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Abstract: Canopy water content is a fundamental indicator for assessing the level of plant water stress.
The correlation between changes in water content and the spectral reflectance of plant leaves at near-
infrared (NIR) and short-wave infrared (SWIR) wavelengths forms the foundation for developing a
new remote sensing index, the Infrared Canopy Dryness Index (ICDI), to monitor forest dryness that
can be used to predict the consequences of water stress. This study introduces the index, that uses
spectral reflectance analysis at near-infrared wavelengths, encapsulated by the Normalized Difference
Infrared Index (NDII), in conjunction with specific canopy conditions as depicted by the widely
recognized Normalized Difference Vegetation Index (NDVI). Development of the ICDI commenced
with the construction of an NDII/NDVI feature space, inspired by a conceptual trapezoid model. This
feature space was then parameterized, and the spatial region indicative of water stress conditions,
referred to as the dry edge, was identified based on the analysis of 10,000 random observations.
The ICDI was produced from the combination of the vertical distance (i.e., under consistent NDVI
conditions) from an examined observation to the dry edge. Comparisons between data from drought-
affected and non-drought-affected control plots in the Australian Northern Jarrah Forest affirmed
that the ICDI effectively depicted forest dryness. Moreover, the index was able to detect incipient
water stress several months before damage from an extended drought and heatwave. Using freely
available satellite data, the index has potential for broad application in monitoring the onset of forest
dryness. This will require validation of the ICDI in diverse forest systems to quantify the efficacy of
the index.

Keywords: canopy water content; drought; Infrared Canopy Dryness Index (ICDI); Landsat imagery;
vegetation index; eucalypt forests

1. Introduction

The Earth’s climate is undergoing rapid changes, evident in the increases in global
temperatures and shifts in hydrological processes within watersheds [1–3]. Notably, a sig-
nificant decline in mean rainfall, coupled with the heightened water demand of ecosystems
in response to rising temperatures, has diminished water storage in many watersheds.
A clear indicator of this transformation is the depletion of soil water and groundwater
stores and availability to vegetation [3,4]. Consequently, water stress in forest ecosystems is
becoming more prevalent, leading to detrimental effects on trees ranging from dehydration
and wilting to mortality [5–7]. Climate change also exacerbates the severity and likelihood
of droughts and heat waves, amplifying the risks and impacts of water stress [2,8].

Forest water stress occurs when a forest undergoes an extended or intense shortage
of water that raises the dryness of the canopies to a certain level, which depends on tree
species. This condition triggers physiological and ecological reactions that may adversely
impact the health and productivity of the forest [4,9,10]. The increasing prevalence of
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water stress presents a significant threat to the health and resilience of forest ecosystems [9],
underscoring the imperative for comprehensive strategies to alleviate the impacts of climate
change on these ecosystems and associated water resources [10–13]. A wealth of research
has highlighted that minimizing exposed canopy area and leaf area, thereby lowering a
tree’s water use, is an effective strategy for coping with increasing forest dryness [14,15].
Given that forestry interventions entail significant expenses, a key requirement is the
prompt identification and delineation of potential water stress hotspots within forests
so that forest managers can implement effective interventions, such as thinning opera-
tions [16,17]. However, typical field measurements for forest dryness at the forest scale
have faced challenges, particularly in providing a spatially comprehensive description of
this phenomenon. To overcome these obstacles, remote sensing could provide a more rapid
and effective approach [9].

Many remote sensing indices have been devised to assess water content in plants, serv-
ing as partial indicators of water stress [18–22], among which the Normalized Difference
Water Index (NDWI) [23] was particularly favored in the late 2000s. However, in expansive
forests comprising individuals with varying canopy conditions, data on water content alone
may not conclusively depict water stress. Hence, the condition of the tree canopy is an
essential factor that must be considered. Building on this understanding, some researchers
have employed trapezoidal models to delineate the correlation between vegetation water
indices and canopy cover, leading to the introduction of new methods [24–26]. However,
indices that leverage the Land Surface Temperature (LST)–NDVI relationship often yield
biased results in areas with damaged vegetation, bare soil and exposed rock [12,25,27–29].
Other studies have shown that the use of low spatial resolution imagery, such as from
MODIS (Moderate Resolution Imaging Spectroradiometer), may hinder effective hotspot
analysis [20,30,31]. Hence, there is a pressing need to establish a more robust and sensitive
satellite-based method to detect the early onset of dryness in forest canopies, leading to
water stress, and in some cases tree deaths.

A primary indicator of water deficit in trees is the reduction in water content [11,32–35],
particularly in the upper canopy, which is directly exposed to sunlight. Consequently, one of
the fundamental approaches for detecting vegetation water stress involves the utilization of
spectral reflectance at short-wave infrared wavelengths (SWIR) [21,22,36,37]. Additionally,
the detection of vegetation, typically represented through near-infrared (NIR) spectral
reflectance, is crucial in distinguishing it from other types of land cover [30,38,39]. SWIR
reflectance has been used to evaluate plant water content, observing an increase in SWIR
reflectance as leaf water content decreases, and vice versa [18,22,35,36,40,41]. The difference
in spectral reflectance between NIR and SWIR regions can provide valuable information due
to the differential absorption and reflection of these two wavebands by various components
in leaves [42]. The degree of SWIR reflectance is closely linked to the water content in
the canopy, especially for the band from 1600 to 2500 nm [40,43,44]. Nonetheless, factors
such as non-pigment dry matter content can also affect SWIR reflectance [18,45,46]. Since
NIR is primarily influenced by dry matter content [47,48], subtracting NIR from SWIR can
help mitigate these effects, thereby enhancing the accuracy of water content estimation in
leaves [20,48].

The basic method for estimating water content in the tree canopy involves normalized
difference indices of the form: (NIR − SWIR)/(NIR + SWIR). However, each remote sensing
system employs sensors with varying bandwidths and locations. The NIR band (0.7–1 µm)
is relatively consistent among sensors due to its narrow range. In contrast, the SWIR band
(1–3 µm) is broader and more varied, with some remote sensing systems capturing two or
more SWIR bands with different characteristics. For instance, Landsat TM provides bands
5 and 7, while MODIS offers bands 5, 6, and 7. Consequently, the normalized difference
index of NIR and SWIR may differ based on the specific sensor/SWIR band used in the
equation. To streamline the multitude of similar normalized difference NIR-SWIR indices
with varying nomenclature but identical scientific intent, Ji et al. [43] consolidated these
spectral indices into three primary categories, based on the SWIR wavelength captured,
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regardless of the sensor. These are: (1) Normalized Difference Water Index (NDWI) [23],
utilizing the short region of the SWIR wavelength (1.23–1.25 µm); (2) Normalized Dif-
ference Infrared Index (NDII) [22], using the medium region of the SWIR wavelength
(1.55–1.75 µm); and (3) Normalized Burn Ratio (NBR) [49], employing the long region of
the SWIR wavelength (2.05–2.45 µm). Among these, the NDWI and the NDII are more
commonly used for estimating plant water content [43,44,50,51].

In times of diminishing soil water availability, the canopy water content (CWC) de-
clines [43,51]. The relationship between CWC and canopy cover can be simplified as in
Figure 1, to reveal the potential for utilizing these parameters to effectively convey the
water stress conditions in plants. In this context, the term “dry edge” refers to conditions
characterized by limited soil water availability, whereas the “wet edge” denotes situations
with unrestricted access to soil water.
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Figure 1. Relationship between canopy cover and water content in response to canopy dryness
(original by Thai Son Le).

Under water deficit, the canopy water content diminishes significantly, leading to
wilting and a marked increase in SWIR spectral reflectance. In contrast, NIR reflectance
tends to be more stable under these conditions, as there is minimal variation in the dry
matter content, pigmentation, and leaf structure during the initial stages of water stress [48].
Thus, this subtle interaction between NIR and SWIR reflectance offers critical insights
into the water status of plants. A larger disparity between these two reflectance values
typically indicates a more severe water deficit in the tree canopy [43,48]. This understanding
is instrumental in the remote sensing and assessment of plant health and water stress,
employing indices such as the NDWI and the NDII.

Building on Figure 1, this study describes the development and evaluation of a novel
index utilizing satellite remote sensing data, called the Infrared Canopy Dryness Index
(ICDI). The index uses the NIR and SWIR regions in readily available Landsat imagery.
The primary objective was to develop an index to monitor canopy dryness among forest
ecosystems. The specific objective was to identify forest areas experiencing increasing
dryness that may lead to water stress at the beginning of the dry season, which could be
used to inform forest management interventions such as forest thinning.
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2. Materials and Methods
2.1. Study Area

The Northern Jarrah Forest (NJF), a broad-leaved evergreen eucalypt forest covering an
area of 11,276 km2 with an average elevation of 300 m [52], is a major vegetation ecosystem
in south-western Australia (Figure 2). For over 50 years, the forest has been managed for
multiple purposes: timber harvesting, mining, conservation of biodiversity, catchment
water protection, wildfire abatement via fuel-reduction burning, and recreation.
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Figure 2. Map of the Northern Jarrah Forest showing the study area (purple frame) with sample
(drought-affected) and control (healthy forest) locations.

The NJF has a typical Mediterranean-type climate with two distinct seasons, a cool
wet season and a long dry hot season that can last from 4 to 7 months [53]. The forest
has a pronounced west–east rainfall gradient, with annual rainfall exceeding 1100 mm on
its western edge, and diminishing to approximately 700 mm in the eastern and northern
regions. The forest is dominated by jarrah (Eucalyptus marginata) which is dependent on
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drawing water from soil water reserves in deep regolithic soils throughout summer due to
extensive root systems [16,52,54].

The study area in this paper encompasses 3000 km2 of jarrah forest (the purple frame
in Figure 2) used to develop and test the ICDI remote sensing index. The chosen area
contains bauxite mining sites, dams and forests with different fuel-reduction burning
histories. Previous studies have reported on drought-induced canopy collapses in this
forest [55,56]. Also, this area has the lowest average cloud cover compared to surrounding
regions in the NJF, thereby creating optimal conditions for utilizing the greatest number of
remote sensing images and yielding the most comprehensive information.

2.2. Data

We used 28 drought-affected sites (red dots Figure 2) that were defined in a study by
Matusick et al. [55] with canopy damage (discolored, dead or no foliage). At those locations,
damaged forest was re-delineated using Landsat images in association with Google Earth
Pro. The re-delineation was based on the loss of forest canopy recorded from March to
late May 2011 (see Figure 3). In this paper, we use the term “drought-affected sample” for
satellite imagery analysis over the 2010–2011 dry season. These samples are polygons with
areas ranging from 0.4 to 6.2 hectares.
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Figure 3. Example of a drought-affected sample at location (X: 429525; Y: −3583515) on 14 October
2010 (A) and 23 March 2011 (B) (source: Google Earth Pro). This is during the dry, summer period.

We added 60 new control points (blue dots in Figure 2) in jarrah-dominated forest
where the canopies were unaffected by drought or forest management due to their sus-
tainable canopy condition during dry seasons. From Landsat time-series data, these forest
areas had maintained NDVI values in the range 0.5–0.8 with no decline >0.05 over the past
five summers (2006–2011). Control data were extracted from an area within a radius of
60 m from the control point, called the control plot. For imagery data, we used Landsat
7 ETM+ Collection 2 remote sensing images captured from October 2010 to April 2011.
These images were preprocessed and converted to surface reflectance values. In this study,
damaged areas were clipped to exclude bare soil and exposed rocks to concentrate on
analyzing changes in the spectral reflectance of vegetation. Data from clipped polygons
were compared with those from control plots to evaluate the performance of the proposed
spectral index.



Forests 2024, 15, 915 6 of 17

2.3. The Infrared Canopy Dryness Index (ICDI)

Inspired by the trapezoid model introduced by Sadeghi et al. [24], which employed a
feature space comprising SWIR transformed reflectance (STR) and the NDVI for estimating
root-zone soil moisture, we developed a similar conceptual model that illustrates the
complementation between the NDVI and the NIR-SWIR index, as depicted in Figure 4. In
this model, the NIR-SWIR index is calculated using the equation:

NIR − SWIRindex =
ρNIR − ρSWIR
ρNIR + ρSWIR

(1)

where ρNIR and ρSWIR are the spectral reflectance values of NIR and SWIR, respectively.
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The specific name assigned to this index varies depending on the wavelength se-
lected in the SWIR region, in alignment with the classification system proposed by Ji
et al. [43]. In this study, Landsat 7 satellite imagery data with the SWIR spectrum in band
5 (1.550–1.750 µm) was utilized for analysis. Consequently, the corresponding index em-
ployed in this context is the NDII [22,43], which is used to estimate the dynamics of water
content in the vegetation canopy. Thus, the equation is:

NDII =
B4 − B5

B4 + B5
(2)

where B4 and B5 are the spectral reflectance of Landsat 7 ETM+ Band 4 and Band 5,
respectively. Meanwhile, the NDVI utilizes NIR and RED wavelengths to estimate fractional
vegetation cover, and the index is determined as follows:

NDVI =
B4 − B3

B4 + B3
(3)
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The dry edge f (x) can be determined by a regression analysis using samples con-
taining the lowest values of the NDII for the corresponding NDVI bins along the x-axis.
The appropriate number of bins within the NDVI range can be determined using the
method proposed by Sturges [57]. According to this method, for a database containing N
observations, the optimal number of bins can be calculated [57] as:

Number o f bins = 1 + 3.322log10 N (4)

The study generated a 10,000-point random model within the study area on the
condition that all the 10,000 points must be covered by jarrah forest. Based on remote
sensing data extracted from the point cloud at two different points of time during the
2010–2011 summer, the relationship between the NDII and the NDVI at the dry edge in the
study area was observed to be close to a parabola (Figure 5) instead of a linear relationship
as previously used in many published studies [24,25,30].
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Hence, during the method development process, we determined the dry edge using
the equation:

f (x) = ax2 + bx + c (5)

In Figure 4, the deviation of observations from NIR-SWIR (i.e., the NDII at this stage)
values corresponding to a particular NDVI value above this line, or distance from A to
B (i.e., dAB), represents the canopy water content that exceeds the threshold of maximum
water stress. With point B lying on the dry edge f (x), the corresponding NDII value can be
identified as:

YB = aX0
2 + bX0 + c (6)

Put simply, for a particular canopy condition described by NDVI = XAB, the distance
AB (see Figure 4), also called dAB, increases as the canopy water content rises, thereby
reflecting the observed level of canopy stress. The deviation dAB is calculated as:

dAB = YA − YB = YA −
(

aX0
2 + bX0 + c

)
(7)
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The lower dAB, the shorter distance from the observation A to the dry edge, the higher
the dryness level experienced by the canopy.

Thus, this study uses the reversed distance AB to establish a new spectral index,
named Infrared Canopy Dryness Index (ICDI), which utilizes infrared spectral reflectance
(NIR and SWIR) to indicate water deficiency level in the canopy. Therefore, ICDI values
corresponding to the ith observation of the NDII and the NDVI are calculated as:

ICDI =
(

aNDVIi
2 + bNDVIi + c

)
− NDII

i
(8)

where a, b and c are the parameters from the identified dry edge function.

2.4. ICDI Construction and Performance Assessment

The construction of the ICDI from Landsat 7 ETM+ data is summarized in Figure 6.
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Landsat 7 ETM+ was used to calculate the NDII (Equation (2)) and the NDVI
(Equation (3)) over the study area. A random model including a large number of ran-
dom pixels within the study area was generated using ArcGIS 10.8. Values of the NDII and
the NDVI at these pixels were extracted to form a scatterplot representing the NDII/NDVI
feature space. The range of NDVI values was divided into bins with the number of bins
identified following Equation (4). A NDII/NDVI regression analysis was performed to
identify the dry edge f (x) as in Equation (5), using the input from the pixels corresponding
to the lowest NDII value from each bin. Finally, the ICDI was calculated using Equation (8).

In index performance assessment, ICDI values were extracted for the drought-affected
samples and control plots monthly from October 2010 to March 2011. Any observed
differences between the two datasets (i.e., stressed and non-stressed) would highlight the
effectiveness of the ICDI index, particularly in instances involving drought-affected samples
that exhibit smaller values. The changes over time of these values from the beginning
of dry season to the event of canopy collapse can also provide valuable information for
assessing the performance of the proposed index.

3. Results
3.1. NDII/NDVI Spectral Space and ICDI Calculation

The new index was initially computed using the image captured on 14 October
2010, marking the first Landsat image available for the 2010–2011 dry season. A scat-
ter plot mapping the NDII as a function of the NDVI was constructed using data from
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10,000 random points. To ensure a comprehensive analysis, the NDVI values from these
points were categorized into 15 distinct bins, employing the method outlined by Sturges [57].
Within each bin, the observation with the lowest NDII value was identified and emphasized.
These highlighted points were then utilized to fit a polynomial regression, representing the
dry edge, as illustrated in Figure 7.
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Using the identified dry edge equation (y = 2.0163x2 − 0.515x − 0.3799), the ICDI was
calculated for each pixel in the study area according to Equation (8). The resulting ICDI
map (Figure 8) displays the spatial distribution of the dryness index for 14 October 2010 in
the study area.
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Overall, the index effectively highlights forest areas with different levels of plant
dryness (Figure 8). Despite their smaller size, areas under extreme dryness are distinctly
marked as orange to red on the map. Pixels displaying positive ICDI values (in dark red)
indicate locations below the dry edge (see Figure 7), interspersed throughout the study
area. Most of these pixels are situated in shrublands on areas with impeded subsoils
that consistently exhibit significant dryness during summer (Figure 8), highlighting the
index’s capability to pinpoint critical zones of water stress with precision. Figure 8 also
shows that water bodies, urban regions, areas covered by clouds, and bare soil after mining
bauxite had low ICDI values. This is due to the dry edge’s very low NDII values in the
range of the NDVI below 0.1 (see Figure 7). Previous water stress indices, such as TVDI
(Temperature Vegetation Dryness Index) and TVWSI (Temperature Vegetation Water Stress
Index), typically classify bare soil as water stressed due to the absence of cooling processes
from plant canopies.

An example of an ICDI output is illustrated in Figure 9. Notably, the model distin-
guishes between dry shrubland (i.e., hotspots) and jarrah forest undergoing recovery from
fuel-reduction burning, despite these areas having similar NDVI values. Conversely, jarrah
forests with dense canopy cover display relatively high ICDI values, signaling a height-
ened level of dryness in these regions. This observation underscores that dense forests,
characterized by a high leaf area index, have a greater water demand, thereby positioning
them closer to a state of stress early in the October to May dry season. This also supports
the findings in the technical reports by Croton et al. [58] and Burrows et al. [17] regarding
the relationship between leaf area and rainfall deficit and the benefits of thinning forests to
reduce water stress.
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3.2. ICDI Performance over Time

The study generated monthly ICDI maps for the summer of 2010–2011 across the study
area, with data from both drought-affected samples and control plots shown in Figure 10.
Throughout the summer of 2010–2011, ICDI values exhibited fluctuations for both sets
of data. Prior to canopy collapse (i.e., dieback and die-off) in mid-March [55], the trend
was consistent, with ICDI values from drought-affected samples consistently higher than
those from the control plots. However, following the collapse event, the ICDI significantly
decreased, surpassing that of the control plots. This shift suggests that the canopy became
less dry post-collapse. When the overstorey had died, the still-living understorey was
captured in the vegetation index and this resulted in a lower ICDI within the ecosystem.
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The ICDI effectively distinguished between areas of high and low dryness; the latter in
a situation where the forest was able to maintain its canopy throughout the prolonged dry
summer. Additionally, Figure 10 reveals that high dryness, which indicates water stress,
manifested early on, rather than in the latter half of the summer when affected canopies
start dying. This indicates that the collapse events were the result of accumulated drought
and heatwave conditions from the preceding months, rather than sudden onset stressors.

4. Discussion
4.1. Advantages of the ICDI and Its Application

The ICDI was developed for the early detection of water stress and prediction of future
damage to forest canopies. It is important to underscore that the primary concern of the
index is forested areas and their associated water deficiencies. This focus distinguishes
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it from other indices and how they distinguish between surface objects. Indeed, this
index is influenced by the sensitivity of NIR-SWIR reflectance to vegetation cover, a factor
attributable to the presence of NIR. The strength lies in its specific focus on areas covered
by vegetation. As a result, the index effectively excludes bare soil areas or regions with
collapsed canopy, thereby identifying areas that are experiencing the early stages of water
deficit. However, numerous studies have highlighted the limitations of the NDWI and the
NDII in areas with sparse vegetation cover and bare land [44,59], where NIR reflectance is
relatively low. Therefore, we recommend that the ICDI is suitable for regions with extensive
vegetation cover, especially forested areas.

The most effective application of the ICDI is to identify areas of significant dryness
prior to or at the onset of the dry season. This early identification of areas prone to water
stress will allow spatially precise and timely implementation of management measures
to reduce vegetation cover, such as forest thinning and fuel-reduction burning, to help
alleviate water stress. In particular, the jarrah forest is increasingly vulnerable to water
stress as the water table it depends upon rapidly diminishes [60,61] under the influence
of both past forest management and reduced rainfall [3]. Harvesting has been terminated,
and the forests will be managed in the future for nature conservation values [17]. A legacy
of previous harvesting is the regrowth of dense, often even-aged forest stands. With a
reduction in rainfall, these dense stands will deplete landscape water supplies, affect
streamflow and may be more prone to drought deaths. A management strategy that is
being pursued is “ecological thinning”; however, this is costly to implement [17]. The ICDI
provides a means of prioritizing areas for ecological thinning treatment.

In this study, we utilized Landsat 7 images, characterized by a spatial resolution of
30 × 30 m and a temporal resolution of 16 days. The quality of this imagery surpasses that
of the datasets previously employed in the development of many water stress indices, such
as NOAA AVRHH data (1 × 1 km) [25] and MODIS (with pixel sizes ranging from 250 m
to 1000 m) [20,30,39,48]. Consequently, rather than analyzing vast areas, the ICDI enables
the monitoring of forests at the scale of forest stands. This enhanced spatial resolution in
depicting stressed forest features significantly aids decision-making processes, obviating
the need for additional field surveys within larger forested areas such as when using
low-resolution data.

Focusing on potential water-stressed tree canopies, which are prioritized for action
to minimize irreversible damage, it is recommended to exclude non-forest areas using
available land cover maps. Excluding areas such as water bodies, urban and mining zones
will refine the value range of the ICDI, enhance the contrast of key features, and thereby
reduce confusion when interpreting the results.

The results presented in Figures 8 and 10 indicate that water stress manifested several
months before any observable damage in the jarrah forest. The forest canopies that perished
in March 2011 exhibited very low ICDI values, indicative of high stress levels, as early as
October 2010, at the onset of the dry season. This indicates that a low ICDI could serve
as a prognostic of potential canopy damage, should adverse conditions persist. In other
words, it confirms that the death of tree canopies due to water scarcity is the culmination of
cumulative effects over an extended period, highlighting the importance of early detection
and intervention to mitigate long-term damage.

Examining the area surrounding the samples, as illustrated in Figure 9, it becomes
evident that high canopy dryness occurs not only for trees within the sample but also
extends to neighboring areas, some of which exhibit even higher dryness levels. This raises
the question of why visible signs of damage are absent in areas outside the sample. There
are two explanations for this phenomenon. The first is that severe and noticeable canopy
damage occurs only when individual trees can no longer cope, and the adverse environ-
mental factors exceed their tolerance threshold. These stressors and their impacts might
have been present in the sample area at various times in the past, gradually diminishing the
health and resilience of the plants within it, leading to the observed damage. The second
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explanation is that that the amount of available water stored in the regolith varies spatially,
with localized areas of shallower soils and thus stored soil water.

When deploying the ICDI to analyze land cover types within the study area, distinct
hotspots of dryness become readily apparent, particularly in shrubland areas. The plant
species composition of these shrublands differ from the understorey in the adjacent forests.
Intriguingly, these regions exhibit dryness levels significantly higher than those observed
in other drought-impacted forests. This phenomenon can be attributed to the fact that
many shrub species in the study area have evolved to thrive under conditions of prolonged
water scarcity. This is especially true in areas with shallow soils that lack the capacity to
retain water, rendering them inhospitable for the growth of trees. These shrubs remain
in a desiccated state for extended periods until they receive moisture from rainfall. This
perennially withered condition results in consistently low water content within these plants,
leading to a spectral reflectance profile indicative of a vegetation layer under maximum
water stress. Nonetheless, employing the ICDI to identify these shrubs carries substantial
importance for wildfire management, as these areas become highly susceptible to ignition
during the dry season.

In addition to effectively highlighting dryness hotspots in shrub areas, Figure 9 dis-
tinctly shows the contrast in ICDI values between two different states of jarrah forest,
related to fire management. One area had experienced a low-intensity management fire
six months prior to the imagery; in the other area a low intensity fire had occurred five
years previously. The post-fire jarrah forest exhibited a noticeable reduction in canopy
cover, indicated by lower NDVI values. Correspondingly, these areas demonstrated sig-
nificantly lower levels of canopy dryness according to the ICDI compared to the dense
jarrah forests. This observation aligns with numerous studies indicating that water stress
levels are directly proportional to the leaf surface area, as represented by the Leaf Area
Index (LAI) [3,16]. Indeed, a larger leaf area necessitates more water for physiological
processes and cooling. Under identical soil water deficit conditions, forests with extensive
leaf areas are more susceptible to rapid and severe stress. It also suggests that low intensity
management fires prior to the summer drought may be a useful management technique to
reduce water stress.

This understanding underscores the rationale for implementing silvicultural measures
to prevent water stress in forests [16,17]. Such measures, including thinning and fuel-
reduction burning, aim to reduce the leaf area of forests, thereby decreasing their water
requirements and the risk and impact of water deficit. Nonetheless, the widespread
application of these strategies encounters challenges related to resource allocation, time
constraints and community acceptance. The ICDI emerges as a valuable predictive tool for
identifying forest stands at elevated risk of water stress, allowing them to be prioritized for
further intervention.

4.2. Limitations and Future Research

The primary limitation of the method in this study is the heavy reliance on accurately
determining the dry edge for each survey period, which can introduce instability and
inconsistency in the ICDI results across different points of time. The methodology presumes,
based on the assumption of a dry edge form, that the random model encompasses a
sufficiently large number of points representing all possible canopy dryness states of
forest trees within the study area. However, overlooking the maximum dryness state for
certain NDVI values could significantly alter the dry edge shape, thereby affecting the
ICDI calculation outcomes. Alternatively, surveying all pixels within the study area to
construct a comprehensive dry edge, as opposed to employing a random model, would
demand excessive effort, considerable computing power, and extensive processing time.
Even with such an exhaustive approach, there is no evidence to ensure that maximum
dryness conditions for all forest cover levels occur in the study area. Consequently, there
is a pressing need for a detailed and targeted investigation into the relationship between
the NDII and the NDVI across various forest structure conditions and the corresponding
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water statuses. Such a study would enable a more accurate delineation of the dry edge,
enhancing the reliability of the ICDI calculations.

Another limitation of the methodology employed in this study is the reliance on data
from damaged forest areas for model validation. The assessment of consequential damage
due to water deficit on samples currently serves as the primary basis for identifying water
stress. While the impact of water deficit on forest tree canopies is evident, the severity of the
damage, however, is influenced by various factors, including pests, diseases, and the overall
health of the individual trees. This complexity is partially illustrated by the observation that
some areas surrounding drought-affected samples exhibit lower ICDI values without clear
damage to the tree canopy. Tree canopy water conditions are highly dynamic, fluctuating
with time and environmental changes. An effective approach to validation might involve
measuring the water content of the tree canopy at the time the imagery is captured to
accurately assess dryness levels. However, such measurements would require data from
ground-based spectrometers or aerial devices like drones, rather than satellite images.
This underscores the need for a multi-faceted approach to validating remote sensing
models, incorporating both ground-based and aerial data to provide a comprehensive
understanding of canopy water stress in correspondence to spectral reflectance signals.

The ICDI is an open-ended index without a fixed value range, limiting its use to
comparisons within the same geographic area and time frame. There is a critical need
for enhancements that enable the ICDI to indicate relative canopy dryness levels, allow-
ing for comparisons across different regions or over various time periods to support dy-
namic analyses. Future improvements could focus on leveraging features that consistently
demonstrate stability over time, such as water bodies or forest areas known for optimal
water conditions.

5. Conclusions

This study presents the Infrared Canopy Dryness Index (ICDI) designed to evalu-
ate water stress within forested regions, leveraging the spectral reflectance properties of
shortwave infrared channels in relation to tree canopy cover levels. We found that it could
identify forest areas with incipient water stress 3–4 months prior to visible changes in
canopy condition. It can be widely applied as it uses freely available satellite data. Given
its efficacy, as demonstrated here, the ICDI has potential for informed decision-making in
forest resource management. We propose to use the index to quantify the extent of historical
forest stress in relation to past land management and rainfall distribution. However, it is
necessary to undertake further validation of the ICDI in a wider range of forest systems to
fully assess the efficiency of the index.
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