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Abstract: The rapid, accurate, and non-destructive estimation of rubber plantation aboveground
biomass (AGB) is essential for producers to forecast rubber yield and carbon storage. To enhance
the estimation accuracy, an increasing number of remote sensing variables are incorporated into
the development of multi-parameter models, which makes its practical application and the poten-
tial impact on predictive precision challenging due to the inclusion of non-essential or redundant
variables. Therefore, this study systematically evaluated the performance of different parameter
combinations derived from Sentinel-2 imagery, using variable optimization approaches with four
machine learning algorithms (Random Forest Regression, RF; XGBoost Regression, XGBR; K Nearest
Neighbor Regression, KNNR; and Support Vector Regression, SVR) for the estimation of the AGB
of rubber plantations. The results indicate that RF achieved the best estimation accuracy (R2 = 0.86,
RMSE = 15.77 Mg/ha) for predicting rubber plantation AGB when combined with Boruta-selected
variables, outperforming other combinations (variable combinations obtained based on importance
ranking, univariate combinations, and multivariate combinations). Our research findings suggest that
the consideration of parameter-optimized remote sensing variables is advantageous for improving
the estimation accuracy of forest biophysical parameters, when utilizing a large number of parameters
for estimation.

Keywords: aboveground biomass; machine learning; variable optimization; Boruta; satellite

1. Introduction

Rubber is an important industrial product in human society, which can be divided
into synthetic rubber and natural rubber based on its source and production methods [1].
Thus, natural rubber’s indispensability is well established in a wide range of practical
applications, encompassing, but not limited to, the production of tires, medical gloves, and
medical equipment. As the primary tree crop for natural rubber production, the rubber
tree, or Hevea brasiliensis sp., is widely planted in tropical regions of Southeast Asia and
China. In Xishuangbanna, over 20% of the land has been converted into rubber plantations.
The rapid expansion of rubber plantation areas and the development of the rubber industry
have greatly promoted local economic development, but have also severely disrupted
carbon storage and biodiversity maintenance in local forest vegetation [2]. Typically, local
residents convert old rubber plantations, tropical forests, and farmland into new rubber
plantations, which greatly alter the vegetation carbon storage in the region [3].

The aboveground biomass (AGB) of rubber plantations is an important indicator in
studying their productivity and management effectiveness, as well as the structure, func-
tion, energy flow, and material cycling of the entire ecosystem [4]. Therefore, the accurate
estimation of rubber plantation biomass is of great significance in predicting rubber yield
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in the region, evaluating carbon sequestration potential and carbon storage in tropical
regions, and attracting wide attention in the rubber industry [5,6]. The traditional manual
measurement of AGB in rubber plantations, although capable of achieving high accuracy, is
characterized by time-consuming and labor-intensive processes, which limits its applicabil-
ity for large-scale biomass estimation. In contrast, remote sensing techniques offer a more
efficient alternative for AGB estimation in rubber plantations, enabling the assessment
of biomass at a larger scale, while reducing the time and resource requirement [7]. In
recent years, a variety of remote sensing platforms have been developed to collect remotely
sensed data for forest biomass monitoring, achieving great advancement [8–10]. For in-
stance, Panagiotidis et al. [11] integrated 3D point cloud data from standalone unmanned
aerial vehicle laser scanning (UAV-LS) and terrestrial laser scanning (TLS) to improve the
three-dimensional structural mapping of individual trees, achieving an estimation accuracy
of 97.8% for diameter at breast height (DBH) and total tree height (HT). However, due
to the high costs, 3D laser scanning technology still has limitations in estimating forest
biomass on a large scale. The advent of unmanned aerial vehicles (UAVs) has enabled the
collection of forest biomass data on a small scale at a lower cost. Liang et al. [10] employed
RGB images acquired from a four-rotor DJI Phantom 4 RTK for AGB estimation in rubber
plantations and achieved a satisfactory precision, with an R2 of 0.75. Although unmanned
aerial vehicles (UAVs) have been widely used in forest biomass estimation research due
to their low cost, convenience of operation, and high resolution, having achieved good
results [10,12,13], it is challenge to conduct large-scale biomass estimation in complex and
variable tropical rainforest regions due to flight time limitations and sensitivity to local
weather conditions. Compared to UAVs, manned airborne vehicles have expanded the
scope of forest monitoring, but their high cost and complexity of operation limit their
widespread application [14]. Conversely, satellite remote sensing has significant advan-
tages in wide area coverage, high temporal–spatial resolution, and repeatability, providing
a great potential for large-scale forest monitoring [8,15,16].

Satellite remote sensing imagery data combined with machine learning or deep learn-
ing can provide significant support for rubber forest biomass estimation [17]. Yasen
et al. [16] employed high-resolution WorldView-2 satellite imagery to estimate the AGB
of rubber forests with stepwise multiple linear regression (SMLR) and artificial neural
networks (ANNs). They found that ANNs outperformed the SMLR (R2 = 0.33), achieving
the best estimation accuracy with an R2 of 0.66. Given the challenges associated with
data acquisition, such as the high costs and limited coverage of WorldView-2, freely avail-
able imagery from satellite platforms such as Landsat and Sentinel-2 has emerged as the
predominant source of remote sensing data for forest monitoring. For example, Wang
et al. [18] employed a Random Forest algorithm with Landsat TM imagery to analyze the re-
lationship between rubber plantation biomass, spectral parameters, and vegetation indices,
subsequently establishing a biomass inversion model (R2 = 0.43, RMSE = 46.05 t/hm2).
Nevertheless, previous studies have shown that the vegetation index saturation problem
significantly affects biomass estimation accuracy when forest canopy cover is high [8,19].
To alleviate the influence of spectral saturation, Bhumiphan et al. [20] attempted to employ
the red-edge band from Sentinel-2 imagery to estimate the AGB of rubber forests. Their
findings demonstrated that the red-edge band yielded the best predictive performance
(R2 = 0.79, RMSE = 29.63 kg/ha), outperforming other bands and vegetation indices.

In addition, given the complex and time-consuming pre-processing of Sentinel-2 im-
agery, the Google Earth Engine (GEE) cloud platform offers a more convenient approach for
numerous researchers to monitor the forest growth status [21]. The efficient computational
capability and large-scale data processing advantages of GEE are particularly suitable for
handling and analyzing various types of remote sensing data. This not only facilitates the
accurate estimation of AGB in rubber forests, but also provides robust data support for
the estimation of other biophysical parameters [22,23]. Within the GEE cloud platform,
researchers can easily compute and integrate various types of remote sensing parameters
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(such as texture parameters and vegetation indices) to further enhance the accuracy of
forest parameter estimation.

To mitigate the effects of spectral saturation, some studies have explored the utilization
of the gray level co-occurrence matrix (GLCM) by depicting image texture and structural
differences to estimate biophysical parameters in forests. For example, Abdollahnejad
et al. [24] employed nine vegetation indices (VIs) and thirteen texture analysis (TA) vari-
ables for tree species classification and health assessment. Their results indicated that
integrating VIs with TA variables yielded a higher accuracy in tree species classification
and health assessment compared to using VIs alone, resulting in an overall accuracy (OA)
improvement of 4.24%. These textural features coupled with optical spectral VIs could
potentially play a crucial role in enhancing the estimation accuracy of forest AGB [25,26].
Lourenço et al. [27] integrated spectral bands, spectral indices, and GLCM derived from
high-resolution satellite imagery with a Random Forest Regression technique for forest
biomass estimation, yielding a promising accuracy R2 = 0.82, RMSE = 10.5 t/ha). Their
study revealed that GLCM exhibited the highest importance compared with other variables,
highlighting its critical role in accurate forest biomass estimation. Moreover, it has also been
proven that the combination of GLCM and spectral parameters can improve the accuracy
of AGB estimation [5,10,28]. In addition to utilizing texture features derived from GLCM,
Zheng et al. [29] established the normalized difference texture index (NDTI) based on
GLCM and found that combining spectral bands, GLCM, and NDTI improved the accuracy
of rice AGB estimation (R2 = 0.84, RMSE = 1.06 t/ha) when compared to solely utilizing
spectral band parameters. However, the inclusion of unimportant or redundant variables
during model construction often leads to lower accuracy, higher computational costs, and
decreased generalizability [30,31]. This implies that it is crucial to select a small, optimal,
and sensitivity-aware set of variables for model construction when dealing with a large
number of variables. For instance, Zhang et al. [32] evaluated the performance of four
existing feature selection methods and found that the SHCE selection method for screening
remote sensing features achieves the highest estimation performance (R2 = 0.66 ± 0.01,
RMSE = 14.35 ± 0.12 Mg/ha). These findings suggest that the optimal selection of remote
sensing features can enhance the estimation accuracy of forest AGB.

Previous studies have indicated a non-linear relationship between forest AGB and var-
ious remote sensing parameters, rather than a simple linear relationship [8,33]. Establishing
a direct relationship between AGB and spectral parameters, as well as texture parameters,
is the most commonly employed method for large-scale rubber plantation AGB estimation.
Machine learning techniques have been proven to have great potential in handling a large
number of parameters for building non-linear models [34,35]. Currently, machine learning
algorithms such as Random Forest (RF), Extreme Gradient Boosting Regressor (XGBR),
Support Vector Regression (SVR), and K Nearest Neighbors Regression (KNNR) are widely
used for forest dynamic monitoring, including research directions such as forest cover
and land use change, forest health, and pest monitoring [36–38]. They are also widely
applied in biomass estimation studies, such as estimating the AGB of mangroves [39] and
forests [40], nitrogen nutrition status in winter wheat [41], and predicting corn yield [42].
However, when using machine learning (ML) for rubber plantation AGB estimation, citing
an excessive number of remote sensing parameters can adversely affect estimation accuracy
and computation time. Therefore, optimizing parameter selection during rubber plantation
AGB estimation holds the potential to enhance accuracy.

Although many studies have shown promising results in forest biomass estimation
by combining spectral bands and texture features from satellite imagery, few studies have
systematically explored the impact of the optimized parameter variables on the accuracy of
AGB estimation in rubber forests. Therefore, the objectives of this study are as follows: (i) to
evaluate the performance of spectral bands, vegetation indices, textural features, and their
combinations derived from Sentienl-2 imagery for rubber AGB estimation; (ii) to explore
suitable feature variables from Boruta feature selection algorithms; and (iii) to determine
the optimal machine learning algorithm in estimating rubber forest AGB.
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2. Materials and Methods
2.1. Study Area

The experiments were conducted in rubber plantations in Jinghong County, Xishuang-
banna Dai Nationality Autonomous Prefecture (Xishuangbanna, China), Yunnan Province
of Western China. Xishuangbanna has great advantages with its tropical monsoon climate,
with an average annual temperature of around 21 ◦C; abundant sunlight; and plentiful
rainfall, which make it the second largest rubber cultivation region in China. In contrast
to Hainan, the country’s primary rubber-producing area, Xishuangbanna’s rubber forests
remain unaffected by typhoon weather, mitigating the risk of rubber trees being damaged
or broken. Rubber forests exhibit deciduous characteristics during the dry season, which
distinguishes them from ordinary evergreen natural forests. Artificial rubber plantations in
Xishuangbanna have become an important source of income for locals, with the support of
the local people and government [43].

For this experiment, a total of 64 rubber plantation plots with varying altitudes and
ages were selected (20 × 25 m2), including 24 plots from field surveys conducted in 2021
and 40 plots from field investigations conducted in 2023. An overview map of the study
area is shown in Figure 1.
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Figure 1. The overview of the sampling area. (a) Locations of the sampling area, DEM was obtained
from https://www.earthdata.nasa.gov/ (accessed on 18 February 2023); (b) the growth status of
rubber forests within the sampling area; (c) the diameter at breast height (DBH) measurement in field
survey; and (d) RGB imagery of a sampling plot derived from UAV.

2.2. Data and Processing
2.2.1. AGB Measurements

During field surveys, the investigation areas were initially determined based on
different altitudes, varieties of rubber trees, and their ages. A real-time kinematic instru-
ment named ZHD V2000 (RTK, Guangzhou Hi-Target Navigation Technology Co., Ltd.,
Guangzhou, China) was used to determine the boundaries and coordinates of each plot,
with a size of 20 × 25 m2. Surveyors manually measured the diameter at breast height

https://www.earthdata.nasa.gov/
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(DBH) and height (H) of all living rubber trees in each plot; the diameter at breast height
(DBH) was measured at 1.3 m above ground level using a diameter tape, while the height
(H) of each tree was determined with a handheld digitalized and multi-functional forest
measurement gun [44]. Additionally, the number of rubber trees and the rows and columns
spacing between rubber trees in each plot were manually recorded, while the planting
years and varieties of rubber trees were collected from local planting experts in rubber
plantations. More detailed information about the sampling points is presented in Table 1.
Owing to financial constraints, the direct felling of trees for biomass measurements is not
feasible. Consequently, this study employs the allometric equation (AE) model for rubber
forests in Xishuangbanna, developed by Tang et al. [4]. Although the established AGB
model only includes the DBH parameter, it considers the influence of rubber tree age and
variety on biomass, achieving high accuracy (R2 > 0.99) in AGB calculations in rubber
planting regions of Xishuangbanna. The allometric growth equation for the biomass of
rubber forests in Xishuangbanna is represented as follows (Equation (1)):

WAGB = 0.136DBH2.437 − 0.108DBH1.948 (1)

where WAGB is the AGB (t/ha) and DBH signifies the diameter (cm) measured at 1.3 m,
representing the height of an individual rubber tree.

Table 1. Detailed information on field survey.

Varieties Planting Year Total Number of Sample Trees

Yunyan77-2 2002 63

Yunyan77-4 1993, 1995, 1998, 2000, 2002, 2003,
2004, 2005, 2006, 2009, 2010, 2011 1396

GT1 1984 54
RRIM600 1994 118

2.2.2. Satellite Imagery

This study employed surface reflectance (SR) data derived from Sentinel-2 multispec-
tral imagery acquired from the Google Earth Engine (GEE) platform (https://developers.
google.com/earth-engine, accessed on 19 April 2024) for estimating rubber plantation
AGB. This image dataset, known as the Sentinel-2 Level 2A dataset, was released by the
European Space Agency (ESA) and has been processed using the Sen2Cor algorithm (a
SNAP plugin) to conduct corrections for atmospheric, terrain, and cirrus cloud [45]. To
ensure consistency with the period of the field surveys, the SR imagery was acquired for
two periods—between 1 March 2021 and 1 June 2021, and between 1 March 2023 and 1
June 2023. Additionally, finer cloud and shadow masks were applied to improve data
availability.

The processing of the Harmonized Sentinel-2 MSI dataset involves utilizing the Qual-
ity Assurance (QA) band to exclude pixels affected by cloud and shadow interference,
obtaining images of rubber forests during the long leaf period, with cloud cover less than
20%, and applying median synthesis to the de-clouded images to generate an image with
20 m resolution. Table 2 displays the detailed image bands and parameters. All of these
data are accessible on the GEE cloud computing platform at any time.

2.3. Spectral and Textural Metrics Calculation
2.3.1. Vegetation Indices (VIs) Calculation

To estimate the AGB of rubber plantations, seven vegetation indices (VIs) sensitive to
canopy structure and biomass were selected [8,17,46,47]. The spectral band parameters of
satellite images were used to calculate the selected VIs (Table 3).

https://developers.google.com/earth-engine
https://developers.google.com/earth-engine
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Table 2. Spectral bands and their wavelengths of Sentinel-2 used in this study.

Name Description Resolution Wavelength

B2 Blue 10 m 496.6 nm (S2A)/492.1 nm (S2B)
B3 Green 10 m 560 nm (S2A)/559 nm (S2B)
B4 Red 10 m 664.5 nm (S2A)/665 nm (S2B)
B5 Red Edge 1 20 m 703.9 nm (S2A)/703.8 nm (S2B)
B6 Red Edge 2 20 m 740.2 nm (S2A)/739.1 nm (S2B)
B7 Red Edge 3 20 m 782.5 nm (S2A)/779.7 nm (S2B)
B8 NIR 10 m 835.1 nm (S2A)/833 nm (S2B)

B11 SWIR 1 20 m 1613.7 nm (S2A)/1610.4 nm (S2B)
B12 SWIR 2 20 m 2202.4 nm (S2A)/2185.7 nm (S2B)

Table 3. Summary of vegetation indices derived from the Satellite Imagery for the AGB estimation of
rubber plantations.

VI Name Formula Reference

NDVI Normalized Difference Vegetation Index NIR−RED
NIR+RED [48]

EVI Enhanced Vegetation Index 2.5·(NIR−RED)
NIR+6·RED−7.5·BLUE+1

[49]
RVI Ratio Vegetation Index NIR

RED [50]
NDWI Normalized Difference Water Index GREEN−NIR

GREEN+NIR [51]
LSWI Land Surface Water Index NIR−SWIR1

NIR+SWIR1 [52]
NDRE Normalized Difference Red Edge Index NIR−RE

NIR+RE [53]

MSAVI Modified Soil-Adjusted Vegetation Index
(

2×NIR+1−
√
(2×NIR+1)2−8×(NIR−RED)

)
2

[54]

2.3.2. Textural Metrics Calculation

Textural features represent the spatial arrangements of image colors or intensities. This
study extracted forest texture features from remote sensing imagery to reveal the structural
characteristic differences of the forest interior. A total of 17 texture metrics were retrieved
from GEE cloud platforms—Angular Second Moment (ASM), Contrast (CONTRAST), Cor-
relation (CORR), Variance (VAR), Inverse Difference Moment (IDM), Sum Average (SAVG),
Sum Variance (SVAR), Sum Entropy (SENT), Entropy (ENT), Difference variance (DVAR),
Difference entropy (DENT), Information Measure of Corr. 1 (IMCORR1), Information
Measure of Corr. 2 (IMCORR2), Dissimilarity (DISS), Inertia (INERTIA), Cluster Shade
(SHADE), and Cluster prominence (PROM) [55,56].

Given that the normalized difference texture index (NDTI) has been proven to yield
a promising biomass estimation accuracy in rice [29], this study attempted to assess the
performance of the NDTI for estimating the AGB of rubber plantations. The formula for its
calculation is as follows:

NDTI = (T1 − T2)/(T1 + T2) (2)

where T1 and T2 are texture measurements in random bands. Based on the variable
important evaluation, the CORRG and SAVGRE1 derived from GLCM were employed to
construct NDTI for subsequent analysis.

2.4. Regression Techniques

Four machine learning methods (Random Forest Regression, XGBoost Regression, K
Nearest Neighbors Regression, and Support Vector Regression) were used to estimate the
AGB of rubber plantations in this study.

• Random Forest Regression (RF) is a decision tree-based regression model with high
estimation accuracy and robustness; its basic idea is to estimate the target variable
by constructing multiple decision trees [57]. When constructing decision trees, the
RF regression model randomly selects samples and features from the original data,
reducing the risk of overfitting the decision trees.
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• XGBoost Regression (XGBR) is a regression model based on gradient boosting [58];
when constructing a decision tree, XGBoost Regression calculates the split point of
each node based on the loss function of the target variable, thus reducing the risk of
over-fitting the decision tree.

• K Nearest Neighbor Regression (KNNR) is a non-parametric regression model, the
basic idea of which is that for a given new sample, it is compared with the K Nearest
Neighbor samples in the training set. Then, the average of the target variables of these
K samples is used as the predicted value of the new sample [59].

• Support Vector Regression (SVR) is a regression model based on Support Vector
Machines (SVMs) that is trained similarly to SVM classification, but the goal is to fit a
continuous function rather than to classify data into discrete categories [60].

Previous studies have demonstrated that the hyperparameter precise configuration
of machine learning algorithms is crucial for receiving accurate predictive accuracy [61].
Therefore, this study selected specific hyperparameters to ensure that the model achieves
an optimal performance (Table 4).

Table 4. Specific parameters of machine learning techniques.

Parameter RF XGBR KNN SVR

number Of Trees 500 500 - -
min Leaf Population 1 - - -

maxNodes None None - -
Seed 54 54 - -

weights - - distance -
kNearest - - 5 -

kernel - - - poly
C - - - 2

epsilon - - - 0.01

2.5. Features Selection and Models Assessment
2.5.1. Feature Correlation

Spearman’s correlation coefficient is a nonparametric measure of rank correlation that
is utilized to assess the strength of association between two variables. It is particularly
effective for data that do not conform to the assumptions of normality, homoscedasticity,
and linearity, or in cases involving small sample sizes. Spearman’s correlation coefficient
employs a monotonic function to determine the correlation between two variables. In
calculating the Spearman correlation coefficient, the original variables are first ranked to
create ordered data sequences. The coefficient is then computed based on these ranked
sequences. Therefore, Spearman’s correlation coefficient was used in this study to evaluate
the degree of monotonic correlation between different remote sensing variables and the
measured values of rubber forest AGB.

2.5.2. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical technique aimed at simplifying
the complexity of a dataset, while retaining as much variability from the original dataset as
possible. This method is particularly valuable in the field of remote sensing as it can extract
crucial information from multiple spectral bands. Previous studies have shown that the
use of PCA to process parameters in biomass estimation based on Landsat imagery results
in principal components that are more highly correlated with biomass than individual
bands [33]. Simultaneously, studies have demonstrated that the optimal explained variance
for PCA ranges between 98% and 99%, ensuring that the majority of data information is
preserved, while reducing dimensionality [62]. In this study, the explained variance was set
at 98%, aiming to effectively balance information retention and computational efficiency.



Forests 2024, 15, 900 8 of 18

2.5.3. Feature Importance Analysis

Importance analysis was employed in this study to assess parameters that are sensitive
to AGB in rubber plantations. This analysis involves determining the significance of all
remote sensing variables used in relation to rubber plantation AGB, which was utilized for
variable selection, model optimization, and the interpretation of model predictions [63].
The biomass of rubber plantation sample points is used as the dependent variable in this
study. Various categories of features, such as spectral bands, vegetation indices, and texture
parameters, are separately input into a Random Forest classifier to ascertain the features
within each category that exhibit correlation with rubber plantation AGB.

2.5.4. Analysis of Boruta-Based Features

Boruta, which measures the importance of features by comparing them to a shadow
variable, is a Random Forest-based feature selection algorithm whose main goal is to find
the truly important features from a given set of features, filtering out those that have no
significant impact [64]. Previous studies have shown that Boruta’s feature screening method
outperforms Vita, the alignment method, and its variants Altmann and RFE; additionally,
it is robust to both high and low dimensional data analysis [65]. In this study, the Boruta
feature screening method was used to screen features for VIs, texture, and spectral bands,
respectively, to analyze the features in each category that exhibit an important relationship
with rubber plantation AGB.

2.5.5. Accuracy Assessment

To establish robust and practical models, it is crucial to effectively partition the training
and validation samples. Thus, 64 sample points were divided into the training dataset (80%)
and the test dataset (20%) using random stratified sampling. Repeated resampling with
10-fold cross-validation was used to evaluate the robustness of the models. Three accuracy
evaluation metrics coefficients of determination (R2), root mean square error (RMSE) and
mean absolute error (MAE) were employed to assess the model performance.

The workflow of the AGB estimation of rubber plantations is shown in Figure 2.
Initially, we extracted remote sensing parameters from pre-processed Harmonized Sentinel-
2 MSI satellite imagery, along with field-collected plot data, to form training and testing
datasets. Different parameter selection methods were employed to obtain diverse remote
sensing parameter datasets, which were then utilized in conjunction with four machine
learning techniques to construct regression models. Subsequently, the robustness of the
models was estimated through a 10-fold cross-validation approach with repeated sampling.
Finally, three accuracy evaluation metrics were utilized to assess model performance and
determine the optimal remote sensing parameters for estimating rubber forest AGB.
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3. Results
3.1. Correlation Analysis

To establish the predictive model between AGB and spectral parameters in rubber
plantations, we conducted a Spearman’s correlation coefficient analysis using nine spectral
parameters obtained from Sentinel-2 satellite imagery (Figure 3a). The results indicate that
several spectral parameters are strongly correlated with each other. Specifically, four pairs
of parameters showed a high correlation (|r| ≥ 0.9)—green band vs. red edge band 1,
NIR band vs. red edge band 2, NIR band vs. red edge band 3, and red edge band 2 vs.
red edge band 3. Additionally, the NIR band and red edge band 3 exhibited the highest
positive correlation with an r of 0.98. Conversely, the NIR band and red band showed the
highest negative correlation, with an r of −0.58. For the spectral features, the red edge band
1 exhibited the highest correlation with AGB, with an r of 0.42.
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RE2, and RE3 represent red edge band 1, red edge band 2, and red edge band 3, respectively.

Figure 3b shows Spearman’s correlation coefficient analysis between the seven vegeta-
tion indices derived from Sentinel-2 imagery and the measured AGB of rubber plantations.
The following six pairs of variables showed high correlation: EVI vs. NDVI; EVI vs. RVI;
EVI vs. MSAVI; NDVI vs. RVI; NDVI vs. MSAVI; and RVI vs. MSAVI. Among the vegeta-
tion indices, the NDWI and NDRE had the highest correlations of an r of 0.28 and −0.28
with AGB, respectively.

Figure 4 presents the analysis conducted in this study using PCA. The 10 PCA com-
ponents generated with an explained variance set to 98% are shown in Figure 4a. The
Spearman correlation coefficient (r) between the PCA calculated based on GLCM param-
eters and the measured rubber forest AGB is illustrated in Figure 4b. Obviously, the
PCA derived from GLCM parameters was correlated with AGB. PC5GLCM and PC8GLCM
obtained the highest correlation with an r of 0.5, followed by PC1GLCM (r = −0.33).

This study evaluated the correlation between AGB and spectral parameters, Vis,
and PCAGLCM. Among the three feature variables, the PCAGLCM exhibited the highest
correlation with AGB, followed by spectral parameters and VIs. For the PCAGLCM, PC5
and PC8 obtained the highest correlation (r = 0.5), which is higher than that of RE1 (r = 0.42)
in spectral parameters, as well as NDRE (r = −0.28) and NDWI (r = 0.28) in the vegetation
index.
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3.2. Assessment of Models with Single and Combined Variables
3.2.1. Single Variable Model Assessment

Table 5 displays the optimal estimation accuracy for predicting the AGB of rubber
plantations using single variables. Among the five models derived from different types of
variables, the model built directly with GLCM parameters achieved the highest accuracy
(R2 = 0.74), while the PCA model calculated based on texture parameters achieved interme-
diate accuracy (R2 = 0.58). In contrast, the AGB model constructed with NDTI exhibited
the lowest accuracy (R2 = 0.18). The spectral band parameter obtained an R2 of 0.55, while
the VIs calculated from the spectral band parameter received an R2 of 0.25 in the estimation
of AGB in rubber plantations. Specifically, RMSE and MAE have an inverse relationship
with R2.

Table 5. Accuracy assessment of a univariate model for rubber plantation biomass.

Variables R2 RMSE (Mg/ha) MAE

Spectral band 0.56 27.67 22.17
VIs 0.25 36.06 29.20

NDTI 0.18 37.51 25.08
GLCM 0.74 21.09 15.73

PCAGLCM 0.58 26.82 21.81

3.2.2. Multivariate Model Assessment

This study systematically assessed the performance of different variable combinations
of NDTI, PCAGLCM, VIs, and spectral bands for the AGB estimation of rubber plantations.
V1 to V11 represent different variable combinations, respectively (Table 6).

Figure 5 indicates the accuracy estimation of rubber forest AGB estimation models
constructed with V1–V11 variable combinations and four machine learning regression
techniques. The RF regression model achieved the highest precision in V4, with the
parameters PCAGLCM and VIs, resulting in an R2 value of 0.70. Additionally, V11 derived
from NDTI, PCAGLCM, VIs, and spectral band variables, also achieved a high precision,
with an R2 value of 0.69. Similarly, the XGBR model obtained its highest precision in
V4, with an R2 value of 0.70. The multivariate combination model received the highest
estimation accuracy (R2 = 0.73, RMSE = 21.48 t/ha, MAE = 17.25) in V8 of NDTI, PCAGLCM,
and spectral band parameters using the KNR. The SVR model achieved the lowest accuracy



Forests 2024, 15, 900 11 of 18

(R2 < 0.2) in estimating rubber plantation AGB compared to the other three machine
learning algorithms.

Table 6. Detailed combinations of different groups of variables.

Variable ID Variable Combination

V1 NDTI, PCAGLCM
V2 NDTI, VIs
V3 NDTI, Spectral band
V4 PCAGLCM, VIs
V5 PCAGLCM, Spectral band
V6 VIs, Spectral band
V7 NDTI, PCAGLCM, VIs
V8 NDTI, PCAGLCM, Spectral band
V9 NDTI, VIs, Spectral band

V10 PCAGLCM, VIs, Spectral band
V11 NDTI, PCAGLCM, VIs, Spectral band
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3.3. Model Evaluation of Different Methods for Screening Combinations of Important Variables

Figure 6 shows the importance of each type of remote sensing variable ranked from
low to high. The top five most important parameters were used to estimate the AGB
of the rubber plantation separately and were grouped as G1–G3. At the same time, the
parameters were combined and NDTI parameters were added to estimate the AGB of
the rubber plantation and were grouped as G4. Subsequently, all remote sensing variable
combinations (VIs, Spectral band, and GLCM parameters) were used to select features
using the Boruta feature screening method. After feature selection, NDTI was combined to
form a feature set to estimate the AGB of the rubber plantation and was grouped as G5.
Detailed information on the G1–G5 variable combinations is presented in Table 7.
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Table 7. Detailed combinations of G1–G5 groups of variables.

Variable ID Parameters

G1 NDRE, NDWI, MSAVI, LSWI, EVI
G2 RE1, B, G, RE2, SWIR1
G3 PC5, PC1, PC8, PC6, PC2
G4 G1, G2, G3, NDTI

G5

ASMB, IMCORR1B, IMCORR2B, CORRG, CORRR, IMCORR1R,
IMCORR2R, CORRRE1, SAVGRE1, CORRSWIR2, DISSSWIR2,

IMCORR1SWIR2, IMCORR2SWIR2, B, G, RE1, RE2, SWIR1, SWIR2,
NDRE; NDWI; MSAVI, NDTI

These results demonstrate that the rubber plantation AGB estimation accuracy is
highest when the G5 is combined with machine learning models, while the estimation
accuracy obtained using other feature combinations is lower than G5 (Table 8). Within
the G5, the RF model combined with features selected using the Boruta method achieves
the highest accuracy in estimating rubber plantation AGB, with an R2 of 0.86. Similarly,
XGBR also achieved relatively high accuracy, with an R2 of 0.83. However, as depicted in
Figure 7b,c, as well as Table 8, it is evident that the RMSE and MAE of XGBR on G5 are
both higher than those of the RF model.

Table 8. Assessment of model accuracy for different combinations of importance variables.

Variable
ID

RF XGBR KNR SVR

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

G1 0.28 35.20 28.83 −0.16 44.64 39.45 0.36 33.25 27.15 −0.08 43.12 33.01
G2 0.56 27.62 22.84 0.37 32.89 25.34 0.59 26.61 21.35 0.21 36.80 28.67
G3 0.55 27.94 21.46 0.61 26.01 20.85 0.69 23.18 18.41 0.24 36.24 24.57
G4 0.67 23.86 19.19 0.64 24.77 19.09 0.65 24.46 20.18 0.11 39.18 29.84
G5 0.86 15.77 13.18 0.83 16.95 13.87 0.66 24.10 20.56 0.35 33.38 24.31
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4. Discussion
4.1. Advantages of Integrating Multiple Variables with Machine Learning Techniques for
AGB Estimation

The feature selection method combined with Sentinel-2 satellite data and machine
learning algorithm has significantly improved the accuracy of estimating the AGB of
Xishuangbanna rubber forest. Model validation conducted on different feature combi-
nations using 20% of the dataset indicates a significant enhancement in AGB estimation
accuracy after employing feature selection methods. By incorporating the G5 group pa-
rameters, the R2 value was found to be 0.86, with an RMSE of 15.77 Mg/ha and an MAE of
13.18 (Figure 7). Our study found that satisfactory accuracy can be achieved even without
incorporating other parameters (such as SAR or/and LiDAR data) when using spectral
bands, spectral indices, texture parameters, and texture indices. This conclusion was in
agreement with the study of Bhumiphan et al. [20], who achieved an R2 of 0.79 and an
RMSE of 29.42 kg/ha when estimating AGB in Thai rubber forests using Sentinel-2 satel-
lite remote sensing data along with six vegetation indices and a stepwise multiple linear
regression algorithm. The possible reasons could be attributed to (i) the use of modified
Sentinel-2 satellite imagery (Harmonized Sentinel-2 MSI); (ii) parameter selection when
using multiple remote sensing parameters; and (iii) the use of machine learning methods for
estimating rubber forest AGB. In fact, Bhumiphan et al. [20] also emphasized, in their study,
that the application of complex mathematical models such as machine learning can enhance
the accuracy of rubber forest AGB estimation. In our study, the RF performed well in AGB
estimation using remote sensing parameters. Our results indicate that non-parametric
algorithms (RF, SVR, KNN, and XGBR) can better capture the complex relationship between
rubber forest AGB and remote sensing variables by establishing nonlinear relationships
between independent variables (features) and dependent variables (target variables) [33].
Additionally, combining GLCM features with spectral features can improve AGB estimation
accuracy [5,66,67], which is consistent with our study.

4.2. Impact on Estimation Accuracy from Variables Optimization

This study extracted a total of 170 variables from Sentinel-2 satellite imagery, including
9 spectral bands, 7 vegetation indices, 153 texture parameters, and 1 texture index using
the GEE platform. For the univariate machine learning model derived from four feature
variables, GLCM achieved the highest accuracy, followed by spectral bands. The accuracy of
vegetation indices in univariate AGB estimation is relatively poor, which may be attributed
to two factors, as follows: (i) VIs tend to saturate when estimating AGB in high-density
rubber plantations [68] and (ii) for spectral parameters relying on object surface hue or
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brightness calculations, texture parameters can more stably express spatial information,
thus improving the estimation of rubber plantation AGB [69]. Additionally, research has
shown that the selection of GLCM parameters can impact the accuracy of AGB estimation
when using GLCM [10]. During variable combination, the combination of NDTI, PCAGLCM,
and spectral bands, along with the KNNR model, can effectively predict rubber plantation
AGB.

For the spectral bands and vegetation indices, NDRE, NDWI, MSAVI, B, G, RE1,
RE2, SWIR1, and SWIR2 are the relevant features selected by Boruta for predicting rubber
plantation AGB, which yields similar results with Spearman’s correlation analysis (Figure 3).
Our study indicates that, among spectral parameters, the red-edge spectral bands and their
derived vegetation indices exhibit certain correlations with AGB, consistent with previous
research findings [20]. Some GLCM texture parameters (such as ASMB, CORRR, SAVGRE1,
etc.) have been identified, using Boruta, as key features; Figure 5 also demonstrates the high
contribution of GLCM features in AGB estimation. These results collectively indicate that
texture parameters or spatial information contribute more significantly to the estimation
of rubber plantation AGB than spectral bands and vegetation indices. Previous studies
have shown that feature selection methods can significantly reduce overfitting, thereby
enhancing generalization and improving model estimation accuracy, which aligns with our
research findings [70].

The performance of four machine learning algorithms was evaluated with different
feature selection methods for the AGB estimation of rubber plantations in this study. Exten-
sive research demonstrates the robust performance of machine learning models in forest
AGB estimation [8,27]. The results obtained after Boruta parameter selection indicate that
RF regression performs the best (R2 = 0.86, RMSE = 15.77 Mg/ha, MAE = 13.18), followed
by XGBR, KNR ranking third, and SVR exhibiting the worst performance. This finding is
in close agreement with the results of Singh et al. [71], who compared the performance of
the Generalized Additive Mixed Model (GAMM), k Nearest Neighbor (k-NN), SVM, ANN,
and RF for forest biomass estimation using Sentinel-2 data. They also found that the RF
performed the best compared to other models. Similarly, Chen et al. [72] also demonstrated
that the RF exhibited the best performance when combined with Sentinel-1 synthetic aper-
ture radar (SAR), Sentinel-2 multispectral instrument (MSI), and SRTM digital elevation
model (DEM) data with stepwise regression (SWR), geographically weighted regression
(GWR), ANN, SVR, and RF algorithms to establish an optimal forest AGB model, which is
consistent with our findings.

4.3. Limitations and Potential Applications

The Sentinel-2 data was combined with four ML techniques and various variable
selection strategies to estimate rubber plantation AGB, aiming to explore the optimal vari-
ables for AGB estimation within Sentinel-2 imagery data. Through the parameter selection
method Boruta, different spectral bands, spectral parameters, and GLCM parameters were
selected, resulting in a satisfactory estimation accuracy (R2 = 0.86). Although this study
achieved a promising predictive accuracy in estimating rubber plantation AGB, we did not
evaluate the performance of the combination of spectral information, texture features, and
PALSAR satellite data (such as HH and HV). Previous studies indicated that the inclusion
of PALSAR can enhance the accuracy of forest AGB estimation [73], but whether the opti-
mized feature parameters derived from PALSAR improve AGB estimation remains unclear.
Additionally, elevation, aspect, slope, and other terrain factors, as well as stand age, are
also important parameters applied in the estimation of rubber plantation AGB [8,32,74].
Therefore, the parameter optimization approach should be further evaluated using different
satellite data, as well as terrain factors and stand age parameters in rubber plantation AGB
estimation in the future.

Although this study established an optimal AGB estimation model with variable
optimization across different varieties and planting years of rubber plantations using
limited sampling data, further evaluation is needed for the independent testing of variety
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and age effects. Given the differences and imbalance among the samples, the 24 samples
collected in 2021 and 40 samples from 2023 were pooled. The merged 64 samples were split
into 80% for the training dataset and 20% for the testing dataset with random stratified
sampling. Even though a repeated resampling method of 10-fold cross-validation was
employed to enhance the model’s robustness, the limited sample size (64 samples) may
result in instability in model fitting accuracy for variable optimization, due to insufficient
sample points. In addition, the latest study suggested that at least 100 sample points are
needed for building a single tree species biomass predictive model [75]. This implies that
collecting a more diverse range of samples is critical for enhancing the estimation accuracy
and transferability of the model, which inevitably requires additional costs and resources
for field surveys. Fortunately, the existing research has proven that UAVs equipped
with demand sensors are a beneficial alternative to field surveys [76]. Especially in field
investigations for gathering AGB, LiDAR (Light Detection and Ranging) sensors mounted
on UAVs show great potential in collecting forest plot-level data at a regional scale. This
will provide practical applications for utilizing regionally scaled field data to construct a
variable-optimized stable model for estimating forest biophysical parameters in large-scale
regions.

5. Conclusions

This study systematically evaluated the impact of various feature selection methods
combined with multiple features extracted from Sentinel-2 remote sensing data obtained
from the GEE platform coupled with four machine learning techniques on the estimation of
rubber plantation AGB. The results demonstrate that RF combined with the Boruta feature
selection method achieved the highest accuracy for AGB estimation in rubber plantations
(R2 = 0.86, RMSE = 15.77 Mg/ha) compared to other machine learning regression algo-
rithms. This implied that employing appropriate feature selection methods can significantly
improve the AGB estimation accuracy of rubber plantations when using a large number of
parameters, thereby aiding in the rapid assessment of productivity and carbon storage in
rubber plantations. This research provides new insights into accurately estimating other
biophysical parameters of other crops by considering optimized variables derived from a
large amount of feature parameters.
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