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Abstract: Accurate and rapid localization and identification of tree leaves are of significant importance
for urban forest planning and environmental protection. Existing object detection neural networks
are complex and often large, which hinders their deployment on mobile devices and compromises
their efficiency in detecting plant leaves, especially against complex backgrounds. To address this
issue, we collected eight common types of tree leaves against complex urban backgrounds to create
a single-species leaf dataset. Each image in this dataset contains only one type of tree but may
include multiple leaves. These leaves share similar shapes and textures and resemble various real-
world background colors, making them difficult to distinguish and accurately identify, thereby
posing challenges to model precision in localization and recognition. We propose a lightweight
single-species leaf detection model, SinL-YOLOV5, which is only 15.7 MB. First, we integrated an SE
module into the backbone to adaptively adjust the channel weights of feature maps, enhancing the
expression of critical features such as the contours and textures of the leaves. Then, we developed
an adaptive weighted bi-directional feature pyramid network, SE-BiFPN, utilizing the SE module
within the backbone. This approach enhances the information transfer capabilities between the deep
semantic features and shallow contour texture features of the network, thereby accelerating detection
speed and improving detection accuracy. Finally, to enhance model stability during learning, we
introduced an angle cost-based bounding box regression loss function (SIoU), which integrates
directional information between ground-truth boxes and predicted boxes. This allows for more
effective learning of the positioning and size of leaf edges and enhances the model’s accuracy
in detecting leaf locations. We validated the improved model on the single-species leaf dataset.
The results showed that compared to YOLOv5s, SinL-YOLOVS5 exhibited a notable performance
improvement. Specifically, SinL-YOLOV5 achieved an increase of nearly 4.7 percentage points in
the mAP@0.5 and processed an additional 20 frames per second. These enhancements significantly
enhanced both the accuracy and speed of localization and recognition. With this improved model,
we achieved accurate and rapid detection of eight common types of single-species tree leaves against
complex urban backgrounds, providing technical support for urban forest surveys, urban forestry
planning, and urban environmental conservation.

Keywords: leaf recognition; object detection; deep learning

1. Introduction

The forest system is an important ecosystem on Earth, and it plays an irreplaceable
role in the development of the environment, society, and the economy. Trees are the main
component of the forest system, and their growth not only produces huge carbon sinks,
alleviating the problems caused by carbon emissions, but also prevents wind and sand
damage while nourishing soil and water [1]. At the same time, with the rapid development
of urbanization in various countries, concepts such as urban forests have emerged. Ur-
ban forests refer to trees managed by the city and various stakeholders, growing in public
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areas and private gardens [2]. Urban forests play an important role in lowering the ambient
temperature, mitigating the urban heat island effect, mitigating climate change, and en-
hancing the aesthetics of cities [3]. As the level of urban greening continues to rise, the task
of leaf cleanup has become increasingly complex and laborious. Leaf litter has seasonal
characteristics, requiring repeated sweeping. Relying solely on manual cleanup is not only
time-consuming and labor-intensive but also inefficient. In recent years, the development
of smart sanitation vehicles equipped with technology to locate leaves has facilitated intelli-
gent leaf cleaning [4]. Therefore, researching intelligent leaf positioning holds significant
value for the widespread application of smart sanitation vehicles. In conclusion, accurately
locating leaves and identifying tree species are of great importance for urban forest surveys,
urban forestry planning, and the maintenance of urban environments.

Plants can be identified using various organs, including leaves, flowers, fruits, and roots.
According to recent studies on plants [5], the flowers, fruits, and roots of plants are less
suitable for species identification compared to leaves. Due to the fact that the flowers and
fruits of the plant only appear during specific seasons, they exist for a relatively brief period
of time. Furthermore, roots are situated at a considerable depth within the soil, which
makes them difficult to obtain. Compared to other parts of a plant, leaves are the primary
organ used for plant identification and classification. Leaves generally grow on the surface
of plants and are abundantly present throughout the plant’s lifecycle, making them easily
collectible and accessible. Additionally, the shape and structure of leaves are stable and do
not change over time. Therefore, leaves are commonly used for classifying and identifying
plant species. Plant leaves can typically be described using basic visual features such as
color, texture, or shape. Compared to other visual features, the color characteristics of
leaves are usually not used alone for plant identification because the leaves of most plant
species share common colors, such as green or red. Therefore, existing methods of plant
identification typically utilize shape or texture features for recognition. As members of the
plant kingdom, trees’ leaves contain species-specific information such as texture, contours,
venation, and color. Moreover, the three-dimensional appearance of leaves differs from that
of flowers and fruits, with leaves typically having a flat structure [6]. This structure makes
leaves easy to collect and preserve and allows for relatively straightforward extraction of
complete features from images. Therefore, leaves play a critically important role in the
identification of tree species.

Research into tree leaf identification has evolved in two main stages: initially relying
on manual identification or feature extraction, and currently utilizing deep learning models
to autonomously detect and further identify leaves by extracting their contour and venation
features. In the 1990s, the results of Yonekawa [7] and others showed that the characteristic
factor of leaf shape played a dominant role in leaf recognition. Researchers used a simple
dimensionless shape factor to determine the type of leaf. At the same time, the density,
roundness, elongation, shape, and roughness of the leaf were introduced as criteria for
the determination of leaf identification. Building on this foundation, more scholars have
applied comprehensive information, such as leaf texture and shape features, to leaf identifi-
cation. At the beginning of the 21st century, Wang et al. [8] integrated pre-segmentation
processing and morphological operations into the watershed segmentation algorithm for
automatic labeling. They proposed an effective method for leaf image recognition, which
utilizes a priori shape information to segment the object contour of the leaf and then ex-
tracts the geometry and feature matrix from the segmented binary image to achieve leaf
recognition. A method utilizing Support Vector Machine (SVM) to determine the type
of leaf was proposed in [9], in which ten feature parameters were selected as the factors
to discriminate the leaf species, and the preprocessed image samples were input into the
constructed SVM model for training. The experimental data showed that the SVM with
a linear kernel function could more accurately determine the leaf species. Between 2015
and 2016, Munisami et al. [10] proposed using the image histogram and multi-dimensional
leaf shape features as the basis for discrimination, combined with the K-Nearest Neigh-
bor (KNN) algorithm, to identify more than 30 types of leaf monomers against a white
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background, achieving high recognition accuracy. In the same period, another proposed
method involved combining Gabor filtering and Hu moment invariants to improve the
robustness of leaf monomer recognition [11]. Between 2017 and 2018, a model based
on a semi-supervised clustering algorithm was used to recognize multiple leaves [12].
Zhang et al. [13] and others proposed combining the Fourier descriptor and the histogram
of oriented gradient (HOG) as a feature factor for discriminating tree leaves. Based on
this combination, typical correlation analysis was introduced to fuse object features at
different scales, which, in turn, improved the ability for leaf recognition. Wang et al. [14]
used the KNN algorithm and the covariance matrix algorithm to extract the grayscale
texture parameters of tree leaves. In general, traditional leaf-recognition methods primarily
focus on leaf monomer images in simple backgrounds, seldom involving realistic, complex
backgrounds or the natural habitats of leaves, and there are fewer objects to be recognized
in the images. In addition, recognition methods mainly rely on edge extraction, histogram
calculation, and SVM application. This makes the recognition process longer and hinders
accurate leaf object recognition in real leaf survival environments.

With the rapid development of convolutional neural networks in object recognition,
we can autonomously learn the differences between different objects from a large amount
of leaf sample data. The computer extracts, processes, and understands the information
in the input image, which is then used to detect and recognize objects. As an advanced
model structure, convolutional neural networks are able to extract more expressive feature
information from images, which greatly improves the performance of modern object
recognition systems. Mainstream object recognition networks mainly include SSD [15],
the YOLO (You Only Look Once) series [16-20], and the R-CNN series [21-23]. As early
as the 1980s, the concept of convolutional neural networks was proposed by Lecun [24].
Building on this foundation, the classical framework of convolutional neural networks,
LeNet [25], was proposed in the late 1990s. A hierarchical convolutional neural network
designed according to the RGB three-channel design of color leaf images was proposed [26].
This network combines the design pattern of LeNet, samples eight network layers for each
color channel, and employs SVM and Softmax [27] classifiers to recognize the augmented
multiple-leaf images. He et al. [28] proposed a deep residual neural network (Residual
Network, ResNet) based on the previously mentioned research. In order to improve the
accuracy of recognizing single images of leaves, a recognition method using the HOG
operator was proposed based on a convolutional neural network to extract the features
of leaves [29]. Xu [30] also proposed fusing the feature maps” output from networks such
as ResNet50, Inception [31], and VGG19 [32] using multiple model-fusion techniques.
This method performs global pooling and nonlinear transformation processing on the fused
leaf feature maps, ultimately achieving improved recognition performance. Compared with
traditional leaf recognition methods, convolutional neural networks can greatly improve
recognition accuracy. This is mainly due to the continuous training of the network model
with a large number of leaves, which enables it to learn more subtle differences between
different types of leaves.

Accurately locating each leaf and correctly identifying its species against complex back-
grounds presents a significant challenge in this study. In real and complex environments,
leaves that are similar in color to the background, small in size, or overlapping can easily
blend into their surroundings, making them difficult to distinguish in images even under
suitable lighting or from the right angles. To address these challenges, this study utilizes
a dataset composed of images of eight common types of tree leaves collected in urban
settings against complex backgrounds. In the dataset, the leaves within each image share
similar shape and texture characteristics. Moreover, each image contains only one species
of tree but includes multiple leaves, forming a single-species leaf dataset. Additionally, we
propose the application of the SinL-YOLOV5 key feature detection model to this dataset
for experimental validation, aimed at enhancing the model’s ability to locate and identify
tree leaf species within urban environmental backgrounds. The main contributions of this
study are as follows:
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1.  To address the issue of feature map loss across different channels during the con-
volutional pooling process due to varying degrees of importance, we propose a
backbone network integrated with an adaptive feature extraction module to enhance
the representation capability of key leaf characteristic information;

2. Animproved feature fusion structure is proposed, which enhances the information
transfer capabilities between the model’s deep semantic features and shallow contour
texture features. This approach prevents the loss of feature information, accelerates
detection speed, and improves the accuracy of object detection;

3. A boundary box loss function based on angle cost is introduced, which integrates
directional information between ground-truth boxes and predicted boxes, thereby
enhancing the accuracy of leaf position detection.

2. Materials and Methods
2.1. Datasets
2.1.1. Dataset Acquisition

Due to the ease of collecting and storing tree leaves, which also contain detailed
species information, this study chooses tree leaves for identifying tree species. In current
leaf identification research, datasets such as Flavia [33], Leafsnap [34], and Swedish [35] are
primarily used. Although these datasets feature many species of leaves, the images typically
show individual leaves against a uniform (white or black) background, and the number of
images per species is relatively low. This scenario makes effective training difficult and does
not allow for accurate identification of leaves against complex, real-world backgrounds.

In response to the limitations mentioned, we constructed a leaf image dataset using
our own photography and data augmentation methods. The dataset contains images of
eight common landscape trees in the cities of Nanjing, Hangzhou, Hefei, and Yangzhou
in the Yangtze River Delta region of China as data samples. These include Liriodendron
chinense, Acer palmatum, Salix babylonica, Koelreuteria paniculata, Styphnolobium japonicum,
Aesculus chinensis, Celtis sinensis, and Zelkova serrata. Images of the leaves from these eight
tree species are shown in Figure 1.

-

Liriodendron chinense Salix babylonica Styphnolobium japonicum Zelkova serrata

Figure 1. The tree species in the dataset.

These eight types of trees all belong to the angiosperms of the Magnoliopsida class.
However, as illustrated in Figure 1, the shape and color characteristics of the leaves vary.
These variations are due to differences in their respective orders, families, and genera,
which confer distinct genetic traits. These differences enable the identification of tree
species based on their leaves. For instance, Acer palmatum typically has 5-7 lobes, whereas
Aesculus chinensis usually consists of 5-7 separate leaflets, giving it a similar lobe-like
appearance. Both Celtis sinensis and Zelkova serrata exhibit full oval shapes with serrated
leaf margins, and the primary difference lies in the direction of their leaf veins. The vein
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direction in Koelreuteria paniculata is similar to that in Zelkova serrata, but its leaf aspect ratio
is more akin to Styphnolobium japonicum. Different growth stages of Salix babylonica (such as
during the sapling phase) can resemble Styphnolobium japonicum, and there is significant
variation in the leaf aspect ratio of Salix babylonica during its growth stages. Liriodendron
chinense also has leaf lobes, and its color varies greatly between seasons, which can make it
blend easily with the environment. In summary, the leaves selected for this study exhibit
similar characteristics.

This dataset encompasses various urban scenes across China, including different
seasons, lighting conditions, photographic angles, and scales. To ensure the model learns
comprehensive and detailed characteristics of real leaves, the collection process included
not only relatively simple fallen leaves on roads but also focused on leaves found in more
complex environments such as in grassy areas, near tree trunks, and within shrubbery.

The collection of leaves from these eight tree species was conducted using handheld
mobile devices, capturing each species in diverse urban locations such as streets, parks,
and forests. The dataset includes images varying in lighting intensity, leaf size, growth
stage, and photographic angle to enhance its diversity. Taking Liriodendron chinense as an
example, Figure 2 displays images with different backgrounds, lighting conditions, seasons,
growth stages, angles, and leaf morphologies. It is evident that Liriodendron chinense leaves
display various colors and shapes at different growth stages, with leaves of different colors
blending into similar backgrounds. Additionally, due to factors like the shooting angle and
lighting, images may also feature overlapping leaves and variations in color and shape.

Figure 2. Examples of conditions for Liriodendron chinense.

2.1.2. Data Preprocessing

Dataset diversity is the key to model performance [36]. To enhance the model’s
generalizability and robustness and to prevent overfitting during the training process, we
extracted leaves captured against single backgrounds. We then applied data augmentation
techniques such as brightness adjustment, rotation, scaling, and flipping. These augmented
leaves were randomly pasted onto images featuring similar, variably collected backgrounds
like different streets, land types, and dense foliage. This method ensures that the model
can effectively learn to recognize leaves across a diverse array of real-world settings.
We selected 1726 images after enhancement that fit the seasonal background and the reality
of the situation. Considering the morphological and color characteristics of the leaves, data
enhancement methods such as random color and elastic deformation are not considered in
this paper. The data enhancement results are shown in Figure 3.
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Figure 3. Data enhancement results.

We obtained a plentiful and diverse collection of single-species leaf images through
collection and enhancement. As this study employed supervised learning for leaf identifi-
cation, it was necessary to label the data for model training. We used the Labellmg image
annotation tool to label the positions and types of leaves. The main body of each leaf was
annotated with its species using the smallest enclosing rectangle, avoiding any extraneous
stem parts and minimizing background inclusion as much as possible. Upon completion,
each image generated a VOC format label file containing details such as image dimensions,
leaf names, and bounding box coordinates. Ultimately, we amassed a dataset comprising
4540 tree leaf images with a total of 12,489 annotated objects. The number of annotated
objects for each tree species in the dataset is shown in Table 1.

Table 1. Number of labeled leaf boxes for eight tree species.

Class Quantity Class Quantity
Acer palmatum 1900 Styphnolobium japonicum 1835
Liriodendron chinense 897 Celtis sinensis 1180
Salix babylonica 1286 Aesculus chinensis 2245
Koelreuteria paniculata 1326 Zelkova serrata 1820

In addition, we divided the dataset into a training set, validation set, and test set in a
ratio of 7:2:1. The test set was not involved in model training and consisted of real images
before enhancement, allowing us to test the model’s ability to localize and recognize tree
leaves in real environments.

2.2. Model Architecture and Configuration

In the YOLO (You Only Look Once) series, YOLOv1 [16] lays the foundation for
the entire series, and all other versions of YOLO improve on the first version. YOLOv1
innovatively uses a single-stage structure for the classification and object localization tasks,
but it has a small receptive field and unspecific network losses. YOLOv2 [17] introduces
batch normalization, which removes the fully connected layer and further improves the
performance of the model. YOLOv3 [18] adds a detection box prediction function to
YOLOV2 and uses Darknet-53 to extract features. Based on the above object detection
architecture, YOLOv4 [19] optimizes algorithms of different degrees in data processing,
backbone training, activation function, loss function, etc. YOLOV5 [20] makes some new
improvements based on YOLOv4, and the speed and accuracy are greatly improved.
YOLOV5 can be classified into YOLOv5n and YOLOv5s according to the depth and width of
the model, as well as YOLOv5m, YOLOVS5], and YOLOVS5X, totaling five network structures.
The width of the model refers to the number of channels in each layer or feature extraction
block of the network. Increasing the width means adding more channels to each layer,
which can aid the network in capturing more information and features but also leads to
increased computational load and model size. The depth of the model pertains to the
number of layers in the network. Adding depth implies introducing more layers, aiding
the model in learning more complex features and patterns. However, an overly deep
network may encounter training difficulties, such as vanishing or exploding gradients.
The structural parameters of the five YOLOVS versions are shown in Table 2. Among them,
YOLOV5s offers better real-time detection and reduces training and deployment costs.
Considering the trade-off between detection accuracy and detection speed, this study
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minimizes the degradation of detection speed while significantly improving detection
accuracy. Therefore, this paper chooses to optimize and improve YOLOvb5s.

Table 2. Network structures of the YOLOVS series. The values for width and depth are scaling factors,
representing the proportional scaling of the various YOLOVS variants in width and depth relative to

the baseline.

Model Width Depth Params (M) Size (MB)
YOLOv5n 0.25 0.33 1.90 3.90
YOLOv5s 0.50 0.33 56.80 14.10
YOLOv5Sm 0.75 0.67 64.10 40.80
YOLOvSI 1.00 1.00 67.30 89.40
YOLOv5x 1.25 1.33 68.90 167.00

In order to improve the detection performance for single leaves, this study proposes
SinL-YOLOV5 based on YOLOvb5s, and its network structure is shown in Figure 4.
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Figure 4. Network structure diagram of SinL-YOLOVS5. The sections with asterisks are the improved
sections, and the sections with solid red lines are the added links.

2.2.1. Backbone with SE Modules

In the traditional convolutional pooling process, each channel of the feature mapping
is considered equally important. However, the importance of different channels differs.
The channels enable the model to simultaneously extract features from the image at multi-
ple angles and levels. Multiple convolutional kernels allow convolutional operations to be
performed on different channels of the input image to extract different feature information.
This feature information can be further combined, abstracted, and transformed in subse-
quent layers for more advanced image recognition and analysis tasks. The dimensions of
the channel are closely related to the texture features learned by the model. Increasing the
dimensions of the channel can improve the model’s ability to abstract and extract different
features, but at the same time, it also increases the complexity of the model and the number
of parameters. Therefore, it is crucial to choose the appropriate channel dimensions.

In order to address the problem of loss due to the varying importance of different chan-
nels in the feature mapping during the convolutional pooling process, this paper introduces
the SE attention mechanism in SinL-YOLOVS. This mechanism aims to enhance the model’s
ability to capture correlations between features and represent feature information more
effectively. The SE module increases attention to channel dimensions, with key operations
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involving squeezing and excitation. In this way, the SE module focuses the neural network
on some feature channels through automatic learning. The SE module can improve useful
feature channels for the current task while suppressing those that are not useful for the
current task. Therefore, SE can significantly improve model performance with only a slight
increase in computational cost.

A schematic diagram of the SE module is shown in Figure 5. Before the feature map of
the backbone network is input to the SE attention module, the importance of each channel
in the feature map is the same. After the feature map is processed by SE, the importance of
each feature channel is different. Different colors represent different weights, indicating
that the neural network focuses more on channels with larger weights.

N[‘ l><l><("

- . lym Fm('.W)l IxC X
XX
e oo \ A
HI "‘ H | II II
- Y w
0 p

C C

Figure 5. Structure of the SE module. X is the input feature map, F is the operation of the feature
map, U is the feature map in the transformation whose size is H x W x C, and X is the feature map
after scaling by the activation function.

As shown in Figure 5, F;; is a squeezing operation on U, which is equivalent to a
global average pooling operation performed on the vectors of each channel to obtain the
global information corresponding to each channel. The formula is as follows:

1 &
Ze= qu(”c) = Hx W Zl guc(lz]) 1)
i=1j=

where Z; is the output of the F;; operation, with the subscript ¢ denoting the channel;
uc denotes the c-th two-dimensional matrix in U; and Zfil Z]-Vil uc(i,j) represents the
summation over each pixel in the matrix u.

After the Fs; operation is applied to all channels, the input of size H x W x C is
transformed into an output of size 1 x 1 x C.

Fex is the incentive operation, which is equivalent to two fully connected operations,
and it is formulated as follows:

S = Fox(z,w) = 0(wao(w1z)) ()

where S is the output of the F.y operation; z is the 1 x 1 x C vector output from the F;,
operation; w is the weight matrix used to perform the excitation operation on z; and ¢ is
the activation function, which can be ReLU or Sigmoid.

The resulting S is subjected to the F;.,, operation, where the weights s, of each channel
and the feature map u. are multiplied according to the channels to obtain the weighted X,
which can be expressed as

Xc = Fsacle(”CISC) = Scl¢ 3)

2.2.2. SE-BiFPN Architecture

In YOLO, feature maps are generated through a series of convolutional operations
applied to the original image, and these feature maps can represent the characteristics
of the original image at multiple scales. As the depth of the neural network increases,
the backbone network outputs feature maps at different scales. Feature maps of different
scales refer to the feature representations extracted by the neural network at various depth
levels, each with different spatial resolutions. Shallow layers, such as L3, output large-scale
feature maps, which retain more spatial details of the original image, and lower-level
features, such as edges and textures. Deeper layers, like L5, output small-scale feature maps
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that represent more abstract and higher-level feature representations, such as the overall
object. As the model deepens, these feature maps decrease in spatial dimensions but often
have more channels, containing more complex and targeted feature information.

Larger feature maps tend to capture more global and abstract information, while
smaller feature maps can provide finer details about local features. However, there is
a potential for feature information to be lost during the transmission process in deeper
layers of the network. Therefore, multi-scale feature fusion techniques, which integrate
feature maps of different scales, have been developed. These techniques simultaneously
learn and utilize both global and local information, making the model more powerful and
flexible. Currently, common feature fusion architectures include the Bidirectional Feature
Pyramid Network (BiFPN), the Panoptic Feature Pyramid Network (PAFPN), and the
Feature Pyramid Network (FPN). These three feature fusion architectures are illustrated
in Figure 6.

m
m

Figure 6. Structures of FPN, PAFPN, and BiFPN.

As shown in Figure 6, Ls represents a deeper layer of the network, outputting smaller-
sized feature maps, whereas L3 is a shallower layer, outputting larger-sized feature maps.
FPN adopts a top-down strategy to construct feature pyramids, successfully integrating
deep and shallow features, as well as multi-scale information, but there are limitations in
its unidirectional feature flow paths. PANet adds bottom-up loops on top of FPNs. PANet
adds a bottom-up loop to the FPN to provide one more chance for feature fusion. BiFPN,
on the other hand, improves the weighted path for bidirectional flow and optimizes the
fusion process of multi-scale features, which is both efficient and fast.

This study aims to further improve the retention rate and accuracy of object features in
detection and, therefore, proposes a new network architecture, SE-BiFPN. This architecture
combines the advantages of the SE module and the BiFPN structure, takes full advantage
of the SE’s channel attention mechanism to optimize the feature weights, and improves the
utilization efficiency and accuracy of the feature information based on BiFPN, significantly
improving object detection. The structure is shown in Figure 7. With SE-BiFPN, this study
ensures the effectiveness and completeness of the network in extracting deep learning
features, thereby achieving higher detection accuracy.

As shown in Figure 7, the SE layer in the backbone network is first utilized to adap-
tively capture feature maps at different scales. Next, lateral connectivity and downsampling
operations are implemented to accomplish the first feature fusion. Then, the jump connec-
tivity technique is used to combine the downsampling and upsampling processes of feature
maps at the same scale for the second feature fusion. Finally, the resulting feature maps are
obtained after these multi-scale fusions. Taking the fourth channel as an example, the fea-
ture maps processed through the SE module, along with intermediate feature mappings
and final feature map outputs in the feature fusion process, are presented as follows:

a1 x L§E +ap x R(LEE)
a;+a+y

LY = Cono( ) 4)
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ay x L3E +a) x LY + a} x R(L§")
ay +ah+al+

L§"* = Cono( ) (5)
where LPF represents the input features after being processed by the SE module at the i-th
layer; Lf-d is the intermediate feature of the i-th layer on the top-down path; L is the
output feature of the i-th layer on the bottom-up path; Conv is the convolution operation of
feature processing; R represents the upsampling or downsampling operation of resolution
matching; a is a parameter we trained to distinguish the importance of different features in
the process of feature fusion; and v is a preset smaller value to avoid numerical instability,
which is usually set to 0.0001.

out

L, i}
L,SE out
L 3 out

L,SE
L, >

Figure 7. Structure of SE-BiFPN module.

The BiFPN network enhances the capability to fuse shallow and deep feature in-
formation from images. The features extracted by the SinL-YOLOv5 backbone network
are first processed through the SE module and then repeatedly fed into the BiFPN struc-
ture. This implementation facilitates bidirectional multi-scale feature fusion, improves the
model’s ability to learn holistic features, and reduces the rate of misidentification.

2.2.3. SIoU Loss Function

IoU is a standard metric used in object detection to assess the fit of predicted boxes
to ground-truth boxes. However, it does not fully consider the differences in size, shape,
and location between object boxes, which limits its accuracy. For this reason, improved
methods such as GloU [37], DIoU [38], and CloU [39] have been proposed, which compen-
sate for JoU’s shortcomings in terms of shape, position, and scale by adding compensating
factors. GloU considers the intersection ratio of the smallest outer rectangle, CloU in-
corporates the distance and scale factors of the object boxes, and DIoU synthesizes the
relative distances and aspect ratios between the object boxes. Despite the improvements
of each of these methods, they still suffer from computational complexity or insufficient
adaptability to objects of specific shapes. For more effective detection of a single leaf with
large-scale variations, Zhora et al. [40] proposed the SloU loss function. SIoU not only
calculates the intersection and concatenation of boxes but also pays special attention to
the scale variations between object boxes. This allows the model to be more robust with
respect to multi-scale features of objects such as leaves, aiming to achieve more accurate
and adaptable single-species leaf detection.

In the task of detecting key features of leaves, the model must be able to accurately
recognize the specific morphology of a single leaf. Due to the diversity of leaves in their
natural state, their shape, size, texture, and other features vary significantly, and adapting
the model to these morphological variations is critical. The CIoU loss function used in the
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traditional YOLOVb5s algorithm mainly focuses on the position and scale of the predicted
box and the ground-truth box but does not fully consider the consistency of the morphology,
which limits the recognition accuracy of the model to some extent. In contrast, the SloU loss
function introduces the consideration of morphological similarity between the predicted
box and the ground-truth box, and by optimizing the shape-matching degree, it can further
improve detection accuracy and the robustness of the model. During the iterative training
process of neural networks, calculating the deviation of the predicted value from the
ground-truth value generated in each iteration and correcting it is an important step to
facilitate the progress of model optimization toward the ideal convergence state. Therefore,
in order to accelerate convergence speed and improve the performance of the SinL-YOLOv5
model in the task of leaf detection, this study adopted the SIoU loss function instead of the
original CloU. This improvement not only significantly strengthens the model in terms
of convergence but also results in excellent detection performance in recognizing various
types of leaves.

The goal of SloU is to predict the model on either the X or the Y axis, followed by
approximation along the relevant axis. First, we try to minimize the angle. As shown in
Figure 8, when a is 7 or 0, the angle loss is 0. During the training process, if x < 7, we
minimize «; otherwise, we minimize = g — Q.

Is}

Figure 8. Schematic of SIoU angle.

We also introduce the angular costing formula:

A = cos(2 X (arcsin(%h) - =) (6)

where 0 = \/(bgf — b, )2+ (bfyt —be,)? and ¢ = max(bfyt, be,) — min(bf}f, be,). 0 is the
distance between the center point of the ground-truth box and the predicted box, and ¢y, is
the height difference between the center point of the ground-truth box and the predicted
box. bff and bfyt are the coordinates of the center of the ground-truth box. b., and bcy are
the coordinates of the center of the predicted box.

Angle costing was applied to distance costing by introducing angle costing into

distance costing and redefining distance costing as follows:

A=Y (1- eTIPH2 =2 — T PY _ om0 7)
t=xy
B —bey v o b, —bey . .
where p = (=7*)%, py = =, and v = 2 — A. ¢y and ¢, are the width and height of

the smallest outer rectangle of the ground-truth and predicted boxes.
The shape loss is defined as

Q=) 1-e™)f=0—e ) +(1-e ) ®)
t=w,h
where wy, = nJ;:‘Z(:T% and wy, = m‘:;:(il% (w, h) and (ws!, h8') are the width and height

of the predicted and ground-truth boxes, and 0 is the shape loss concern factor.
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Finally, the SIoU loss function is defined as

A+Q
Losssroy =1 — IoU + % 9)

2.2.4. Experimental Environment

Our experiments were conducted on an experimental platform equipped with an
Intel(R) Xeon(R) E5-4627 v4 CPU @ 2.60 GHz from Intel, Santa Clara, CA, USA, 64 GB
of RAM, and an NVIDIA GeForce RTX 2080Ti 11G from NVIDIA, Santa Clara, CA, USA.
The software environment was configured with CUDA11.7.0, Pytorch 2.0, and Python
3.10. Considering the performance of the hardware devices and the training effect, this
paper adopted the batch training method to divide the training and validation processes
into multiple batches. During the model’s training process, the size of the images was
normalized to 640 x 640 pixels as input to the network, and the learning rate was updated
using the StepLR mechanism. The optimizer used was SGD Momentum. The values of
Momentum and the other training parameters are detailed in Table 3.

Table 3. Values of training parameters.

Project Value
Momentum 0.95

Weight decay 0.0005
Batch size 16
Workers thread 12
Initial learning rate 0.01
Final learning rate 0.1
Epochs 300
Thresh 0.5

Image size 640 x 640 pixels

2.2.5. Accuracy Measurements

In order to objectively evaluate the model’s performance in detecting different leaves,
this paper focuses on balancing the model’s performance in terms of two aspects: model
performance and complexity. In the performance aspect, this paper uses the mean average
precision (mAP), loss function value (loss), precision (P), and recall (R) to evaluate the
performance of the evaluation model. The loss function value curve is used to reflect
the change in the loss function value during model training. It can intuitively reflect the
difference between the predicted value and the ground-truth value of the model during the
training process, such that the smaller the difference, the higher the prediction accuracy of
the model and the better the performance of the model. P is a measure of the proportion
of positive samples correctly predicted by the model to all positive samples, such that the
higher the precision rate, the higher the number of positive samples correctly predicted
by the model and the better the performance of the model. R refers to the proportion of
positive samples correctly predicted by the model to all positive samples that are actually
positive, such that the higher the recall rate, the more real objects the model can detect and
the better the performance of the model. The mAP is an important index for evaluating
the detection effect of the object detection model, such that the higher the value, the higher
the average detection accuracy of the model and the better the performance of the model.
The mAP is calculated as the average of the AP across all classes. Here, the AP represents
the precision—recall curve’s area under each class. The formulas are as follows:

TP

P=Tprrp (10
TP

P=—— 11

TP+ FN (1)
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.1 d
AP_/O P(R)dR (12)
N
mAP = Z’“—*TAP(”) (13)

where TP represents true positives, the number of correct positive predictions made by the
model; FP represents false positives, the number of incorrect positive predictions made by
the model; and FN represents false negatives, the number of positive instances that were
not correctly predicted by the model.

In terms of model complexity, three main metrics are considered: the number of
parameters, the number of floating points of operations (FLOPs), and the model size [41].
FLOP denotes the speed of floating-point operations, which is calculated by counting the
total number of floating-point operations in the model, and it can be used to measure
the complexity of the model. Parameters represent the computational memory resources
consumed by the model. The formulas are as follows:

Parameters =r x f2x g+ g (14)

FLOPs =2 x H x W x Cout X (Ci x K> +1) (15)

where 7 is the input size, f is the convolutional kernel size, g is the output size, H x W is
the output feature map size, C;, is the input channel, K is the kernel size, and C,; is the
output channel.

3. Results and Discussion
3.1. Model Performance and Ablation Experiment

To validate the effectiveness of the different modules, this study conducted a series
of ablation tests for a total of eight different models. The results of the ablation tests are
shown in Table 4.

As shown in Table 4, the embedded modules had a positive impact on the mAP
values in our study. The attention mechanism of the SE module selectively focused on
informative features, increasing the model’s mAP@0.5 by 1.5%. The architecture combining
SE with BiFPN enhanced the model’s feature fusion capabilities, raising the mAP@0.5 by
2.4%. The SloU learned more effective leaf edge positioning and sizing, improving the
mAP@0.5 by 1.6%. Table 4 also demonstrates that combining all three modules yielded
higher detection and recognition accuracy compared to integrating just one or two modules.
The number of parameters and the computational complexity of SinL-YOLOVS5 increased
slightly compared to YOLOV5s, but the mAP@0.5 and the mAP@0.5:0.95 reached 90.80%
and 76.90%, an improvement of 4.6% and 2.6%, respectively. In terms of model complexity,
the parameters, FLOPs, and model size of the improved model increased by 6.50%, 8.70%,
and 8.2%, respectively, over the original YOLOv5s network. Although the introduction of
more parameters and computations can impact the computational efficiency of the model,
these adjustments resulted in significant performance improvements, especially in terms
of the robustness of the model’s detection performance. In addition, the robustness of the
model is directly related to its reliability in real-world applications, so this performance
enhancement means that the improved model can achieve accurate detection in more
diverse environments and conditions. At the same time, although the complexity increased,
this trade-off in complexity is justified as it supports the enhancement of the model’s
generalization ability and accuracy.
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Table 4. Ablation experiment.

Model FLOPs Params mAP@0.5 mAP@0.5:0.95 Size
(G) ™) (%) (%) (MB)
YOLOvV5s 15.80 7.03 86.10 74.30 14.40
YOLOV5s + SloU 15.80 7.03 87.70 75.90 14.40
YOLOV5s + SE 16.90 7.88 87.60 73.70 14.40
YOLOV5s + BiFPN 16.40 7.18 87.90 74.70 14.70
YOLOV5s + SE + SloU 16.90 7.88 87.10 73.00 16.10
YOLOV5s + SE + BiFPN 16.90 7.70 88.50 74.60 15.70
YOLOV5s + SloU +
BiEPN 16.40 7.18 88.40 75.20 14.70
SinL-YOLOv5 16.90 7.70 90.80 76.90 15.70

The precision, recall, loss, and mAP curves for the eight models are shown in Figure 9.
In Figure 9a,b, it can be seen that the improved SinL-YOLOVS5 significantly outper-
formed the standard YOLOv5s model in terms of precision and recall.

1.0 1.0
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
& 0.5 & 0.5
— YOLOvS5s = YOLOvS5s
0.4 —— YOLOv5s+SloU 0.4 —— YOLOVSs+SloU
YOLOvVSs+SE YOLOvSs+SE
0.3 —— YOLOVS5s+BiFPN 0.3 —— YOLOVSs+BiFPN
YOLOVSs+SE+SloU YOLOvSs+SE+SloU
0.2 —— YOLOVSs+SE+BIFPN 02 —— YOLOVSs+SE+BiFPN
0.1 —— YOLOVSs+BiFPN+SIoU 0.1 —— YOLOVSs+BiFPN+SloU
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0.02 YOLOv5s+SE
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Figure 9. Comparison of training results for different models.

In Figure 9¢, the continuous iteration of the model illustrates the change in the loss
function, which can be intuitively observed to see whether the model steadily converged
toward optimization as the iterations progressed. The loss curve of SinL-YOLOV5 de-
creased and tended to be steady as the iterations progressed, and the loss value reached
a steady state at about 270 iterations, signifying that the model basically reached conver-
gence. Compared with YOLOV5s, SinL-YOLOvV5 demonstrated a faster convergence speed.
The mAP value is an important indicator of the effectiveness of the object detection model,
and an increase in the mAP value implies that the model’s average detection accuracy has
been enhanced, resulting in improved performance. As shown in Figure 9d, the mAP@0.5
value of SinL-YOLOV5 was close to 90%, and after approximately 180 iterations, the value
increased to a peak of 90.8%. Compared with YOLOv5s, SinL-YOLOvV5 improved the
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mAP®@0.5 value by nearly 4.7 percentage points, significantly enhancing detection accuracy.
The experimental results show that SinL-YOLOVS5 is capable of accurately recognizing
various types of leaf objects.

3.2. Comparative Experiment

In this paper, six mainstream models were selected for comparison to verify the
effectiveness of the proposed model. The model was compared with the classical SSD,
YOLOvV3, YOLOV4, EfficientDet [42], Faster R-CNN, and YOLOv5s models using the above
experimental environment and parameter settings. The results are shown in Table 5.

Table 5. Comparative experiment.

. . mAP@0.5  mAP@0.5:0.95 Size
Model P (%) R (%) %) %) FPS MB)
SSD 66.13 65.72 65.88 54.10 74 91.60
YOLOV3 66.82 67.06 67.51 60.60 55 236.00
YOLOv4 80.77 65.16 71.52 63.70 43 244.00
EfficientDet 86.30 69.64 77.65 57.00 36 15.00
Faster RCNN  84.85 80.48 84.59 71.10 10 108.00
YOLOV5s 83.60 86.30 86.10 74.30 62 14.40
SinL-YOLOvV5  86.50 87.50 90.80 76.90 82 15.70

The data in Table 5 clearly demonstrate the significant advantages of SinL-YOLOv5
over the other six models in terms of accuracy. Specifically, SinL-YOLOV5 achieved high
levels of accuracy, recall, mAP@0.5, and mAP@0.5:0.95 evaluation criteria. Although the
number of parameters and computations of SinL-YOLOV5 increased slightly from the
pre-improvement period to the post-improvement period, the performance of the model
improved. Compared to YOLOV5s, the precision, recall, mAP@0.5, and mAP@0.5:0.95 of
SinL-YOLOvS5 improved by 2.9%, 1.2%, 4.7%, and 2.6%, respectively. This performance im-
provement is especially significant for the real-time accurate identification of single-species
leaves. In this application scenario, SinL-YOLOv5 demonstrated exceptional detection
speed, capable of processing 82 frames per second, which is higher than the rates achieved
by the six classic models compared. Additionally, our model maintained a relatively small
size, fully meeting the dual requirements of processing speed and recognition accuracy in
complex environments.

In order to realize leaf detection in complex environments, this paper selected images
with different backgrounds, such as varying lighting, partial occlusions, and the presence
of different objects, to verify the robustness of the model before and after improvement,
as shown in Figure 10.

During actual prediction, the complexity of the background among the leaves, partial
occlusions, and the presence of small object areas in the images resulted in some information
loss, which posed challenges to accurately identifying key information about the leaves.
As seen in Figure 10a, YOLOv5s lacked the capability to differentiate between various
leaves, leading to false positives and missed detections. Due to factors such as the similarity
between the leaves and the background, overlapping leaves, and significant size variations
among leaves, YOLOvb5s exhibited inferior overall feature extraction capabilities. Based on
this, our study added an SE module to the YOLOv5s model to enhance its ability to capture
diverse local information. We introduced SIoU to integrate directional information between
ground-truth boxes and predicted boxes, effectively improving the learning of leaf edge
positioning and sizing. Moreover, we merged the backbone of YOLOv5s with the proposed
SE-BiFPN structure. This integration not only reduced feature information loss in tasks
with similar backgrounds and small object detection but also enhanced object detection
accuracy, compensating for the deficiencies of the YOLOv5s algorithm. The detection
results are shown in Figure 10b.
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(b) Predictions of SinL-YOLOV5

Figure 10. Comparison of leaf detection results between YOLOv5s and SinL-YOLOV5.

4. Conclusions

In this study, we selected leaves from eight commonly seen landscape trees in Chinese
cities, which are similar in shape and texture, as samples. The collected leaf images
were screened and optimized to obtain a dataset suitable for urban real-world scenarios,
featuring single species of trees against complex backgrounds. To more accurately learn the
key and positional features of tree leaves in complex environments, this paper proposed a
leaf key information detection model, SinL-YOLOVS5, based on YOLOVS5.

This model addresses the issue of feature map loss across different channels during
the convolutional pooling process due to varying importance levels by integrating the SE
module into the backbone network, which enhances the expression of key features such as
leaf contours and textures. To combat the problem of feature loss, we proposed an improved
feature fusion structure that strengthens the transfer of feature information between deep
and shallow layers, enabling the model to better learn the connections between leaf shape
textures and semantic information at different scales, thereby increasing the accuracy of
object recognition. Additionally, we introduced a boundary box loss function based on
angular cost (SIoU), which integrates directional information between ground-truth boxes
and predicted boxes, more effectively learning the positioning and shape of leaf edges, thus
enhancing the precision of leaf position detection.

Experimental results demonstrate that compared to YOLOv5s, the mAP@0.5 value of
SinL-YOLOVS5 increased to 90.8%, an improvement of nearly 4.7 percentage points, signifi-
cantly enhancing detection and recognition accuracy. Additionally, when compared with
six other mainstream models, the SinL-YOLOvV5 model achieved high levels of accuracy,
recall, mAP@0.5, and mAP@0.5:0.95 metrics. On the other hand, the size of the SinL-
YOLOvV5 model is only 15.70 MB. In the current landscape, where the cost of computational
resources and storage space is increasingly expensive, this characteristic is particularly valu-
able. The smaller model size reduces the demand for storage and lowers the consumption
of computational resources, making SinL-YOLOV5 an ideal choice for devices with limited
resources. The SinL-YOLOV5 algorithm proposed in this paper balances performance and
efficiency, providing a practical and efficient solution for fields such as intelligent forestry
management and automated plant detection.

This study primarily focuses on the localization and recognition of tree leaves against
complex urban backgrounds. Although the validation results for the eight types of tree
leaves demonstrate the effectiveness of our developed model, there is still room for im-
provement in terms of sample diversity and leaf detection and recognition strategies.
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Therefore, we plan to further expand the size and diversity of the dataset by collecting
leaves from more tree species, including extending the dataset of single-species leaves per
image and creating a dataset with multiple species per image to enhance data diversity
and coverage. This will not only improve the generalization of the model but also en-
hance its ability to handle tasks in complex and variable environments. Additionally, we
will introduce a variety of data augmentation techniques to further improve the model’s
adaptability to different environments, thereby enhancing its robustness. Furthermore, we
will continue to improve the network structure of the existing model or newer models
(such as Transformers), or reduce error loss from an algorithmic perspective to enhance
the network’s representational capacity. This will further improve the model’s accuracy in
detecting and recognizing leaves with similar backgrounds, overlapping leaves, and small
object leaves.

All great scientific achievements begin with small, preliminary studies. While our
current research has limitations, it is these small beginnings that pave the way to in-depth
research and practical applications. By gradually expanding and deepening our research,
we expect to provide innovative and practical solutions for the study and management of
urban ecosystems.
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