Nature-Based Solutions to Reduce Air Pollution: A Case Study from Plovdiv, Bulgaria, Using Trees, Herbs, Mosses and Lichens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Procedure
2.3. Analyses of Chemical Content
2.4. Bioaccumulation Patterns Analysis
2.4.1. Enrichment Factor (EF) of Plants Species Used as Passive Biomonitors
2.4.2. Relative Accumulation Factor (RAF) of Plant Species Used as Active Biomonitors
2.4.3. Metal Accumulation Index (MAI)
2.5. Data Analysis
3. Results
3.1. Content of Potentially Toxic Elements (PTEs) in Plants
3.2. Bioaccumulation Capacity of Potentially Toxic Elements by Plant
4. Discussion
4.1. Assessment of Biomonitors’ Efficiency as NBS for Air Pollution Mitigation
4.2. Framework for Implementing NBSs to Mitigate Air Pollution in Urban Areas
5. Conclusions
- (1)
- The present study sheds new light on some well-known biomonitors (trees, herbs, mosses and lichens) in the context of their application for air pollution mitigation.
- (2)
- Ornamental trees demonstrated significant bioaccumulation of Al, Fe, and Pb (Betula pendula); Mo, V, and Cr (Aesculus hippocastanum); and As, Bi, and U (Acer platanoides), having Metal accumulation index (MAI) values in the range of 49.6, 33.76, and 24.53, respectively.
- (3)
- Herbal species were found to be excellent accumulators of Na and B (Taraxacum officinale); Na, U and Hg (Capsella bursa-pastoris); and Cr and Pb (Plantago lanceolata). Their MAI values were in the range of 30.49, 29.63 and 21.77, respectively.
- (4)
- Moss (Sphagnum girgensohnii) and lichen (Pseudevernia furfuracea) dried materials were the best accumulators of Se, Hg, Zn, and Cu (moss) and Mn, Sr, and Co (lichen), with MAI values of 31.21 and 48.47, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alberti, M. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Cyrys, J.; Stolzel, M.; Heinrich, J.; Kreyling, W.; Menzel, N.; Wittmaack, K.; Tuch, T.; Wichmann, H. Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany. Sci. Total Environ. 2003, 305, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhou, Y.; Hu, M.; Zhou, Y. Influence of urban scale and urban expansion on the urban heat island effect in metropolitan areas: Case study of Beijing–Tianjin–Hebei Urban agglomeration. Remote Sens. 2020, 12, 3491. [Google Scholar] [CrossRef]
- Alahabadi, A.; Ehrampoush, M.H.; Miri, M.; Aval, H.E.; Yousefzadeh, S.; Ghaffari, H.R.; Ahmadi, E.; Talebi, P.; Fathabadi, Z.A.; Babai, F.; et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere 2007, 172, 459–467. [Google Scholar] [CrossRef]
- Jordanovic, J.S.; Serbula, S.M.; Markovic, M.M.; Radojevic, A.A.; Kalinovic, J.V.; Kalinovic, T.S. The influence of the environmental factors on the accumulation patterns of toxic elements in Plantago lanceolata sampled in the area under strong anthropopressure. Process Saf. Environ. Prot. 2024, 183, 1239–1248. [Google Scholar] [CrossRef]
- Tang, X.; Wu, X.; Xia, P.; Lin, T.; Huang, X.; Zhang, Z.; Zhang, J. Health risk assessment of heavy metals in soils and screening of accumulating plants around the Wanshan mercury mine in Northeast Guizhou Province, China. Environ. Sci. Pollut. Res. 2021, 28, 48837–48850. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, K.; Dey, S.; Gupta, T.; Dhaliwal, R.S.; Brauer, M.; Cohen, A.J. The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: The Global Burden of Disease Study 2017. Lancet Planet. Health 2019, 3, 26–39. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO Global Urban Ambient Air Pollution Database; World Health Organization: Geneva, Switzerland, 2016.
- Davies, C.; Lafortezza, R. Urban green infrastructure in Europe: Is greenspace planning and policy compliant? Land Use Policy 2017, 69, 93–101. [Google Scholar] [CrossRef]
- Bush, J.; Doyon, A. Building urban resilience with nature-based solutions: How can urban planning contribute? Cities 2019, 95, 102483. [Google Scholar] [CrossRef]
- Menon, J.S.; Sharma, R. Nature-Based Solutions for Co-mitigation of Air Pollution and Urban Heat in Indian Cities. Front. Sustain. Cities 2021, 3, 705185. [Google Scholar] [CrossRef]
- Crouse, D.L.; Pinault, L.; Balram, A.; Brauer, M.; Burnett, R.T.; Martin, R.V. Complex relationships between greenness, air pollution, and mortality in a population-based Canadian cohort. Environ. Int. 2019, 128, 292–300. [Google Scholar] [CrossRef]
- European Commission. Nature-based Solutions for Microclimate Regulation and Air Quality: Analysis of EU-funded Projects; European Commission: Brussels, Brussels, 2020; ISBN 978-92-76-18205-4. [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions inland management for enhancing ecosystem services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef]
- Kalinovic, S.; Serbula, S.M.; Kalinovic, J.V.; Radojevic, A.A.; Petrovic, J.A.; Steharnik, M.M.; Milosavljevic, J.S. Suitability of linden and elder in the assessment of environmental pollution of Brestovac spa and Bor lake (Serbia). Environ. Earth Sci. 2017, 76, 178. [Google Scholar] [CrossRef]
- Petrova, S.; Yurukova, L.; Velcheva, I. Possibilities of using deciduous tree species in trace element biomonitoring in an urban area (Plovdiv, Bulgaria). Atmos. Pollut. Res. 2014, 5, 196–202. [Google Scholar] [CrossRef]
- Petrova, S.; Velcheva, I.; Yurukova, L.; Berova, M. Plantago lanceolata L. as a Biomonitor of Trace Elements in an Urban Area. Bulg. J. Agric. Sci. 2014, 20, 325–329. [Google Scholar]
- Petrova, S.; Yurukova, L.; Velcheva, I. Taraxacum officinale as a biomonitor of metals and toxic elements (Plovdiv, Bulgaria). Bulg. J. Agric. Sci. 2013, 19, 241–247. [Google Scholar]
- Tomašević, M.; Aničić, M.; Jovanović, L.; Perić-Grujić, A.; Ristić, M. Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology. Ecol. Indic. 2011, 11, 1689–1695. [Google Scholar] [CrossRef]
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Yin, S.; Shen, Z.; Zhou, P.; Zou, X.; Che, S.; Wang, W. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 2011, 159, 2155–2163. [Google Scholar] [CrossRef]
- Petrova, S. Efficiency of Pinus nigra J.F. Arnold in removing pollutants from urban environment (Plovdiv, Bulgaria). Environ. Sci. Pollut. Res. 2020, 27, 39490–39506. [Google Scholar] [CrossRef]
- Rühling, A.; Tyler, G. Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.). Oikos 1970, 21, 92–97. [Google Scholar] [CrossRef]
- Sloof, J.E. Environment Lichenology: Biomonitoring Trace-Element Air Pollution. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1993. [Google Scholar]
- Steinnes, E. A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci. Total Environ. 1995, 160/161, 243–249. [Google Scholar] [CrossRef]
- Wittig, R. General aspects of biomonitoring heavy metals by plants. In Plants as Biomonitors: Indicators for heavy metals in terrestrial environment; Markert, B., Ed.; VCH Publishers Ltd.: Cambridge, UK, 1993; pp. 3–28. [Google Scholar]
- Kumar, A.; Kumar, P.; Singh, H.; Kumar, N. Adaptation and mitigation potential of roadside trees with bio-extraction of heavy metals under vehicular emissions and their impact on physiological traits during seasonal regimes. Urban For. Urban Green. 2021, 58, 126900. [Google Scholar] [CrossRef]
- Sloof, J.E. Lichens as quantative biomonitors for atmospheric trace-element deposition, using transplants. Atmos. Environ. 1995, 29, 11–20. [Google Scholar] [CrossRef]
- Aničić, M.; Tasić, M.; Frontasyeva, M.V.; Tomašević, M.; Rajšić, S.; Mijić, Z.; Popović, A. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia. Environ. Pollut. 2009, 157, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Aničić, M.; Tomašević, M.; Tasić, M.; Rajšić, S.; Popović, A.; Frontasyeva, M.V.; Lierhagen, S.; Steinnes, E. Monitoring of trace element atmospheric deposition using dry and wet moss bags: Accumulation capacity versus exposure time. J. Hazard. Mater. 2009, 171, 182–188. [Google Scholar] [CrossRef]
- Steinnes, E.; Hanssen, J.E.; Ramb, J.P.; Vogt, N.B. Atmospheric deposition of trace elements in Norway: Temporal and spatial trends studied by moss analysis. Water Air Soil Pollut. 1994, 74, 121–140. [Google Scholar] [CrossRef]
- Thöni, L.; Yurukova, L.; Bergamini, A.; Ilyin, I.; Matthaei, D. Temporal trends and spatial patterns of heavy metal concentrations in mosses in Bulgaria and Switzerland: 1990–2005. Atmos. Environ. 2011, 45, 1899–1912. [Google Scholar] [CrossRef]
- Rühling, A. Atmospheric heavy metal deposition in Europe—estimations based on moss analysis. NORD 9, Nordic Council of Ministers. AKA-Print, A/S, Arhus, 1994. Available online: https://books.google.com.hk/books/about/Atmospheric_Heavy_Metal_Deposition_in_Eu.html?id=Wsv1suCjzAIC&redir_esc=y (accessed on 14 March 2024).
- Rühling, A.; Steinnes, E. Atmospheric heavy metal deposition in Europe 1995–1996. NORD 15, Nordic Council of Ministers, Copenhagen, 1998, Rounborgs Grafiske hus, Holstebo. Available online: https://core.ac.uk/download/pdf/62557.pdf (accessed on 14 March 2024).
- Matic, M.; Pavlovic, D.; Perovic, V.; Cakmak, D.; Kostic, O.; Mitrovic, M.; Pavlovic, P. Assessing the Potential of Urban Trees to Accumulate Potentially Toxic Elements: A Network Approach. Forests 2023, 14, 2116. [Google Scholar] [CrossRef]
- Instituto Nazionale di Statistica (ISTAT). Available online: http://www.en.istat.it (accessed on 19 September 2023).
- Atanassov, D.; Spassova, S.; Grancharova, D.; Krastev, S.; Yankova, T.; Nikolov, L.; Chakarova, M.; Krasteva, P.; Genov, N.; Stamenov, J.; et al. Air pollution monitoring and modeling system of the town of Plovdiv (Phase I). J. Environ. Prot. Ecol. 2006, 7, 260–268. [Google Scholar]
- McDonnell, M.J.; Hahs, A.K. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: Current status and future directions. Landsc. Ecol. 2008, 23, 1143–1155. [Google Scholar] [CrossRef]
- De Nicola, F.; Maisto, G.; Prati, M.V.; Alfani, A. Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L. Environ. Pollut. 2008, 153, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Yurukova, L.; Petrova, S.; Velcheva, I.; Aleksieva, I. Preliminary data of moss-bags technique in an urban area (Plovdiv, Bulgaria). Comptes Rendus De L’academie Bulg. Des Sci. 2013, 66, 1135–1138. [Google Scholar]
- Petrova, S.; Yurukova, L.; Velcheva, I. Lichen-bags as a biomonitoring technique in an urban area. Appl. Ecol. Environ. Res. 2015, 13, 915–923. [Google Scholar] [CrossRef]
- NCS DC73348; Bush branches and leaves—Trace elements. LGC Standards: Wesel, Germany, 2008.
- Mingorance, M.D.; Valdés, B.; Rossini, O.S. Strategies of heavy metal uptake by plants growing under industrial emissions. Environ. Int. 2007, 33, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Culicov, O.A.; Mocanu, R.; Frontasyeva, M.V.; Yurukova, L.; Steinnes, E. Active moss biomonitoring applied to an industrial site in Romania: Relativa accumulation of 36 elements in moss-bags. Environ. Monit. Assess. 2005, 108, 229–240. [Google Scholar] [CrossRef]
- Ma, Y.L.; Jia, G.M.; Wang, Y.P.; Liu, H.P. Contents of heavy metal in leaves of plants and air pollution evaluation in Guangzhou region. Urban Environ. Urban Ecol 2001, 14, 28–30. [Google Scholar]
- Prussia, C.M.; Killingbeck, K.T. Concentrations of ten elements in two common foliose lichens: Leachability, seasonality and the influence of the rock and tree bark substrates. Bryologist 1991, 94, 135–142. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Zhu, Y.-G.; Ding, H. Lead and cadmium in leaves of deciduous trees in Beijing, China: Development of a metal accumulation index (MAI). Environ. Pollut 2007, 145, 387–390. [Google Scholar] [CrossRef]
- Hu, R.; Yan, Y.; Zhou, X.; Wang, Y.; Fang, Y. Monitoring Heavy Metal Contents with Sphagnum Junghuhnianum Moss Bags in Relation to Traffic Volume in Wuxi, China. Int. J. Environ. Res. Public Health 2018, 15, 374. [Google Scholar] [CrossRef]
- Hofman, J.; Stokkaer, I.; Snauwaert, L.; Samson, R. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles. Environ. Pollut. 2013, 183, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Puckett, K.J.; Burton, M.A.S. The effect of trace elements on lower plants. In Effect of Heavy Metal Pollution on Plants, vol.2. Metals in the Environment; Lepp, N.W., Ed.; Applied Science Publishers: London, UK, 1981; pp. 213–238. [Google Scholar]
- Brown, D.H.; Brown, R.M. Reproducibility of sampling for element analysis using bryophytes. In Element Concentration Cadasters in Ecosystems; Lieth, H., Market, B., Eds.; VCH Publishers: Weinheim, Germany, 1990; pp. 55–62. [Google Scholar]
- Basile, A.; Sorbo, S.; Aprile, G.; Conte, B.; Castaldo Cobianchi, R. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environ. Pollut. 2008, 151, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Hubai, K.; Kováts, N.; Sainnokhoi, T.-A.; Teke, G. Accumulation pattern of polycyclic aromatic hydrocarbons using Plantago lanceolata L. as passive biomonitor. Environ. Sci. Pollut. Res. 2022, 29, 7300–7311. [Google Scholar] [CrossRef] [PubMed]
- Kardel, F.; Wuyts, K.; Babanezhad, M.; Vitaharana, U.W.A.; Wuytack, T.; Potters, G.; Samson, R. Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. Environ. Pollut. 2010, 158, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Ianovici, N.; Vereș, M.; Catrina, R.G.; Pîrvulescu, A.-M.; Tănase, R.M.; Datcu, D.A. Methods of biomonitoring in urban environment: Leaf area and fractal dimension. Ann. West Univ. Timişoara Ser. Biol. 2015, XVIII, 169–178. [Google Scholar]
- Kabata-Pendias, A.; Dudka, S. Trace metal contents of Taraxacum officinale (dandelion) as a convenient environmental indicator. Environ. Geochem. Health 1991, 13, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Keane, B.; Collier, M.H.; Shann, J.R.; Rogstad, S.H. Metal content of dandelion (Taraxacum officinale) leaves in relation to soil contamination and airborne particulate matter. Sci. Total Environ. 2001, 281, 63–78. [Google Scholar] [CrossRef]
- Vanni, G.; Cardelli, K.; Marchini, F.; Saviozzi, A.; Guidi, L. Are the physiological and biochemical characteristics in dandelion plants growing in an urban area (Pisa, Italy) indicative of soil pollution? Water Air Soil Pollut. 2015, 226, 124. [Google Scholar] [CrossRef]
- Aksoy, A.; Hale, W.H.G.; Dixon, J.M. Capsella bursa-pastoris (L.) Medic. as a biomonitor of heavy metals. Sci. Total Environ. 1999, 226, 177–186. [Google Scholar] [CrossRef]
- Markert, B. Plants as Biomonitors/Indicators for Heavy Metals in the Terrestrial Environment; VCH Press: Weinheim, Germany, 1993. [Google Scholar]
- Piczak, K.; Leśniewicz, A.; Zyrnicki, W. Metal concentrations in deciduous tree leaves from urban areas in Poland. Environ. Monit. Assess. 2003, 86, 273–287. [Google Scholar] [CrossRef]
- Yilmaz, R.; Sakcali, S.; Yarci, C.; Aksoy, A.; Ozturk, M. Use of Aesculus hippocastanum L. as a biomonitor of heavy metal pollution. Pak. J. Bot. 2006, 38, 1519–1527. [Google Scholar]
- Baycu, G.; Tolunay, D.; Ozden, H.; Gunebakan, S. Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environ. Pollut. 2006, 143, 545–554. [Google Scholar] [CrossRef]
- Kabata–Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kroeger, T. Reforestation as a novel abatement and compliance measure for ground level ozone. PNAS 2014, 111, 4204–4213. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Qiu, Z.; Liu, Z.; Bai, H.; Gao, H.O. Trees help reduce street-side air pollution: A focus on cyclist and pedestrian exposure risk. Build. Environ. 2023, 229, 109923. [Google Scholar] [CrossRef]
- Tomasevic, M.; Rajsic, S.; Dordevic, D.; Tasic, M.; Krstic, J.; Novakovic, V. Heavy metals accumulation in tree leaves from urban areas. Environ. Chem. Lett. 2004, 2, 151–154. [Google Scholar] [CrossRef]
- Petrova, S.; Petkova, M. Plant Traits of Tilia tomentosa Moench, Fraxinus excelsior L., and Pinus nigra J.F. Arnold as a Proxy of Urbanization. Forests 2023, 4, 800. [Google Scholar] [CrossRef]
- Arienzo, M.; Adamo, P.; Cozzolino, V. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci. Total Environ. 2004, 319, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Burges, A.; Alkorta, I.; Epelde, L.; Garbisu, C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int. J. Phytopharm. 2018, 20, 384–397. [Google Scholar] [CrossRef]
- Suchkova, N.; Darakas, E.; Ganoulis, J. Phytoremediation as a prospective method for rehabilitation of areas contaminated by long term sewage sludge storage: Ukrainian–Greek case study. Ecol. Eng. 2010, 36, 373–378. [Google Scholar] [CrossRef]
- Petrova, S.; Nikolov, B.; Velcheva, I.; Angelov, N.; Valcheva, E.; Katova, A.; Golubinova, I.; Marinov-Serafimov, P. Buffer Green Patches around Urban Road Network as a Tool for Sustainable Soil Management. Land 2022, 11, 343. [Google Scholar] [CrossRef]
- Zechmeister, H.G.; Möslinger, L.; Korjenic, A.; Streit, E.; Sulejmanovski, A.; Frank, P.N.; Hummel, E. Viability of Living Moss for Indoor GreenWalls: A Study on Temperature, Humidity, and Irrigation. Sustainability 2023, 15, 15625. [Google Scholar] [CrossRef]
Element | Acer platanoides | Aesculus hippocastanum | Betula pendula | Capsella bursa-pastoris | Plantago lanceolata | Taraxacum officinale | Sphagnum girgensohnii | Pseudevernia furfuracea | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg/kg | SD | mg/kg | SD | mg/kg | SD | mg/kg | SD | mg/kg | SD | mg/kg | SD | mg/kg | SD | mg/kg | SD | |
B | 61.0 | 2.33 | 20.5 | 0.85 | 33.4 | 0.61 | 19.7 | 0.70 | 25.3 | 1.02 | 24.6 | 0.77 | 7.35 | 0.29 | 5.00 | 0.05 |
Na | 34.9 | 0.96 | 71.2 | 1.25 | 31.2 | 0.41 | 1539 | 58.0 | 415 | 13.2 | 369.7 | 13.3 | 722 | 19.7 | 451 | 14.1 |
Al | 55.3 | 1.21 | 49.0 | 1.23 | 62.7 | 5.69 | 171 | 6.82 | 224 | 6.28 | 342.3 | 13.5 | 396 | 11.4 | 405 | 10.6 |
V | 0.08 | 0.01 | 0.06 | 0.002 | 0.17 | 0.01 | 0.46 | 0.02 | 0.77 | 0.05 | 0.896 | 0.04 | 1.58 | 0.05 | 1.70 | 0.07 |
Cr | 0.49 | 0.05 | 0.24 | 0.02 | 0.59 | 0.05 | 1.49 | 0.09 | 1.25 | 0.12 | 2.23 | 0.19 | 1.15 | 0.05 | 1.43 | 0.04 |
Fe | 128 | 3.71 | 105 | 3.37 | 130 | 2.69 | 227 | 11.8 | 340 | 11.8 | 428.9 | 16.8 | 475 | 8.31 | 529 | 9.12 |
Mn | 64.0 | 1.72 | 48.7 | 1.56 | 70.6 | 0.68 | 33.0 | 1.21 | 26.6 | 1.04 | 53.3 | 1.69 | 293 | 5.05 | 100 | 2.06 |
Co | 0.091 | 0.01 | 0.17 | 0.01 | 0.16 | 0.01 | 0.267 | 0.02 | 0.277 | 0.01 | 0.289 | 0.02 | 0.56 | 0.02 | 0.44 | 0.02 |
Ni | 0.61 | 0.04 | 0.42 | 0.03 | 1.10 | 0.03 | 1.76 | 0.11 | 1.56 | 0.09 | 3.14 | 0.19 | 1.93 | 0.15 | 1.55 | 0.12 |
Cu | 7.66 | 0.41 | 8.20 | 0.35 | 4.53 | 0.30 | 7.71 | 0.53 | 9.86 | 0.37 | 12.4 | 0.33 | 11.8 | 0.24 | 15.1 | 0.25 |
Zn | 19.3 | 0.55 | 16.8 | 0.45 | 116.7 | 1.15 | 48.86 | 1.26 | 44.0 | 1.58 | 47.0 | 1.78 | 117 | 1.91 | 111 | 1.91 |
As | 0.336 | 0.02 | 0.25 | 0.003 | 0.286 | 0.01 | 0.25 | 0.003 | 0.329 | 0.01 | 0.250 | 0.003 | 2.18 | 0.29 | 0.66 | 0.02 |
Se | 0.486 | 0.03 | 0.44 | 0.03 | 0.300 | 0.003 | 0.30 | 0.003 | 0.600 | 0.04 | 0.357 | 0.01 | 1.58 | 0.15 | 0.30 | 0.003 |
Sr | 50.4 | 1.46 | 58.6 | 1.59 | 53.43 | 0.38 | 52.29 | 1.43 | 53.0 | 2.14 | 39.286 | 1.36 | 27.9 | 0.54 | 11.5 | 0.24 |
Mo | 0.229 | 0.01 | 0.28 | 0.006 | 0.33 | 0.01 | 1.46 | 0.06 | 0.786 | 0.1 | 1.029 | 0.04 | 0.88 | 0.21 | 0.20 | 0.002 |
Cd | 0.231 | 0.01 | 0.24 | 0.012 | 0.243 | 0.01 | 0.434 | 0.02 | 0.306 | 0.03 | 0.516 | 0.03 | 0.49 | 0.02 | 0.37 | 0.02 |
Pb | 2.71 | 0.07 | 2.75 | 0.075 | 2.32 | 0.02 | 2.214 | 0.09 | 3.529 | 0.15 | 3.143 | 0.12 | 29.3 | 0.48 | 28.0 | 0.53 |
Bi | 0.31 | 0.01 | 0.29 | 0.003 | 0.82 | 0.03 | 0.216 | 0.01 | 0.271 | 0.01 | 0.200 | 0.002 | 0.89 | 0.09 | 0.20 | 0.002 |
U | 0.016 | 0.002 | 0.02 | 0.002 | 0.014 | 0.001 | 0.024 | 0.002 | 0.037 | 0.003 | 0.034 | 0.003 | 0.09 | 0.003 | 0.06 | 0.003 |
Hg | 0.047 | 0.002 | 0.04 | 0.003 | 0.032 | 0.002 | 0.020 | 0.001 | 0.010 | 0.001 | 0.041 | 0.004 | 0.1 | 0.014 | 0.21 | 0.03 |
Element | Acer platanoides | Aesculus hippocastanum | Betula pendula | Capsella bursa-pastoris | Plantago lanceolata | Taraxacum officinale | Sphagnum girgensohnii | Pseudevernia furfuracea |
---|---|---|---|---|---|---|---|---|
B | 0.924 | 0.586 | 0.760 | 1.095 | 0.744 | 1.170 | 0.328 | 0.459 |
Na | 2.681 | 2.967 | 0.985 | 9.216 | 4.029 | 9.992 | 1.645 | 6.098 |
Al | 1.152 | 1.581 | 1.742 | 1.881 | 1.580 | 0.542 | 1.245 | 1.113 |
V | 2.633 | 3.867 | 1.442 | 1.523 | 1.972 | 0.597 | 1.575 | 0.773 |
Cr | 0.992 | 4.800 | 2.189 | 1.858 | 4.984 | 0.769 | 1.643 | 1.018 |
Fe | 1.422 | 1.360 | 1.673 | 1.611 | 1.486 | 0.578 | 1.439 | 0.923 |
Mn | 2.462 | 4.056 | 1.604 | 1.500 | 1.329 | 0.952 | 0.836 | 2.638 |
Co | 1.517 | 0.246 | 0.413 | 0.834 | 1.539 | 0.615 | 1.191 | 1.926 |
Ni | 0.761 | 1.273 | 0.649 | 1.952 | 1.730 | 1.572 | 1.750 | 1.192 |
Cu | 0.815 | 1.708 | 1.332 | 1.205 | 0.986 | 0.886 | 2.034 | 1.861 |
Zn | 0.946 | 1.099 | 0.957 | 1.629 | 1.000 | 0.855 | 1.655 | 1.493 |
As | 1.344 | 1.000 | 1.144 | 1.000 | 0.411 | 1.000 | 0.702 | 0.332 |
Se | 0.694 | 1.467 | 1.000 | 1.000 | 0.353 | 1.190 | 5.250 | 1.000 |
Sr | 1.401 | 1.118 | 1.571 | 1.687 | 1.472 | 1.455 | 0.919 | 2.290 |
Mo | 1.145 | 5.540 | 0.733 | 1.619 | 0.342 | 0.686 | 0.461 | 1.000 |
Cd | 2.310 | 2.350 | 1.350 | 1.669 | 0.927 | 1.075 | 1.190 | 0.354 |
Pb | 1.229 | 1.249 | 1.696 | 1.476 | 1.765 | 0.952 | 1.721 | 0.875 |
Bi | 1.520 | 1.465 | 1.218 | 1.080 | 0.630 | 1.000 | 0.481 | 1.000 |
U | 3.200 | 1.400 | 1.400 | 2.400 | 0.740 | 0.567 | 1.257 | 1.160 |
Hg | 1.567 | 4.000 | 1.280 | 2.000 | 1.000 | 1.025 | 4.900 | 0.626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, S.; Velcheva, I.; Nikolov, B. Nature-Based Solutions to Reduce Air Pollution: A Case Study from Plovdiv, Bulgaria, Using Trees, Herbs, Mosses and Lichens. Forests 2024, 15, 928. https://doi.org/10.3390/f15060928
Petrova S, Velcheva I, Nikolov B. Nature-Based Solutions to Reduce Air Pollution: A Case Study from Plovdiv, Bulgaria, Using Trees, Herbs, Mosses and Lichens. Forests. 2024; 15(6):928. https://doi.org/10.3390/f15060928
Chicago/Turabian StylePetrova, Slaveya, Iliana Velcheva, and Bogdan Nikolov. 2024. "Nature-Based Solutions to Reduce Air Pollution: A Case Study from Plovdiv, Bulgaria, Using Trees, Herbs, Mosses and Lichens" Forests 15, no. 6: 928. https://doi.org/10.3390/f15060928
APA StylePetrova, S., Velcheva, I., & Nikolov, B. (2024). Nature-Based Solutions to Reduce Air Pollution: A Case Study from Plovdiv, Bulgaria, Using Trees, Herbs, Mosses and Lichens. Forests, 15(6), 928. https://doi.org/10.3390/f15060928