean (max temp-min temp)) (◦C)
BIO 3 Isothermally (BIO 2/BIO 7) × 100
BIO 4 Temperature seasonality (standard deviation × 100) (C of V)
BIO 5 Max temperature of the warmest month (◦C)
BIO 6 Min temperature of the coldest month (◦C)
BIO 7 Temperature annual range (BIO 5-BIO 6) (◦C)
BIO 8 Mean temperature of the wettest quarter (◦C)
BIO 9 Mean temperature of the driest quarter (◦C)

BIO 10 Mean temperature of the warmest quarter (◦C)
BIO 11 Mean temperature of the coldest quarter (◦C)
BIO 12 Annual precipitation (mm)
BIO 13 Precipitation of the wettest month (mm)
BIO 14 Precipitation of the driest month (mm)
BIO 15 Precipitation seasonality (C of V)
BIO 16 Precipitation of the wettest quarter (mm)
BIO 17 Precipitation of the driest quarter (mm)
BIO 18 Precipitation of the warmest quarter (mm)
BIO 19 Precipitation of the coldest quarter (mm)

Elevation (Elev) Elevation of the terrain
Slope Slope or obliquity of the terrain

Aspect The direction or orientation of the earth’s surface

Environmental variables form the foundation of niche model modeling, and filtering
them enhances the accuracy of the model. The environmental variables discussed in this
article represent a general assumption about various conditions. It is essential to identify the
key variables that affect the distribution of C. buqueti as the species’ habitat preferences are
not adequately represented. Typically, an increase in regularization gain is used to represent
the contribution level of the corresponding variables. The first estimate is determined by
first obtaining the increase in regularization gain, which is then added to the contribution of
the respective variable. This process is repeated in each iteration of the training algorithm.
In one scenario, if there is a negative change in the absolute value of lambda, the variable is
removed. The second estimate involves randomly permuting the values of environmental
variables on the training set and background data. Based on this, the model is re-evaluated
and normalized to percentages, and its importance is assessed. Furthermore, in conjunction

https://www.ngdc.noaa.gov/
http://www.worldclim.org/
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with the jackknife test in the MaxEnt model, the contribution rate of each variable can be
obtained. Variables with smaller contributions should be excluded. Pearson correlation
coefficients were used to identify highly correlated variables (|r| ≥ 0.8). To enhance the
accuracy of the model and address issues of multicollinearity, variance inflation factor (VIF)
analysis was conducted for all 21 variables. Variables with VIF values exceeding 100 were
removed. Finally, the remaining environmental factors with VIF values less than 100 and
correlations less than 0.8 were used for model prediction.

2.3. Calibration, Construction, and Evaluation of the MaxEnt Model

The optimization of MaxEnt’s default settings was an essential step for mitigating
potential overfitting. Constructing the MaxEnt model involved adjusting the feature
combinations (FCs) and regularization multiplier (RM), which could effectively improve
the model’s accuracy. The FCs established the relationship between the species and the
environment, ranging from simple to highly complex non-linear relationships. It comprised
five features: linear (L), quadratic (Q), hinge (H), product (P), and threshold (T). These
features were combined in various ways to achieve the optimal combination. After multiple
combinations and screenings, the final adjustment to the FC in this study model was LQHP,
with an RM of 0.3. The other related settings can be viewed in Table S1. When the difference
in delta_AICc between the optimized parameter model and the default parameter model
is less than or equal to 2, it indicates a superior performance of the optimized model [41].
Twenty-five percent of the filtered occurrence points were set aside as the test set, while the
remaining records were used for training. The maximum number of iterations was set to
500, and the maximum background point number was set to 10,000, with 10 repetitions. The
Receiver Operating Characteristic Curve (ROC)’s Area Under the Curve (AUC) was used
to evaluate the accuracy of the model results. The AUC value is independent of threshold
values in the model and ranges from 0 to 1, where 0 to 0.6 indicates poor predictive
performance, 0.7 to 0.8 represents fair predictive performance, 0.8 to 0.9 indicates good
predictive performance, and 0.9 to 1.0 represents excellent predictive performance. AUC
values greater than 0.9 are considered reliable for model prediction. Generally, the closer
the value is to 1, the better the model fits the data [42].

2.4. Partitioning of Potential Suitable Areas

According to the results of MaxEnt, the suitability of C. buqueti’s distribution was divided
into four levels: high-suitability area (p ≥ 0.66), medium-suitability area (0.33 ≤ p < 0.66),
low-suitability area (0.05 ≤ p < 0.33), and unsuitable area (p < 0.05). This classification was
based on the method of assessing probabilities in the IPCC report to partition distribution
values, using the suitability index P as the basis. Subsequently, the areas of different
suitability zones were calculated using the Grid Calculation tool in ArcGIS 10.5.

2.5. Temporal and Spatial Changes in Suitable Habitat and Centroid

Using the coordinates of the grids in the model to calculate the average yielded the
centroid, identifying the center point of C. buqueti’s distribution. The variation in this
point reflected the geographical migration process of the target species. The SDM toolbox
was employed to compute the centroid migration distance of C. buqueti within suitable
areas under different time periods and climate scenarios. Subsequently, the spatiotemporal
changes in the 2050s and 2070s, as well as the centroid variation in highly suitable habitats
under three climate scenarios, were obtained.

3. Results
3.1. Model Performance and Validation

To assess the performance of MaxEnt, this study utilized the Receiver Operating
Characteristic Curve (ROC), an independent threshold measure of model performance,
indicating the model’s ability to differentiate between presence and background data. This
curve was employed to evaluate the performance of the MaxEnt model. Regarding the
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Area Under the Curve (AUC) of the reconstructed model, as shown in Figure 1, the average
AUC obtained from these repetitions was as high as 0.981, with a standard deviation of
0.001. According to the classification criteria mentioned earlier, this indicated excellent
predictive performance of the model. AUC values consistently exceeding 0.9 suggested
that the model possessed high predictive accuracy, rendering it suitable for predicting the
potential distribution of C. buqueti.
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3.2. Key Environmental Variables and Response Curve Analysis

Table 2 shows the estimated relative contributions of key variables selected for the
MaxEnt model. From the table, it was observed that the percentage contribution of the
precipitation of the driest month (BIO 14) was the highest at 41.3%. The jackknife test, as
shown in Figure 2, presented the average values obtained after ten repetitions. Among
the five variables selected by MaxEnt (BIO 14, BIO 8, Elev, slope, and aspect), when used
independently, BIO 14 exhibited the highest gain value. This aligned with the contribution
results, indicating the latter as the most influential factor in shaping the distribution of the
target species. The mean temperature of the wettest quarter (BIO 8) followed BIO 14 in
terms of contribution, showing a similarly high gain value. The cumulative contribution
of the top three variables—BIO 14, BIO 8, and Elev—was as high as 97.9%. Therefore,
BIO 14, BIO 8, and Elev were identified as the primary environmental variables affecting
the habitat suitability of C. buqueti, effectively reflecting the potential habitat conditions for
this species.
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Table 2. Percent contribution (%) and permutation importance (%) of environmental variables in
predicting the occurrence of Cyrtotrachelus buqueti (Guer) in the MaxEnt model.

Code Percent Contribution/%

BIO 14 (precipitation of the driest month (mm)) 41.3
BIO 8 (mean temperature of the wettest quarter (◦C)) 36.4

Elev (m) 20.2
Slope (◦) 1.8

Aspect (◦) 0.3

Based on the key environmental variables selected above, we produced response curve
graphs for these variables (Figure 3). These curves illustrated how each environmental
variable influenced MaxEnt predictions and how the predicted probability of occurrence
changed with variations in each environmental variable. They reflected the dependency
of the predicted suitability on the selected variables and the dependency arising from the
correlation between the selected variables and other variables. When the precipitation of
the driest month (BIO 14) reached 17.22 mm, its output value peaked at 0.69 (Figure 3a).
This indicated that the probability of C. buqueti presence was highest when this precipitation
level was reached. In terms of temperature, the mean temperature of the wettest quarter
had the greatest impact on its distribution. As shown in Figure 3b, when this temperature
reached 24.31 ◦C, it was most suitable for the target species’ survival, with an output value
of 0.63. Regarding elevation’s influence, it can be inferred from Figure 3c that the peak
occurred when C. buqueti was at an altitude of 451.8 m, with an output value of 0.66. The
response curves of these three environmental factors exhibited distinct peaks, representing
the most suitable conditions. In contrast, the variations in the impact of the remaining
variables on its distribution appeared more complex. From Figure 3d, it can be observed
that the slope curve showed a rapid rise before 4.00◦. After 4.83◦, the increase became
increasingly gradual. The optimal slope for the distribution of C. buqueti was reached at
16.71◦, with an output value of 0.77. Subsequently, the output value began to decrease.
When the slope continued to increase to 22.7◦, the output value had already dropped to 0.53.
It was worth noting that although there was no occurrence of a slope more suitable for the
survival of the target species than 16.71◦, a second small peak appeared at 25.90◦. Its output
value was 0.68. Regarding the aspect, three peaks appeared at 105.04◦, 302.53◦, and 357.44◦,
respectively. The output values for these peaks were 0.65, 0.56, and 0.48, respectively. Based
on their output values, the optimal aspect was determined to be 105.04◦.
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3.3. Prediction and Variation of Potential Suitable Habitat for C. buqueti (Present/Future)

C. buqueti was predominantly distributed in southern China, particularly in the area
of high suitability (Figure 4). Table 3 displayed the distribution area of C. buqueti under
various current and future climate scenarios, calculated from raster counts. Based on
the table, the areas of high, medium, and low suitability under the current conditions
were 4.35 × 104 km2, 32.41 × 104 km2, and 55.35 × 104 km2, respectively. These regions
mainly included provinces such as Chongqing, Guizhou, Yunnan, Sichuan, Guangxi,
Shaanxi, Hubei, Hainan, Taiwan, and Henan. For future distribution predictions, this study
primarily investigated the distribution trends of C. buqueti in two future periods, i.e., 2050s
and 2070s, and under three scenarios, namely, SSP1-2.6, SSP3-7.0, and SSP5-8.5. For future
changes, as shown in Table 3, the distribution areas of high, medium, and low suitability
demonstrated varying degrees of expansion compared to contemporary areas, regardless
of the time period and climate scenario. It was reassuring that the expansion trend of
C. buqueti was not significant. However, the expansion of the area of high suitability was
more pronounced compared to other periods. Under the SSP3-7.0 scenario in the 2050s,
the expansion of the area of high suitability for this pest was the most extensive, reaching
1.19%. The area of high suitability for C. buqueti warranted particular attention.

Forests 2024, 15, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 4. Current suitable climatic distribution of C. buqueti in China. The probability of C. buqueti 
is shown by the color scale in the area. Red indicates a highly suitable area with a probability of 
higher than 0.66, orange indicates a moderately suitable area with a probability of 0.33–0.66, yellow 
indicates a poorly suitable area with a probability ranging from 0.05–0.33, and white represents un-
suitable areas. 

Table 3. Prediction of the suitable areas for C. buqueti under current and future climatic conditions. 

Decade Scenarios 
Predicted Area (104 km2) Comparison to the Current Distribution 

(%) 
High-Suitabil-

ity Area 
Medium-Suit-

ability Area 
Low-Suitabil-

ity Area 
High-Suita-
bility Area 

Medium-Suit-
ability Area 

Low-Suita-
bility Area 

Current  4.35 32.41 55.35    
2050s SSP1-2.6 8.60 35.41 68.96 0.98 0.09 0.25 

 SSP3-7.0 9.52 32.42 56.17 1.19 0.00 0.01 
 SSP5-8.5 6.23 35.29 69.75 0.43 0.09 0.26 

2070s SSP1-2.6 7.10 33.86 64.18 0.63 0.04 0.16 
 SSP3-7.0 9.39 33.99 69.77 1.16 0.05 0.26 
 SSP5-8.5 5.84 28.99 66.61 0.34 -0.11 0.20 

3.4. Spatiotemporal and Centroid Changes of the High-Suitability Habitat 
Figure 5 depicts the changing trends in the geographical distribution of C. buqueti 

under different future climate scenarios. Considering the centroid displacement changes 
for this insect (Figure 6), the centroid was primarily distributed in two provinces, namely, 
Yunnan and Guizhou. Under all three climate scenarios, centroids started their movement 
from Yunnan Province. For the SSP1-2.6 (Figure 5a,d) scenario, the centroid of C. buqueti 
shifted from Yunnan Province to Guizhou Province between the 2030s and 2070s, with 
relatively minor movement within Guizhou. This trend was similar under the SSP3-7.0 
(Figure 5b,e) scenario, with even less movement observed within Guizhou. Notably, un-
der the SSP5-8.5 (Figure 5c,f) scenario, C. buqueti’s movement was most pronounced, with 
the centroid shifting from the northeastern part of Yunnan Province to the western part 
of Guizhou Province during the same period. Overall, the movement direction of C. bu-
queti showed a tendency to shift southward with changing climates. 

Figure 4. Current suitable climatic distribution of C. buqueti in China. The probability of C. buqueti is
shown by the color scale in the area. Red indicates a highly suitable area with a probability of higher
than 0.66, orange indicates a moderately suitable area with a probability of 0.33–0.66, yellow indicates
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Table 3. Prediction of the suitable areas for C. buqueti under current and future climatic conditions.

Decade Scenarios

Predicted Area (104 km2) Comparison to the Current Distribution (%)

High-
Suitability

Area

Medium-
Suitability

Area

Low-
Suitability

Area

High-
Suitability

Area

Medium-
Suitability

Area

Low-
Suitability

Area

Current 4.35 32.41 55.35
2050s SSP1-2.6 8.60 35.41 68.96 0.98 0.09 0.25

SSP3-7.0 9.52 32.42 56.17 1.19 0.00 0.01
SSP5-8.5 6.23 35.29 69.75 0.43 0.09 0.26

2070s SSP1-2.6 7.10 33.86 64.18 0.63 0.04 0.16
SSP3-7.0 9.39 33.99 69.77 1.16 0.05 0.26
SSP5-8.5 5.84 28.99 66.61 0.34 −0.11 0.20
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3.4. Spatiotemporal and Centroid Changes of the High-Suitability Habitat

Figure 5 depicts the changing trends in the geographical distribution of C. buqueti
under different future climate scenarios. Considering the centroid displacement changes
for this insect (Figure 6), the centroid was primarily distributed in two provinces, namely,
Yunnan and Guizhou. Under all three climate scenarios, centroids started their movement
from Yunnan Province. For the SSP1-2.6 (Figure 5a,d) scenario, the centroid of C. buqueti
shifted from Yunnan Province to Guizhou Province between the 2030s and 2070s, with
relatively minor movement within Guizhou. This trend was similar under the SSP3-7.0
(Figure 5b,e) scenario, with even less movement observed within Guizhou. Notably, under
the SSP5-8.5 (Figure 5c,f) scenario, C. buqueti’s movement was most pronounced, with the
centroid shifting from the northeastern part of Yunnan Province to the western part of
Guizhou Province during the same period. Overall, the movement direction of C. buqueti
showed a tendency to shift southward with changing climates.
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4. Discussion

MaxEnt can infer the distribution of target species and their tolerance to environmental
conditions based on occurrence data. It allows researchers to fit models of arbitrary
complexity. Studies have also shown that if the target species may occur across a wide range
of environmental conditions, MaxEnt is preferred [43]. The predicted distribution conditions
of C. buqueti in this study precisely match the requirements of the MaxEnt model. Combined
with the advantages mentioned earlier, this model is deemed optimal for predictions.
However, there may be instances during the model’s usage where thorough checks are not
conducted or the correct interpretation is not applied. Predictive work may commence
without fully considering the limitations of the model or its assumptions. Considering
the complexity of MaxEnt, this is a factor worth contemplating. By default, the fitting
process utilizes all provided features and relatively low regularization multipliers, leading
to over-parameterization. However, studies have shown that adjusting regularization
parameters for specific species can optimize model complexity. Moreover, constraining the
feature classes used during model fitting can generate more interpretable and transferable
models [44]. In addition, overfitting can be quantified, and overly complex models can
be detected by obtaining independent evaluation data. Adjusting program settings can
also help determine the optimal model complexity settings [45]. In this study, these
uncertainties have been largely mitigated through appropriate processing. It is worth
noting that this study solely utilized the MAXENT model for modeling, and the use of
a single predictive model also has certain limitations. In the future, we will consider
integrating other prediction models to achieve more accurate forecasts.

According to the modeling results, currently, C. buqueti is distributed in Chongqing,
Guizhou, Yunnan, Sichuan, Guangxi, Shaanxi, Hubei, Hainan, Taiwan, Tibet, Guangdong,
Shandong, Liaoning, Xinjiang, Henan, and Fujian (Figure 4). This is broadly consistent with
other relevant literature on its current distribution [10,46]. The results also indicate that the
pest is primarily concentrated in Chongqing, Guizhou, and Yunnan. These three provinces
are mainly influenced by a subtropical monsoon climate, characterized by hot and rainy
summers and mild and dry winters. The overall climate features a rainy and warm period.
This can also explain the condition of BIO 8, as identified in this study. BIO 8 describes the
mean temperature of the wettest quarter. In the context of the monsoon climate’s rainy and
warm characteristics, increased precipitation leads to humid conditions, accompanied by
rising temperatures. Therefore, the simultaneous variation in humidity and temperature
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meets the survival requirements of C. buqueti. There are also studies suggesting that C. buqueti
is suitable for distribution at altitudes around 400 m. For instance, in the most severely
affected region in Sichuan Province, China (103.6 E, 29.2 N), the altitude is around 400 m [3].
This also corresponds to the findings of this study. The influence of Elev, slope, and aspect on
the distribution of C. buqueti may be attributed to the habitat conditions of bamboo.

In recent years, research on C. buqueti has mainly focused on its biological characteristics
and scientific control measures [10]. As with most harmful insects, the primary strategy
for combating pests has been chemical control, mainly due to reasons such as cost and
convenience. However, the overuse of chemical pesticides poses serious risks to the
environment and biodiversity [47]. This is clearly undesirable. Research has shown that
the prudent protection and utilization of natural enemies such as spiders, ants, wasps,
birds, frogs, toads, Notobitus meleagris (predatory natural enemies), and Telenomus gifuensis
Ashmead (parasitic natural enemy) can, to some extent, control C. buqueti. By combining
the predicted future Suitable Area distribution in this article, dynamic monitoring of areas
prone to pest infestation can be conducted. Based on this, these natural enemies can be
released in a scientifically informed manner. This approach can significantly enhance
targeted pest control efforts [48].

Combining three terrain factors and nineteen bioclimatic variables, the MaxEnt model
was employed for modeling. This was utilized to predict the current and future distribution
of C. buqueti under different climate scenarios, followed by a ranking assessment. The
aim was to explore the impact of various factors on its distribution and identify key
environmental variables. This study offers a new perspective regarding the control of
C. buqueti. By predicting its future geographical distribution, it provides a reference for
areas where occurrences have not yet happened or may occur in the future.

5. Conclusions

In this study, the MaxEnt model successfully simulated the potential geographical
distribution of C. buqueti under current and future conditions (2050s and 2070s) across
three climate change scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5). Under current climate
conditions, the insect is distributed in southern regions such as Chongqing, Guizhou,
Yunnan, Sichuan, Guangxi, Shaanxi, Hubei, Hainan, and Taiwan. Among them, Chongqing,
Guizhou, and Yunnan are the main distribution areas of high suitability. The most
significant factors (thresholds) influencing its distribution are precipitation, followed by
temperature, including precipitation of the driest month (17.22 mm) and mean temperature
of the wettest quarter (24.31 ◦C). This study aims to provide theoretical references for the
future control of C. buqueti from the perspective of geographical distribution.
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