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Abstract: Forest fires are sudden and difficult to extinguish, so early risk assessment is crucial.
However, there are currently a lack of suitable knowledge-mining algorithms for forest fire risk
assessment. This article proposes an improved continuous Apriori algorithm to mining forest
fire rules by introducing prior knowledge to classify input data and enhance its ability to process
continuous data. Meanwhile, it constructs an ontology to provide a standardized expression platform
for forest fire risk assessment. The improved continuous Apriori algorithm cooperates with ontology
and applies the mining rules to the forest fire risk assessment results. The proposed method is
validated using the forest fire data from the Bejaia region in Algeria. The results show that the
improved continuous Apriori algorithm is superior to the raw Apriori algorithm and can mine the
rules ignored by the raw Apriori algorithm. Compared to the raw Apriori algorithm, the number
of generated rules increased by 191.67%. The method presented here can be used to enhance forest
fire risk assessments and contribute to the generation and sharing of forest-fire-related knowledge,
thereby alleviating the problem of insufficient knowledge in forest fire risk assessment.

Keywords: forest fires; risk assessment; Apriori algorithm; ontology; association rule mining

1. Introduction

Forest fires are sudden and difficult to extinguish, so conducting a risk assessment
of forest fires is particularly important for forest fire management [1]. At present, the
assessment of forest fire risk uses a wide range of data sources, including remote sensing
data, in situ detection data, basic geographic data, etc. [2–4]. While a large number of data
sources improve the potential of forest fire risk assessment, they also bring about issues
such as data heterogeneity and semantic gaps [5]. The increase in data complexity has
increased the knowledge level required for data users to judge fire risk.

In response, Ontology, a hot knowledge engineering technology, widely accepted
as “an explicit specification of a conceptualization [6]”, has been introduced into forest
fire risk assessment [7–9]. Ontology can express concepts and their relationships in a
structured way that both humans and computers can understand. Rules are a way of
expressing knowledge [10], using ontology as the basis for concept expression. Through
rule reasoning, relationships between concepts can be found, and the combination of
ontology and rules can achieve efficient knowledge expression and sharing [11,12].

Existing knowledge-based researches [7–9] has focused on using ontology and rules
to assess forest fire risk, demonstrating the effectiveness of ontology and rules in forest fire
management. However, in these researches, some rules rely on complex and highly manual
fire index methods [7], some use heuristic algorithm-based methods [8], and some use
experimental or illustrative rules [9]. The process of mining rules has been overlooked to a
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certain extent, and the proposed methods are also difficult to meet the needs of interpretable
and scalable knowledge mining.

Association rule mining is a type of data mining algorithm, and it can uncover im-
portant and reliable rules between attributes in databases [13]. Representative association
rule algorithms include Apriori [14] and Eclat [15], where Apriori scans the database more
times and occupies less memory, while Eclat only scans the database once but occupies
more memory. Considering the volume of forest fire dataset, the Apriori algorithm [16–18]
is used more frequently than the Eclat algorithm in forest fire rules mining. However,
the Apriori algorithm is designed to mine the relationship between discrete data. When
conducting forest fire risk assessment, continuous data, such as temperature, needs to be
processed. At this point, the Apriori algorithm may not be able to effectively mine the rules
that users are interested in, which is overlooked in previous research [16–18]. For example,
continuous data, such as temperature, can increase the forest fire risk as the numerical
values increase. It is assumed that if the results of data mining show a high fire risk in a
certain scenario at 20 ◦C, then under other unchanged scenarios, a similar scenario at 40 ◦C
should have a higher fire risk. However, due to the rarity of a temperature of 40 ◦C, the
importance of this rule is much lower than similar rules at 20 ◦C (which is measured by the
frequency of data in the Apriori algorithm), which may lead to the neglect of important
rules under extreme scenarios. Therefore, it is necessary to improve the Apriori algorithm
when using it for forest fire rule mining to avoid this kind of neglect.

Current researchers have performed some work to improve the Apriori algorithm’s
support for continuous data, such as using K-means [19], distribution probability [20],
membership functions [21], etc. However, these works did not provide sufficient attention
to rules in extreme scenarios, which is extremely important in forest fire risk assessment.

In summary, the combination of the powerful expression ability of ontology and
the Apriori algorithm can effectively utilize the mined rules in the forest fire assessment
process. A unified and standardized expression platform is conducive to the automated
dissemination and sharing of knowledge. However, the potential of this combination is
limited by the current association rule mining algorithm.

This article uses ICAA (Improved Continuous Apriori Algorithm), a new improved
Apriori algorithm that can be used for continuous data, to mine forest fire data and achieve
automated knowledge generation, thereby alleviating the problem of the shortcomings
of rule mining algorithms neglecting extreme scenario rules in knowledge-based fire risk
assessment. Furthermore, ontology technology is introduced as a unified and standardized
expression platform to standardize the semantics of heterogeneous data, combining the
constructed ontology and forest fire rules generated by algorithms to achieve knowledge
reasoning, thereby improving the automation level of forest fire risk assessment, and
reducing the knowledge requirements for data users.

The architecture of this article is shown in Figure 1.
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Figure 1. Architecture.

2. Materials and Methods
2.1. Research Area and Dataset

The research area is located in the Bejaia region of northeastern Algeria in northern
Africa. Algeria is a country with a high incidence of forest fires, with an average of 31,300 ha
of forest areas that were destroyed by fires annually [22].The Bejaia region is rich in forest
resources and is one of the most important forest areas in Algeria, with an area of 122,500 ha
of forests, which includes 38% of the total forest surface in Algeria [23]. Meanwhile, the
Bejaia region is located in the southern Mediterranean and is a hot spot for forest fires [24].

The dataset [25] used by the research includes temperature, humidity, wind speed,
and rainfall in the Bejaia region at different times, as well as whether forest fires occurred
on that day. The occurrence of forest fires is considered a high forest fire risk, while days
without forest fires are considered to have low forest fire risk. Using this dataset for
knowledge mining, the generated rules are combined with the ontology technology to
achieve automatic semantic reasoning to support the assessment of forest fire risk.

2.2. Raw Apriori Algorithm and ICAA
2.2.1. Raw Apriori Algorithm

The raw Apriori algorithm considers the association mining of discrete data with a
discrete dataset as input and a rule set as output. Assuming there is a discrete dataset:

DataSet = {D1, D2, · · · , Dn} (1)

Dn =
{

Ix, Iy, · · · , Iz
}

(2)

Dn is a piece of data in the dataset, Ix is an item in the data, and each piece of data
contains several items. Assuming there are total of m items in the dataset, that is:

D1 ∩ D2 ∩ · · · Dn = {I1, I2, · · · , Im} (3)

Then, Dn can be regarded as a point on an m-dimensional space, with a value range of
{0, 1} for each dimension, when:

Dnm =

{
0 Im /∈ Dn
1 Im ∈ Dn

(4)
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Among them, Dnm is the value of Dn in dimension m. In the q-dimensional (q ≤ m)
subspace of the m-dimensional space, data intersects at certain points. The more data at
the intersection point, the more important the information it contains. This importance is
measured by support in the raw Apriori algorithm:

supp
{

Ix, Iy, · · · , Iz
}

q = P
(

Ix, Iy, · · · , Iz
)
=

N
(

Ix, Iy, · · · , Iz
)

n
(5)

Among them,
{

Ix, Iy, · · · , Iz
}

q represents the item set with q items, P
(

Ix, Iy, · · · , Iz
)

represents the probability of the occurrence of the item set, which is estimated by dividing
the number of occurrences of the item set, N

(
Ix, Iy, · · · , Iz

)
, by the total number of data, n.

Figure 2, an example with m = 7, shows blue, green, and red dots representing 1, 2,
and 3 data points, respectively.
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Figure 2. The raw Apriori algorithm represents discrete data as a set of points in a high-
dimensional space.

There are total of ten data points in the Figure, and the intersection point with the most
data is {item1 = 1, item6 = 1, item7 = 1}. There are three intersection points. The support
level for {item1, item6, item7} is:

supp{item1, item6, item7} =
N(item1, item6, item7)

n
= 0.3 (6)

The raw Apriori algorithm measures the accuracy of generated rules by confidence:

con f
(
{Ix, · · ·} →

{
Iy, · · ·

})
=

P({Ix ,···}∪{Iy ,···})
P({Ix ,···}) =

N({Ix ,···}∪{Iy ,···})
N({Ix ,···})

s.t. {Ix, · · ·} ∩
{

Iy, · · ·
}
= ∅

(7)

Unlike support, confidence is directional. {Ix, · · ·} →
{

Iy, · · ·
}

is called a rule, and P
and N are the probabilities and number of occurrences of the item set, respectively. If the
support and confidence are both greater than the set threshold, then the output the rule
{Ix, · · ·} →

{
Iy, · · ·

}
.
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Taking the item set {item1, item6, item7} in Figure 2 as an example:

con f ({item6, item7} → {item1}) =
N({item6, item7, item1})

N({item6, item7})
=

3
3 + 1

= 0.75 (8)

The support and confidence of item set {item1, item6, item7} is 0.3 and 0.75, and if the
set support and confidence threshold are to 0.1 and 0.7, respectively, then the Algorithm
will output the rule {item6, item7} → {item1} .

2.2.2. ICAA

The raw Apriori algorithm calculates all item sets that exceed the support threshold,
calculates the confidence level of each possible rule in each itemset, and finally outputs all
rules that meet the confidence threshold.

When using the raw Apriori algorithm for rule mining on continuous data, it is
necessary to discretize the continuous data. At present, most work extends the Apriori
algorithm in terms of dimension quantity through discretization of continuous data, and a
better method is to expand within a certain dimension. Based on this, this article proposes
a new expression model for the ICAA, as shown in Figure 3, which improves the attention
to the relationships within a certain class of continuous data dimensions by expanding the
range of values in a single dimension to improve the neglect of important rules.
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Considering that one continuous data only uses one data dimension for discretization,
discretized continuous data should also be considered in one dimension, not in several
dimensions like discrete data. Research [26] has introduced fuzzing to extend the Apriori
algorithm, which has to some extent optimized the results of rule mining. However, the
fuzzy discretization of continuous data can only solve the discretization problem of certain
special continuous data.

To solve this problem, firstly, rule mining constraints [27] are added to the Apriori
algorithm. By adding constraints, the right half of the generated rule (i.e., the reasoning
result) is fixed. Based on the fixed reasoning result of the rule, prior knowledge based
on the reasoning result are introduced into the left side (i.e., the data used for reasoning).
In this article, considering that the mined rules are used for forest fire risk assessment,
indicators reflecting forest fire risk are used as the result of association rules.

Then, we classify continuous data into the following four categories based on their
relationship with the reasoning results, and process them separately:
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1. Positive correlation

Continuous data, such as “temperature”, increases the likelihood of reasoning results
from “temperature” to “fire risk” as numerical values increase. Only introducing fuzzing
into Apriori algorithms, or fuzzed continuous data without consider direction, cannot solve
this problem. Therefore, this method considers the direction, and expands this datatype
upwards to correct the support of such rules.

2. Negative correlation

Similarly, there is a negative correlation between “rainfall” and “fire risk”, which
means that previous discretization methods may ignore the important suppression of
extreme rainfall on fire risk. Therefore, this method extends this type of data downward to
correct the support of such rules.

3. Periodicity related

For example, the impact of “time” on “fire risk” has a clear periodicity. The intro-
duction of fuzzing can effectively solve the discretization problem of this type of data.
Therefore, this method adopts fuzzing to discretize and perform subsequent calculations on
this type of data. Unlike other categories, this method defines fuzzy membership functions
for mining periodic data, and defines:

supp
{

Ix, Iy, · · · , Ic, · · ·
}

q =
N
(

Ix, Iy, · · ·
)
+ ∑ µ

(
Ip, · · ·

)
n

(9)

Among them,
{

Ip, · · ·
}

is the set of periodic data participating in the support cal-
culation, and µ is the value of membership function which is defined according to the
actual situation.

4. No obvious pattern

For example, for data with unclear patterns such as “wind speed” and “fire risk”, this
method discretizes them into segments.

Based on prior knowledge and the proposed method, the continuous data in the
dataset are classified as shown in Table 1.

Table 1. Data classification results.

Positive Correlation Negative Correlation Periodicity Related No Obvious Pattern

Temperature Rainfall, Relative
humidity Time Wind speed

After introducing prior knowledge for classification, the data are discretized according
to their classification results, as shown in Tables 2–5.

Table 2. Discretization of temperature after introducing prior knowledge.

Raw Apriori Improved Continuous Apriori

Temperature/◦C Discretized temperature Temperature/◦C Discretized temperature
≥36 Temp_very_high ALL Temp_very_high

≥33 and <36 Temp_high <36 Temp_high
≥30 and <33 Temp_medium <33 Temp_medium
≥27 and <30 Temp_low <30 Temp_low

<27 Temp_very_low <27 Temp_very_low
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Table 3. Discretization of rainfall after introducing prior knowledge.

Raw Apriori Improved Continuous Apriori

Rainfall/mm Discretized rainfall Rainfall/mm Discretized rainfall
≥10 Rain_high ≥10 Rain_high

≥1 and <10 Rain_medium ≥1 Rain_medium
>0 and <1 Rain_low >0 Rain_low

0 Rain_none ALL Rain_none

Table 4. Discretization of relative humidity after introducing prior knowledge.

Raw Apriori Improved Continuous Apriori

Relative humidity/% Discretized relative humidity Relative humidity/% Discretized relative humidity
≥80 RH_very_high ≥80 RH_very_high

≥70 and <80 RH_high ≥70 RH_high
≥60 and <70 RH_medium ≥60 RH_medium
≥50 and <60 RH_low ≥50 RH_low

<50 RH_very_low ALL RH_very_low

Table 5. Discretization of time and wind speed.

Time Wind Speed

Time/day Discretized time Wind Speed/Km·h−1 Discretized wind Speed
1–10 June Time_Early_June ≥19 Ws_very_high

11–20 June Time_Mid_June ≥16 and <19 Ws_high
21–30 June Time_Late_June ≥13 and <16 Ws_medium
1–10 July Time_Early_July ≥10 and <13 Ws_low

. . .. . . . . .. . . <10 Ws_very_low

According to Formula 9, this article sets the membership function of time data as
shown in Figure 4.
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2.3. Ontology and Rule Reasoning

Ontology Web Language (OWL) is an ontology expression language recommended by
The World Wide Web Consortium (W3C) [28], and Semantic web rule language (SWRL) is a
rule expression language built on the OWL language [29]. By combining SWRL and OWL,
rule-based automated reasoning has been achieved to support forest fire risk assessment.
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Based on the disaster ontology in article [30], and referring to references [31–33], the
ontology structure used in this article has been determined. Considering the powerful
expressive power of ontology technology, the ontology constructed in this article retains
the possibility of expanding the natural disaster management process beyond forest fires
and risk assessment. The ontology constructed in this article based on the previous work is
divided into five parts:

1. Geographical ontology, which is mainly used to express geographical entities and
relationships between entities.

2. Sensor ontology, which is used to express sensor entity and sensor data. As the basis
for risk assessment, the information is semantically unified in the subclass sensor data
under the sensor ontology.

3. Disaster observation ontology, which is the superclass of forest fire risk assessment. It
is also built to ensure the scalability of the ontology.

4. Emergency plan ontology, which is connected to the geographic entity and comman-
der. It is used for high-risk assessment results response processes.

5. People ontology, which is an important entity involved in natural disaster manage-
ment. People participate in the entire assessment and emergency response process.
Meanwhile, people are introduced into the ontology to improve the stability and
robustness of the system.

The structure of the ontology is shown in Figure 5.
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Among them, “Class” is used to represent abstract concepts, which includes “Has
subclass”, “Object properties”, “Data properties”, and “Individual”; “Object properties”
describe the relationship between classes, with names and directions, but without specific
numerical values, and “Has subclass” is also a special type of “Object properties”; and
“Data properties” describe the characteristics of a class itself, which have no direction but
specific numerical values. Because a class is an abstract concept, it can also be a superclass
of an “Individual”, which is not shown in Figure 5. It represents a specific thing under the
class, such as a specific piece of land under a geographical entity (rather than an abstract
conceptual land). The “Individual” of the ontology constructed in this article are defined in
Section 3, with specific examples, and are used in the real reasoning process.
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By utilizing the concepts expressed by the ontology, we can achieve automated rea-
soning with SWRL rules. The basic syntax of SWRL rules is as follows:

a1̂a2̂ · · · − > b1 ˆb2 · · · (10)

where “a” represents the input, “b” represents the output, “ˆ” stands for “and”, and “->” is
used to separate the input from the output. When conducting rule-based reasoning based
on ontology, both “a” and “b” represent individuals, object properties, or data properties
defined in the ontology. In this article, these rules are obtained through knowledge mining
using the ICAA.

3. Results
3.1. Results of the Rule Mining Based on Raw Apriori Algorithm and ICAA

To process data using the raw Apriori algorithm, it is necessary to set the support
threshold and confidence threshold. The setting of thresholds usually considers factors
such as data domain, dataset scale, and data correlation degree. In this article, referring to
expert knowledge and experience, the support threshold is set to 0.1 and the confidence
threshold is set to 0.7. The algorithm outputs twelve rules, and the first six are shown in
Table 6.

Table 6. Output results of the raw Apriori algorithm (partial).

No. Rule Confidence Support

1 RH_low -> Risk_high 0.7083 0.1393
2 Rain_none -> Risk_high 0.8333 0.4508
3 Time_Late_August -> Risk_high 0.7778 0.1148
4 Rain_none ˆ Time_Late_August -> Risk_high 1.0000 0.1148
5 Rain_none ˆ RH_medium -> Risk_high 0.9583 0.1885
6 Temp_medium ˆ Rain_none -> Risk_high 0.9091 0.1639

The rule “Rain_none ˆ Time_Late_August -> Risk_high” means that in late August
without rainfall, the fire risk is high, with a confidence level of 1.0000 and a support level
of 0.1148.

Using the same threshold, with a support of 0.1 and a confidence of 0.7, the ICAA
proposed in this article was used to mine rules in the dataset. The algorithm output a total
of 35 rules, and the first 16 are shown in Table 7.

Table 7. Output results of ICAA (partial).

No. Rule Confidence Support

1 RH_low -> Risk_high 0.8485 0.459
2 Rain_none -> Risk_high 0.8429 0.4836
3 Time_Late_August -> Risk_high 0.7720 0.1221
4 Rain_none ˆ Time_Late_August -> Risk_high 1.0000 0.1221
5 Rain_none ˆ RH_medium -> Risk_high 0.9070 0.3197
6 Rain_none ˆ RH_low -> Risk_high 0.9492 0.459
7 RH_very_low ˆ Rain_none -> Risk_high 0.9833 0.4836
8 Temp_medium ˆ Rain_none -> Risk_high 0.8125 0.2131
9 Temp_high ˆ Rain_none -> Risk_high 0.9259 0.4098

10 Rain_none ˆ Temp_very_high -> Risk_high 0.9833 0.4836
11 RH_very_low -> Risk_high 0.9516 0.4836
12 Temp_very_high -> Risk_high 0.9833 0.4836
13 RH_medium ˆ Temp_very_high -> Risk_high 0.9750 0.3197
14 Rain_none ˆ Ws_medium -> Risk_high 0.8529 0.2377
15 Temp_high ˆ RH_low -> Risk_high 0.9412 0.3934
16 RH_high ˆ Temp_very_high -> Risk_high 0.9286 0.1066



Forests 2024, 15, 967 10 of 14

3.2. Results of the Ontology based Rule Reasoning

After obtaining the mining rules, the rules are combined with the designed ontology
for rule reasoning to verify the effective support of rule mining algorithms for disaster man-
agement.

Firstly, based on the ontology structure designed in the previous section, construct
the ontology using Protégé [34], which is an ontology management software developed
by the Stanford University research team, and the reasoning based on the rules mined in
Section 3.1. Create individuals of Sensor_data based on the data and set data properties for
each individual, such as time, rainfall, temperature, humidity, etc.

Express the rules mined in the previous section in the form of SWRL syntax, as follows:
The output form of mining rules:

Rain_none ˆ Time_Late_August -> Risk_high (11)

SWRL syntax:

Sensor_data(?x) ˆ Rain(?x, ?a) ˆ Time(?x, ?b) ˆ swrlb:stringEqualIgnoreCase(?a, “Rain_none”) ˆ
swrlb:stringEqualIgnoreCase(?b, “Time_Late_August”) -> Risk(?x, “Risk_high”)

(12)

Among them, “Sensor_data” represents an individual under the “Sensor_data” class,
“Rain”, “Time”, and “Risk” are data properties defined in the ontology, and “swrlb: stringE-
qualIgnoreCase” is a built-in rule function in SWRL used for string-type comparisons.

The reasoning process is shown in Figure 6.
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The rules output by the ICAA are entered into the rule library in the SWRL syntax, and
the data collected by sensors are managed as individuals by the ontology. By combining the
first two, reasoning based on SWRL rules can be achieved. The partial results of reasoning
are shown in Table 8.
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Table 8. Result of the rule reasoning (partial).

Data
Rule Reasoning Input Result

Time Temp RH Ws Rain Risk

data1709534004 Time_Mid_June Temp_medium RH_medium Ws_medium Rain_none Risk_high
data1709534005 Time_Mid_June Temp_very_low RH_very_high Ws_very_high Rain_none Risk_high
data1709534006 Time_Mid_June Temp_low RH_very_high Ws_very_high Rain_medium \
data1709534007 Time_Mid_June Temp_medium RH_high Ws_very_high Rain_low \
data1709534008 Time_Mid_June Temp_low RH_very_high Ws_high Rain_high \

The reasoning results are reflected in the form of data properties on the individual, as
shown in the Table above.

4. Discussion

In this paper, we propose the ICAA, an Improved Apriori algorithm to enhancing
forest fire risk assessment. Through rule mining and ontology-based reasoning of forest
fire instance data cases in the Bejaia region of Algeria, the advantages and usability of the
entire methodology proposed in this article has been fully demonstrated.

The ontology constructed in this article can provide a scalable and standardized
expression platform for forest fire risk assessment. The ICAA rules can be combined with
SWRL rules to achieve automated reasoning based on the constructed ontology, and the
results are written back to the ontology. This improves the automation level of knowledge
in forest fire risk assessment, reduces the knowledge requirements for users, and enables
semantic knowledge and observation data to better support forest fire risk assessment work.

Compared with the raw Apriori algorithm, the ICAA can better handle contin-
uous data association rule mining for forest fire risk assessment. The ICAA has the
following advantages:

1. The mining results of the ICAA include all the rules mined with the raw Apriori
algorithm, which proves that the ICAA is an incremental extension of the raw Apri-
ori algorithm.

2. Due to the increased support for small probability events such as “Temp_very_high”,
the number of candidate rules that meet the support increased, resulting in a 191.67%
increase in the number of generated rules.

3. The raw Apriori algorithm discovered “Temp_medium ˆ Rain_none -> Risk_high”, but
did not find “Temp_high ˆ Rain_none -> Risk_high” and “Rain_none ˆ Temp_very_high
-> Risk_high”. These three rules were all discovered in the ICAA, and their support
increased sequentially, which is also in line with the expectation of prior knowledge.
Similarly, there are also the combinations of “Temp_high” and “RH”, and “Rain_none”
and “RH”. Compared with the raw Apriori algorithm, the ICAA has improved the
number of mining rules and support with confidence and support, as shown in
Figure 7.

The subfigure (a) shows the combination of “Rain_none” and “Temp”. In the ab-
sence of rainfall, the raw Apriori algorithm only outputs two rules: “Temp_medium”,
and “Temp_high”. Although the confidence level of “Temp_high” is higher than that
of “Temp_medium”, its support is lower. This is because “Temp_high” appears fewer
times, and as for “Temp_very_high”, it appears too few times to be found with the raw
Apriori algorithm. This situation has been improved in the ICAA. Due to the extension
of temperature in the ICAA, a large amount of low-risk data have reduced the support
of “Temp_medium” in the low-temperature region (by increasing the denominator of
support calculation), while in the high-temperature region, the support and confidence
of “Temp_high” and “Temp_very_high” have been increased. The subfigures (b) and (c)
also reflect the same situation, and these data represent the possible fire risk under extreme
scenarios. Considering their extremely high importance, they cannot be discarded as re-
dundant rules. The above three examples indicate that when processing continuous data
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association rule mining for forest fire risk assessment, the raw Apriori algorithm’s neglect
of extreme scenario rules is widespread, and ICAA alleviates this neglect to a certain extent.
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The comparison of ICAA, raw Apriori, and three other Apriori algorithm improve-
ments in Table 9 shows that the neglect to rules in extreme scenarios also exists to varying
degrees in other improved algorithms. The ICAA has made great progress in increasing
attention to rules under extreme scenarios. This proves the superiority of the ICAA, con-
sidering that the application area of the algorithm is forest fire rule mining, and the rules
under extreme scenarios are very important.

Table 9. Comparison with other Apriori algorithm improvements.

Method Application Area Improvement Ideas Advantage Attention to Rules in Extreme
Scenarios

raw Apriori
Association rules

mining for discrete
data.

-
Can handle association
rule mining of discrete

data well.

When continuous data is input,
rules under extreme scenarios are

ignored.

ICAA
Association rules

mining for forest fire
data.

Introducing prior
knowledge to classify
continuous data for

data directional
discretization.

Discretization with
direction strengthens

the emphasis on
extreme scenarios, and

avoids ignoring
important but

low-frequency rules.

By introducing prior knowledge,
directional discretization methods
effectively increase the importance

of rules in extreme scenarios.

[19]
Association rules

mining for urban water
supply.

Cluster continuous
data using K-means to

determine the
threshold for data

discretization.

Compared to the raw
Apriori algorithm, it

can support continuous
data input.

Considering that extreme
scenarios are often not recognized
as a separate cluster in clustering,

rules may be ignored.

[20]

Association rules
mining for power
equipment fault

diagnosis.

Using distribution
probability of the

equipment condition
for data discretization.

The division reflects
statistical significance

and can effectively
reflect the status of

equipment.

Probability based methods can
effectively distinguish data under
normal operating conditions, but

for extreme low-frequency
scenarios, rules may be ignored.

[21] Association rules
mining for big data.

Introducing fuzzy
technology and

constructing symmetric
membership functions

for fuzzy mining of
continuous data.

Able to mine fuzzy
association rules under

the conditions of big
data.

The enhancement of symmetric
fuzziness for data in extreme

scenarios is limited. Meanwhile, to
combat the exponential increase in
search space caused by fuzzy sets,

this method restricts the search
depth, which may further lead to

ignored rules.
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5. Conclusions

This study provides an improved association rule mining algorithm, ICAA, which
enhances the adaptability of the Apriori algorithm to continuous data by introducing
prior knowledge to classify the input data. In addition, the rules obtained from mining
are combined with ontology to implement semantic reasoning, reducing the knowledge
requirements for users in forest fire risk assessment.

Based on ICAA and the designed ontology, an ontology and data individuals were
constructed using the ontology management software protege on a forest fire dataset in the
Bejaia region of northeastern Algeria. The proposed ICAA was used to mine the rules of
the dataset, and the mined rules were combined with the constructed ontology in the form
of SWRL specifications, achieving accurate automated reasoning.

The results show that the ICAA outperforms the raw Apriori algorithm, the number
of generated rules increased by 191.67%, increasing the attention to extreme scenario rules
for continuous data in association rules mining. The output rules can be integrated with
the constructed ontology to achieve automated semantic reasoning to support forest fire
risk assessment.

The work presented can be used to enhance the forest fire risk assessment and con-
tribute to the generation and sharing of forest-fire-related knowledge, alleviate the problem
of insufficient knowledge in forest fire risk assessment, and be extended to forest fire risk
management in other regions or other forest fire management services such as forest fire
spread management and forest fire point identification.

Author Contributions: Conceptualization, Y.D.; Data curation, C.X.; Investigation, Y.D.; Methodology,
Y.D.; Software, Y.D.; Supervision, Z.L.; Validation, C.X.; Writing—original draft, Y.D.; Writing—review
and editing, Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China,
grant number 2021YFC3000302.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ju, W.Y.; Xing, Z.X.; Wu, J.; Kang, Q.C. Evaluation of forest fire risk based on multicriteria decision analysis techniques for

Changzhou, China. Int. J. Disaster Risk Reduct. 2023, 98, 104082. [CrossRef]
2. Naderpour, M.; Rizeei, H.M.; Ramezani, F. Forest Fire Risk Prediction: A Spatial Deep Neural Network-Based Framework. Remote

Sens. 2021, 13, 2513. [CrossRef]
3. Wen, H.R.; Guo, Q.Z.; Zeng, Y.H.; Wu, Z.P.; Sun, Z.H. Study on forest fire risk in Conghua district of Guangzhou city based on

multi-source data. Nat. Hazards 2022, 114, 3163–3183. [CrossRef]
4. Brys, C.; Navas-Delgado, I.; Aldana-Montes, J.F. Wildfire risk weighting and behaviour prediction using open geospatial data

and ontologies. J. Inf. Sci. 2023. [CrossRef]
5. Rubi, J.N.S.; de Carvalho, P.H.P.; Gondim, P.R.L. Forestry 4.0 and Industry 4.0: Use case on wildfire behavior predictions. Comput.

Electr. Eng. 2022, 102, 108200. [CrossRef]
6. Gruber, T.R.; Olsen, G.R.; Runkel, J. The configuration design ontologies and the VT elevator domain theory. Int. J. Hum. Comput.

Stud. 1996, 44, 569–598. [CrossRef]
7. Chandra, R.; Agarwal, S.; Singh, N. Semantic sensor network ontology based decision support system for forest fire management.

Ecol. Inform. 2022, 72, 101821. [CrossRef]
8. Ge, X.T.; Yang, Y.; Peng, L.; Chen, L.J.; Li, W.C.; Zhang, W.Y.; Chen, J.H. Spatio-Temporal Knowledge Graph Based Forest Fire

Prediction with Multi Source Heterogeneous Data. Remote Sens. 2022, 14, 3496. [CrossRef]
9. Masa, P.; Kintzios, S.; Vasileiou, Z.; Meditskos, G.; Vrochidis, S.; Kompatsiaris, I. A Semantic Framework for Decision Making in

Forest Fire Emergencies. Appl. Sci. 2023, 13, 9065. [CrossRef]
10. Liu, J.C.; Tang, F.L.; Zhu, Y.M.; Yu, J.D.; Chen, L.; Gao, M. INFER: Distilling knowledge from human-generated rules with for

STINs. Inf. Sci. 2023, 645, 119219. [CrossRef]
11. Zhao, X.F.; Huang, L.L.; Sun, Z.; Fan, X.T.; Zhang, M. Design Optimization of Building Exit Locations Based on Building

Information Model and Ontology. Sustainability 2023, 15, 12922. [CrossRef]

https://doi.org/10.1016/j.ijdrr.2023.104082
https://doi.org/10.3390/rs13132513
https://doi.org/10.1007/s11069-022-05510-9
https://doi.org/10.1177/01655515231202757
https://doi.org/10.1016/j.compeleceng.2022.108200
https://doi.org/10.1006/ijhc.1996.0024
https://doi.org/10.1016/j.ecoinf.2022.101821
https://doi.org/10.3390/rs14143496
https://doi.org/10.3390/app13169065
https://doi.org/10.1016/j.ins.2023.119219
https://doi.org/10.3390/su151712922


Forests 2024, 15, 967 14 of 14

12. Lv, M.X.; Cao, X.D.; Wu, T.X.; Li, Y.H. A Civil Aviation Customer Service Ontology and Its Applications. Data Intell. 2023, 5,
1063–1081. [CrossRef]

13. Alrahwan, B.A.; Farouk, M. ASCF: Optimization of the Apriori Algorithm Using Spark-Based Cuckoo Filter Structure. Int. J.
Intell. Syst. 2024, 2024, 8781318. [CrossRef]

14. Bao, F.G.; Mao, L.H.; Zhu, Y.L.; Xiao, C.C.; Xu, C.H. An Improved Evaluation Methodology for Mining Association Rules. Axioms
2022, 11, 17. [CrossRef]

15. Zaki, M.J. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 2000, 12, 372–390. [CrossRef]
16. Sitanggang, I.S.; Rakhmadianti, M.; Khotimah, H. Association Patterns of Hotspot Sequence with Socio-economic Aspects in

Peatland in Sumatra. In Proceedings of the International Conference on Computer, Control, Informatics and its Applications
(IC3INA), Tangerang, Indonesia, 3–5 October 2016; pp. 175–178.

17. Boulehmi, M.; Ayadi, A. Extraction of Spatiotemporal Association Rules for Forest Fires Prediction. In Proceedings of the
6th International Conference of Reliable Information and Communication Technology (IRICT), Electr Network, Vitual, 22–23
December 2021; pp. 209–218.

18. Cleland, Z.W.; Dao, K.A.; Dao, T.H.D. Detecting changes in spatial characteristics of Colorado human-caused wildfires using
APRIORI-based frequent itemset mining. Comput. Environ. Urban Syst. 2023, 101, 101941. [CrossRef]

19. Liu, X.; Sang, X.F.; Chang, J.X.; Zheng, Y.; Han, Y.P. The water supply association analysis method in Shenzhen based on kmeans
clustering discretization and apriori algorithm. PLoS ONE 2021, 16, e0255684. [CrossRef] [PubMed]

20. Liu, H.; Wang, Y.Y.; Yang, Y.; Liao, R.J.; Geng, Y.J.; Zhou, L.W. A Failure Probability Calculation Method for Power Equipment
Based on Multi-Characteristic Parameters. Energies 2017, 10, 704. [CrossRef]

21. Alcalá-Fdez, J.; Alcalá, R.; Herrera, F. A Fuzzy Association Rule-Based Classification Model for High-Dimensional Problems with
Genetic Rule Selection and Lateral Tuning. IEEE Trans. Fuzzy Syst. 2011, 19, 857–872. [CrossRef]

22. Bentekhici, N.; Bellal, S.A.; Zegrar, A. Contribution of remote sensing and GIS to mapping the fire risk of Mediterranean forest
case of the forest massif of Tlemcen (North-West Algeria). Nat. Hazards 2020, 104, 811–831. [CrossRef]

23. Aini, A.; Curt, T.; Bekdouche, F. Modelling fire hazard in the southern Mediterranean fire rim (Bejaia region, northern Algeria).
Environ. Monit. Assess. 2019, 191, 747. [CrossRef] [PubMed]

24. Meddour-Sahar, O. Wildfires in Algeria: Problems and challenges. Iforest-Biogeosciences For. 2015, 8, 818–826. [CrossRef]
25. Abid, F. Algerian Forest Fires Dataset. 2019. Available online: https://archive.ics.uci.edu/dataset/547/algerian+forest+fires+

dataset (accessed on 9 January 2024).
26. Yan, S.R.; Pirooznia, S.; Heidari, A.; Navimipour, N.J.; Unal, M. Implementation of a Product-Recommender System in an

IoT-Based Smart Shopping Using Fuzzy Logic and Apriori Algorithm. IEEE Trans. Eng. Manag. 2022, 71, 4940–4954. [CrossRef]
27. Xu, Z.; Huo, H.X.; Pang, S.H. Identification of Environmental Pollutants in Construction Site Monitoring Using Association Rule

Mining and Ontology-Based Reasoning. Buildings 2022, 12, 2111. [CrossRef]
28. Hawke, S.; Horridge, M.; Parsia, B.; Schneider, M. OWL 2 Web Ontology Language Conformance, 2nd ed.; 2012. Available online:

https://www.w3.org/2012/pdf/REC-owl2-conformance-20121211.pdf (accessed on 20 January 2024).
29. Bassiliades, N. A Tool for Transforming Semantic Web Rule Language to SPARQL Infererecing Notation. Int. J. Semant. Web Inf.

Syst. 2020, 16, 87–115. [CrossRef]
30. Yumin, D.; Ziyang, L.; Xuesong, L.; Xiaohui, L. Using ontology and rules to retrieve the semantics of disaster remote sensing data.

J. Syst. Eng. Electron. 2024, 1–8. [CrossRef]
31. GB/T 36743-2018; Forest Fire Danger Weather Ratings. State Administration for Market Regulation of China: Beijing, China, 2018.
32. Bharambe, U.; Durbha, S.S. Adaptive Pareto-based approach for geo-ontology matching. Comput. Geosci. 2018, 119, 92–108.

[CrossRef]
33. Compton, M.; Barnaghi, P.; Bermudez, L.; García-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C.; Herzog,

A.; et al. The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 2012, 17, 25–32. [CrossRef]
34. Musen, M.A.; Protege, T. The Protege Project: A Look Back and a Look Forward. AI Matters 2015, 1, 4–12. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1162/dint_a_00237
https://doi.org/10.1155/2024/8781318
https://doi.org/10.3390/axioms11010017
https://doi.org/10.1109/69.846291
https://doi.org/10.1016/j.compenvurbsys.2023.101941
https://doi.org/10.1371/journal.pone.0255684
https://www.ncbi.nlm.nih.gov/pubmed/34351977
https://doi.org/10.3390/en10050704
https://doi.org/10.1109/tfuzz.2011.2147794
https://doi.org/10.1007/s11069-020-04191-6
https://doi.org/10.1007/s10661-019-7931-0
https://www.ncbi.nlm.nih.gov/pubmed/31724084
https://doi.org/10.3832/ifor1279-007
https://archive.ics.uci.edu/dataset/547/algerian+forest+fires+dataset
https://archive.ics.uci.edu/dataset/547/algerian+forest+fires+dataset
https://doi.org/10.1109/tem.2022.3207326
https://doi.org/10.3390/buildings12122111
https://www.w3.org/2012/pdf/REC-owl2-conformance-20121211.pdf
https://doi.org/10.4018/ijswis.2020010105
https://doi.org/10.23919/JSEE.2024.000024
https://doi.org/10.1016/j.cageo.2018.06.008
https://doi.org/10.1016/j.websem.2012.05.003
https://doi.org/10.1145/2757001.2757003

	Introduction 
	Materials and Methods 
	Research Area and Dataset 
	Raw Apriori Algorithm and ICAA 
	Raw Apriori Algorithm 
	ICAA 

	Ontology and Rule Reasoning 

	Results 
	Results of the Rule Mining Based on Raw Apriori Algorithm and ICAA 
	Results of the Ontology based Rule Reasoning 

	Discussion 
	Conclusions 
	References

