Anomalous Warm Temperatures Recorded Using Tree Rings in the Headwater of the Jinsha River during the Little Ice Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview and Chronological Development
2.2. Climate Data
2.3. Reconstruction and Analysis Methods
3. Results
3.1. Relationship between Tree Growth and Climate Factors
3.2. Minimum Temperature Reconstruction
3.3. Characteristic Changes in Minimum Temperature
4. Discussion
4.1. Response of the Radial Growth of Tree Rings to Meteorological Elements
4.2. Temporal Representativeness and Reconstruction Reliability
4.3. Reconstructing Multiscale Fluctuations in Temperature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, J.; Zhu, J.; Wang, S.; Yue, C.; Shen, H. Global Warming, Human-Induced Carbon Emissions, and Their Uncertainties. Sci. China Earth Sci. 2011, 54, 1458–1468. [Google Scholar] [CrossRef]
- Boyles, R.P.; Raman, S. Analysis of Climate Trends in North Carolina (1949–1998). Environ. Int. 2003, 29, 263–275. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic Warming in the Tibetan Plateau during Recent Decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Huang, J.; Guan, X.; Ji, F. Enhanced Cold-Season Warming in Semi-Arid Regions. Atmos. Chem. Phys. 2012, 12, 5391–5398. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Ahas, R.; Aasa, A. Onset of Spring Starting Earlier across the Northern Hemisphere. Glob. Change Biol. 2006, 12, 343–351. [Google Scholar] [CrossRef]
- Piao, S.; Friedlingstein, P.; Ciais, P.; Viovy, N.; Demarty, J. Growing Season Extension and Its Impact on Terrestrial Carbon Cycle in the Northern Hemisphere over the Past 2 Decades. Glob. Biogeochem. Cycles 2007, 21, 2006GB002888. [Google Scholar] [CrossRef]
- Brooks, P.D.; Grogan, P.; Templer, P.H.; Groffman, P.; Öquist, M.G.; Schimel, J. Carbon and Nitrogen Cycling in Snow-Covered Environments: Carbon and Nitrogen Cycling in Snow-Covered Environments. Geogr. Compass 2011, 5, 682–699. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.; Wang, Y.; Ma, Y.; Liu, H. Recent Warming Evidence Inferred from a Tree-Ring-Based Winter-Half Year Minimum Temperature Reconstruction in Northwestern Yichang, South Central China, and Its Relation to the Large-Scale Circulation Anomalies. Int. J. Biometeorol. 2016, 60, 1885–1896. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhou, J.; Sun, N.; Jia, B.; Hu, G. Variation Trends of Precipitation and Runoff in the Jinsha River Basin, China: 1961–2015. IOP Conf. Ser. Earth Environ. Sci. 2020, 440, 052044. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Wu, Z. Analysis of Climate Variability in the Jinsha River Valley. J. Trop. Meteorol. 2016, 22, 243–251. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, W.; Liang, S.; Wang, S. Spatiotemporal Variations of Extreme Precipitation Events in the Jinsha River Basin, Southwestern China. Adv. Meteorol. 2020, 2020, 3268923. [Google Scholar] [CrossRef]
- Liu, X.; Peng, D.; Xu, Z. Identification of the Impacts of Climate Changes and Human Activities on Runoff in the Jinsha River Basin, China. Adv. Meteorol. 2017, 2017, 4631831. [Google Scholar] [CrossRef]
- Schwartz, S.A. An Interdisplinary Approach to the Little Ice Age and Its Implications for Global Change Research. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1994. [Google Scholar]
- Wang, S.; Liu, J.; Zhou, J. The Climate of Little Ice Age Maximum in China. Lake Sci. 2015, 15, 369–376. [Google Scholar] [CrossRef]
- Felis, T.; Ionita, M.; Rimbu, N.; Lohmann, G.; Kölling, M. Mild and Arid Climate in the Eastern Sahara-Arabian Desert During the Late Little Ice Age. Geophys. Res. Lett. 2018, 45, 7112–7119. [Google Scholar] [CrossRef]
- Pitman, K.J.; Smith, D.J. Tree-Ring Derived Little Ice Age Temperature Trends from the Central British Columbia Coast Mountains, Canada. Quat. Res. 2012, 78, 417–426. [Google Scholar] [CrossRef]
- Shen, D.; Li, S. Environment Change of Sihu Lake in the Past 450 Years, Southern China. Environ. Earth Sci. 2013, 70, 2953–2962. [Google Scholar] [CrossRef]
- Jomelli, V.; Lane, T.; Favier, V.; Masson-Delmotte, V.; Swingedouw, D.; Rinterknecht, V.; Schimmelpfennig, I.; Brunstein, D.; Verfaillie, D.; Adamson, K.; et al. Paradoxical Cold Conditions during the Medieval Climate Anomaly in the Western Arctic. Sci. Rep. 2016, 6, 32984. [Google Scholar] [CrossRef]
- Degroot, D. Climate Change and Society in the 15th to 18th Centuries. WIREs Clim. Chang. 2018, 9, e518. [Google Scholar] [CrossRef]
- Yang, B.; Braeuning, A.; Liu, J.; Davis, M.E.; Yajun, S. Temperature Changes on the Tibetan Plateau during the Past 600 Years Inferred from Ice Cores and Tree Rings. Glob. Planet. Change 2009, 69, 71–78. [Google Scholar] [CrossRef]
- Nesje, A.; Dahl, S.O.; Thun, T.; Nordli, O. The “Little Ice Age” Glacial Expansion in Western Scandinavia: Summer Temperature or Winter Precipitation? Clim. Dyn. 2008, 30, 789–801. [Google Scholar] [CrossRef]
- Chen, F.; Yuan, Y.; Wei, W.; Yu, S.; Zhang, T. Tree Ring-Based Winter Temperature Reconstruction for Changting, Fujian, Subtropical Region of Southeast China, since 1850: Linkages to the Pacific Ocean. Theor. Appl. Climatol. 2012, 109, 141–151. [Google Scholar] [CrossRef]
- Shah, S.K.; Pandey, U.; Mehrotra, N.; Wiles, G.C.; Chandra, R. A Winter Temperature Reconstruction for the Lidder Valley, Kashmir, Northwest Himalaya Based on Tree-Rings of Pinus Wallichiana. Clim. Dyn. 2019, 53, 4059–4075. [Google Scholar] [CrossRef]
- Borgaonkar, H.P.; Ram, S.; Sikder, A.B. Assessment of Tree-Ring Analysis of High-Elevation Cedrus Deodara D. Don from Western Himalaya (India) in Relation to Climate and Glacier Fluctuations. Dendrochronologia 2009, 27, 59–69. [Google Scholar] [CrossRef]
- Porter, T.J.; Pisaric, M.F.J.; Field, R.D.; Kokelj, S.V.; Edwards, T.W.D.; deMontigny, P.; Healy, R.; LeGrande, A.N. Spring-Summer Temperatures since AD 1780 Reconstructed from Stable Oxygen Isotope Ratios in White Spruce Tree-Rings from the Mackenzie Delta, Northwestern Canada. Clim. Dyn. 2014, 42, 771–785. [Google Scholar] [CrossRef]
- Wang, L.; Duan, J.; Chen, J.; Huang, L.; Shao, X. Temperature Reconstruction from Tree-ring Maximum Density of Balfour Spruce in Eastern Tibet, China. Int. J. Climatol. 2010, 30, 972–979. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, H.; Liang, E.; Liu, B.; Shi, J.; Zhang, R.; Yuan, Y.; Grießinger, J. A Tree Ring-Based Winter Temperature Reconstruction for the Southeastern Tibetan Plateau since 1340 CE. Clim. Dyn. 2019, 53, 3221–3233. [Google Scholar] [CrossRef]
- Gou, X.; Chen, F.; Jacoby, G.; Cook, E.; Yang, M.; Peng, J.; Zhang, Y. Rapid Tree Growth with Respect to the Last 400 Years in Response to Climate Warming, Northeastern Tibetan Plateau. Int. J. Climatol. 2007, 27, 1497–1503. [Google Scholar] [CrossRef]
- Liang, E.; Shao, X.; Qin, N. Tree-Ring Based Summer Temperature Reconstruction for the Source Region of the Yangtze River on the Tibetan Plateau. Glob. Planet. Change 2008, 61, 313–320. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, Q.-B. A 449 Year Warm Season Temperature Reconstruction in the Southeastern Tibetan Plateau and Its Relation to Solar Activity: Temperature Reconstruction in the Tibet. J. Geophys. Res. Atmos. 2014, 119, 11578–11592. [Google Scholar] [CrossRef]
- Gou, X.; Gao, L.; Deng, Y.; Chen, F.; Yang, M.; Still, C. An 850-year Tree-ring-based Reconstruction of Drought History in the Western Qilian Mountains of Northwestern China. Int. J. Climatol. 2015, 35, 3308–3319. [Google Scholar] [CrossRef]
- Deng, Y.; Gou, X.; Gao, L.; Yang, T.; Yang, M. Early-Summer Temperature Variations over the Past 563 Yr Inferred from Tree Rings in the Shaluli Mountains, Southeastern Tibet Plateau. Quat. Res. 2014, 81, 513–519. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Li, T.; Au, T.F. 351-Year Tree Ring Reconstruction of the Gongga Mountains Winter Minimum Temperature and Its Relationship with the Atlantic Multidecadal Oscillation. Clim. Chang. 2021, 165, 49. [Google Scholar] [CrossRef]
- Chen, F.; Shang, H.; Panyushkina, I.P.; Meko, D.M.; Yu, S.; Yuan, Y.; Chen, F. Tree-Ring Reconstruction of Lhasa River Streamflow Reveals 472 Years of Hydrologic Change on Southern Tibetan Plateau. J. Hydrol. 2019, 572, 169–178. [Google Scholar] [CrossRef]
- Li, T.; Li, J. A 564-Year Annual Minimum Temperature Reconstruction for the East Central Tibetan Plateau from Tree Rings. Glob. Planet. Change 2017, 157, 165–173. [Google Scholar] [CrossRef]
- Li, Z.-S.; Zhang, Q.-B.; Ma, K. Tree-Ring Reconstruction of Summer Temperature for A.D. 1475–2003 in the Central Hengduan Mountains, Northwestern Yunnan, China. Clim. Change 2012, 110, 455–467. [Google Scholar] [CrossRef]
- Gou, X.; Yang, T.; Gao, L.; Deng, Y.; Yang, M.; Chen, F. A 457-Year Reconstruction of Precipitation in the Southeastern Qinghai-Tibet Plateau, China Using Tree-Ring Records. Chin. Sci. Bull. 2013, 58, 1107–1114. [Google Scholar] [CrossRef]
- Fan, Z.; Bräuning, A.; Cao, K. Tree-ring Based Drought Reconstruction in the Central Hengduan Mountains Region (China) since A.D. 1655. Int. J. Climatol. 2008, 28, 1879–1887. [Google Scholar] [CrossRef]
- Yang, B.; Chen, X.; He, Y.; Wang, J.; Lai, C. Reconstruction of Annual Runoff since CE 1557 Using Tree-Ring Chronologies in the Upper Lancang-Mekong River Basin. J. Hydrol. 2019, 569, 771–781. [Google Scholar] [CrossRef]
- Xiao, D.; Shao, X.; Qin, N.; Huang, X. Tree-Ring-Based Reconstruction of Streamflow for the Zaqu River in the Lancang River Source Region, China, over the Past 419 Years. Int. J. Biometeorol. 2017, 61, 1173–1189. [Google Scholar] [CrossRef]
- Yao, L.; Lu, J.; Zhang, W.; Qin, J.; Zhou, C.; Ngoc, N.T.; Pinage, E.R. Spatiotemporal Analysis of Extreme Temperature Change on the Tibetan Plateau Based on Quantile Regression. Earth Space Sci. 2022, 9, e2022EA002571. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Yang, X.; Hao, Y.; Guo, H.; Kossi, F.; Xin, Z.; Wei, W.; Zhang, Z.; Zhang, X.; et al. Analysis of Precipitation Extremes in the Qinghai-Tibetan Plateau, China: Spatio-Temporal Characteristics and Topography Effects. Atmosphere 2017, 8, 127. [Google Scholar] [CrossRef]
- Valjarevic, A.; Popovici, C.; Stilic, A.; Radojkovic, M. Cloudiness and Water from Cloud Seeding in Connection with Plants Distribution in the Republic of Moldova. Appl. Water Sci. 2022, 12, 262. [Google Scholar] [CrossRef]
- Maes, S.L.; Vannoppen, A.; Altman, J.; Van Den Bulcke, J.; Decocq, G.; De Mil, T.; Depauw, L.; Landuyt, D.; Perring, M.P.; Van Acker, J.; et al. Evaluating the Robustness of Three Ring-Width Measurement Methods for Growth Release Reconstruction. Dendrochronologia 2017, 46, 67–76. [Google Scholar] [CrossRef]
- Ziemiańska, M.; Kalbarczyk, R. Biometrics of Tree-Ring Widths of (Populus X Canadensis Moench) and Their Dependence on Precipitation and Air Temperature in South-Western Poland. Wood Res. 2018, 63, 2018. [Google Scholar]
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree-Ring Bull 1983, 43, 51–67. [Google Scholar] [CrossRef]
- Cook, E.R. A Time Series Analysis Approach to Tree Ring Standardization; Dendrochronology, Forestry, Dendroclimatology, Autoregressive Process: Tucson, AZ, USA, 1985. [Google Scholar]
- Cook, E.; Briffa, K. A Comparison of Some Tree-Ring Standardization Methods. In Methods of Dendrochronology; Cook, E.R., Kairiukstis, L.A., Eds.; Applications in the Environmental Sciences: Boston, MA, USA, 1990. [Google Scholar]
- Choi, E.-B.; Sano, M.; Park, J.-H.; Kim, Y.-J.; Li, Z.; Nakatsuka, T.; Hakozaki, M.; Kimura, K.; Jeong, H.-M.; Seo, J.-W. Synchronizations of Tree-Ring δ18O Time Series within and between Tree Species and Provinces in Korea: A Case Study Using Dominant Tree Species in High Elevations. J. Wood Sci. 2020, 66, 53. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Q.; Kang, X. Tree-Ring-Based Reconstruction of Temperature Variability (1445–2011) for the Upper Reaches of the Heihe River Basin, Northwest China. J. Arid Land 2016, 8, 60–76. [Google Scholar] [CrossRef]
- Yang, B.; Kang, X.; Braeuning, A.; Liu, J.; Qin, C.; Liu, J. A 622-Year Regional Temperature History of Southeast Tibet Derived from Tree Rings. Holocene 2010, 20, 181–190. [Google Scholar] [CrossRef]
- Tian, Q.; Gou, X.; Zhang, Y.; Peng, J.; Wang, J.; Chen, T. Tree-Ring Based Drought Reconstruction (A.D. 1855–2001) for the Qilian Mountains, Northwestern China. Tree-Ring Res. 2007, 63, 27–36. [Google Scholar] [CrossRef]
- Khan, N.; Sachindra, D.A.; Shahid, S.; Ahmed, K.; Shiru, M.S.; Nawaz, N. Prediction of Droughts over Pakistan Using Machine Learning Algorithms. Adv. Water Resour. 2020, 139, 103562. [Google Scholar] [CrossRef]
- Lin, Y.; Salekin, S.; Meason, D.F. Modelling Tree Diameter of Less Commonly Planted Tree Species in New Zealand Using a Machine Learning Approach. Forestry 2023, 96, 87–103. [Google Scholar] [CrossRef]
- Jevšenak, J.; Džeroski, S.; Levanič, T. Predicting the Vessel Lumen Area Tree-Ring Parameter of Quercus Robur with Linear and Nonlinear Machine Learning Algorithms. Geochronometria 2018, 45, 211–222. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Z.; Wang, S.; Ji, W. Disentangling the Factors That Contribute to the Growth of Betula spp. and Cunninghami Lanceolata in China Based on Machine Learning Algorithms. Sustainability 2022, 14, 8346. [Google Scholar] [CrossRef]
- Briffa, K.R.; Jones, P.D.; Bartholin, T.S.; Eckstein, D.; Schweingruber, F.H.; Karlén, W.; Zetterberg, P.; Eronen, M. Fennoscandian Summers from Ad 500: Temperature Changes on Short and Long Timescales. Clim. Dyn. 1992, 7, 111–119. [Google Scholar] [CrossRef]
- Shi, F.; Yang, B.; Von Gunten, L.; Qin, C.; Wang, Z. Ensemble Empirical Mode Decomposition for Tree-Ring Climate Reconstructions. Theor. Appl. Climatol. 2012, 109, 233–243. [Google Scholar] [CrossRef]
- Yin, H.; Liu, H.; Linderholm, H.W.; Sun, Y. Tree Ring Density-Based Warm-Season Temperature Reconstruction since A.D. 1610 in the Eastern Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 426, 112–120. [Google Scholar] [CrossRef]
- Zhao, X.; Fang, K.; Chen, F.; Martín, H.; Roig, F.A. Reconstructed Jing River Streamflow from Western China: A 399-Year Perspective for Hydrological Changes in the Loess Plateau. J. Hydrol. 2023, 621, 129573. [Google Scholar] [CrossRef]
- Shi, S.; Li, J.; Shi, J.; Zhao, Y.; Huang, G. Three Centuries of Winter Temperature Change on the Southeastern Tibetan Plateau and Its Relationship with the Atlantic Multidecadal Oscillation. Clim. Dyn. 2017, 49, 1305–1319. [Google Scholar] [CrossRef]
- Shi, J.; Cook, E.; Lu, H.; Li, J.; Wright, W.; Li, S. Tree-Ring Based Winter Temperature Reconstruction for the Lower Reaches of the Yangtze River in Southeast China. Clim. Res. 2010, 41, 169–176. [Google Scholar] [CrossRef]
- Opała, M.; Mendecki, M.J. An Attempt to Dendroclimatic Reconstruction of Winter Temperature Based on Multispecies Tree-Ring Widths and Extreme Years Chronologies (Example of Upper Silesia, Southern Poland). Theor. Appl. Climatol. 2014, 115, 73–89. [Google Scholar] [CrossRef]
- Körner, C. A Re-Assessment of High Elevation Treeline Positions and Their Explanation. Oecologia 1998, 115, 445–459. [Google Scholar] [CrossRef]
- Körner, C. Alpine Treelines; Springer: Basel, Switzerland, 2012; ISBN 978-3-0348-0395-3. [Google Scholar]
- Shao, X.; Fan, J. Past Climate on West Sichuan Plateau as Reconstructed from Ring-Widths of Dragon Spruce. Quat. Sci. 1999, 19, 81–89. [Google Scholar]
- Yao, T.; Guo, X.; Thompson, L.; Duan, K.; Wang, N.; Pu, J.; Xu, B.; Yang, X.; Sun, W. δ 18O Record and Temperature Change over the Past 100 Years in Ice Cores on the Tibetan Plateau. Sci. China Ser. D 2006, 49, 1–9. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, H.; Shao, X.; Yin, Z. Tree Ring-Dated Fluctuation History of Midui Glacier since the Little Ice Age in the Southeastern Tibetan Plateau. Sci. China Earth Sci. 2012, 55, 521–529. [Google Scholar] [CrossRef]
- Mayewski, P.A.; Pregent, G.P.; Jeschke, P.A.; Ahmad, N. Himalayan and Trans-Himalayan Glacier Fluctuations and the South Asian Monsoon Record. Arct. Alp. Res. 1980, 12, 171. [Google Scholar] [CrossRef]
- Wagner, S.; Zorita, E. The Influence of Volcanic, Solar and CO2 Forcing on the Temperatures in the Dalton Minimum (1790–1830): A Model Study. Clim. Dyn. 2005, 25, 205–218. [Google Scholar] [CrossRef]
- Gao, C.; Gao, Y.; Zhang, Q.; Shi, C. Climatic Aftermath of the 1815 Tambora Eruption in China. J. Meteorol. Res. 2017, 31, 28–38. [Google Scholar] [CrossRef]
- Jiang, Y.; Cao, Y.; Zhang, J.; Li, Z.; Shi, G.; Han, S.; Coombs, C.E.O.; Liu, C.; Wang, X.; Wang, J.; et al. A 168-Year Temperature Recording Based on Tree Rings and Latitude Differences in Temperature Changes in Northeast China. Int. J. Biometeorol. 2021, 65, 1859–1870. [Google Scholar] [CrossRef]
- Lyu, S.; Li, Z.; Zhang, Y.; Wang, X. A 414-Year Tree-Ring-Based April–July Minimum Temperature Reconstruction and Its Implications for the Extreme Climate Events, Northeast China. Clim. Past 2016, 12, 1879–1888. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Z.; Zhang, Y.; Wang, X. A 211-year Growing Season Temperature Reconstruction Using Tree-ring Width in Zhangguangcai Mountains, Northeast China: Linkages to the Pacific and Atlantic Oceans. Int. J. Climatol. 2017, 37, 3145–3153. [Google Scholar] [CrossRef]
- Zeng, A.; Zhou, F.; Li, W.; Bai, Y.; Zeng, C. Tree-Ring Indicators of Winter-Spring Temperature in Central China over the Past 200 Years. Dendrochronologia 2019, 58, 125634. [Google Scholar] [CrossRef]
- Thompson, L.G.; Yao, T.; Davis, M.E.; Mosley-Thompson, E.; Wu, G.; Porter, S.E.; Xu, B.; Lin, P.-N.; Wang, N.; Beaudon, E.; et al. Ice Core Records of Climate Variability on the Third Pole with Emphasis on the Guliya Ice Cap, Western Kunlun Mountains. Quat. Sci. Rev. 2018, 188, 1–14. [Google Scholar] [CrossRef]
- Wang, N.; Yao, T.; Pu, J.; Zhang, Y.; Sun, W. Climatic and Environmental Changes over the Last Millennium Recorded in the Malan Ice Core from the Northern Tibetan Plateau. Sci. China Ser. Earth Sci. 2006, 49, 1079–1089. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, L.; Li, X.; Cheng, H.; Cai, Y.; Vachula, R.S.; Liang, J.; Li, H.; Liu, G.; Zhao, J.; et al. Unexpected Cold Season Warming during the Little Ice Age on the Northeastern Tibetan Plateau. Commun. Earth Environ. 2023, 4, 182. [Google Scholar] [CrossRef]
- Viau, A.E.; Gajewski, K. Reconstructing Millennial-Scale, Regional Paleoclimates of Boreal Canada during the Holocene. J. Clim. 2009, 22, 316–330. [Google Scholar] [CrossRef]
- Houle, D.; Moore, J.-D.; Provencher, J. Ice Bridges on the St. Lawrence River as an Index of Winter Severity from 1620 to 1910. J. Clim. 2007, 20, 757–764. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, R.; Asad, F.; Liang, E.; Bräuning, A.; Zhang, X.; Dawadi, B.; Man, W.; Grießinger, J. Unexpected Climate Variability Inferred from a 380-Year Tree-Ring Earlywood Oxygen Isotope Record in the Karakoram, Northern Pakistan. Clim. Dyn. 2021, 57, 701–715. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, X.M.; Yin, Z.-Y.; Wang, Y. Millennial Minimum Temperature Variations in the Qilian Mountains, China: Evidence from Tree Rings. Clim. Past 2014, 10, 1763–1778. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Zhang, R.; Sumi, A.; Kimoto, M. Impact of El Niño on the East Asian Monsoon: A Diagnostic Study of the ’86/87 and ’91/92 Events. J. Meteorol. Soc. Jpn. Ser. II 1996, 74, 49–62. [Google Scholar] [CrossRef]
- Kim, J.; An, S. Western North Pacific Anticyclone Change Associated with the El Niño–Indian Ocean Dipole Coupling. Int. J. Climatol. 2019, 39, 2505–2521. [Google Scholar] [CrossRef]
- Ma, L.; Yin, Z. Possible Solar Modulation of Pacific Decadal Oscillation. Sol. Syst. Res. 2017, 51, 417–421. [Google Scholar] [CrossRef]
- Xu, Y.; Li, T.; Shen, S.; Hu, Z. Assessment of CMIP5 Models Based on the Interdecadal Relationship between the PDO and Winter Temperature in China. Atmosphere 2019, 10, 597. [Google Scholar] [CrossRef]
- He, M.; Yang, B.; Bräuning, A.; Wang, J.; Wang, Z. Tree-Ring Derived Millennial Precipitation Record for the South-Central Tibetan Plateau and Its Possible Driving Mechanism. Holocene 2013, 23, 36–45. [Google Scholar] [CrossRef]
- Fang, K.; Guo, Z.; Chen, D.; Wang, L.; Dong, Z.; Zhou, F.; Zhao, Y.; Li, J.; Li, Y.; Cao, X. Interdecadal Modulation of the Atlantic Multi-Decadal Oscillation (AMO) on Southwest China’s Temperature over the Past 250 Years. Clim. Dyn. 2019, 52, 2055–2065. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liang, S.; Ma, X.; Zhang, Y.; Si, D.; Liang, P.; Song, Y.; Zhang, J. Interdecadal Variability of the East Asian Winter Monsoon and Its Possible Links to Global Climate Change. J. Meteorol. Res. 2014, 28, 693–713. [Google Scholar]
Calibration | Verification | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | R | R2 | R2adj | F | Period | R | R2 | R2adj | RE | ST | ST1 | CE |
1961~1988 | 0.568 ** | 32.3% | 29.7% | 12.409 ** | 1989~2016 | 0.611 ** | 37.4% | 35.0% | 0.79 | 23 ** | 21 ** | 0.18 |
1989~2016 | 0.611 ** | 37.4% | 35.0% | 15.521 | 1961~1988 | 0.568 ** | 32.3% | 29.7% | 0.80 | 21 ** | 20 ** | 0.02 |
1961~2016 | 0.730 ** | 53.2% | 52.4% | 61.481 ** |
Variable | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | RES |
---|---|---|---|---|---|---|---|
Major cycle (year) | 3.3–3.4 | 7.1–7.4 | 15.5–16.8 | 29.4–32.9 | 82.4 | 164.8 | |
Contribution (%) | 13.17 | 12.72 | 16.95 | 6.67 | 20.18 | 13.60 | 16.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Xu, H.; Tong, Y.; Li, J. Anomalous Warm Temperatures Recorded Using Tree Rings in the Headwater of the Jinsha River during the Little Ice Age. Forests 2024, 15, 972. https://doi.org/10.3390/f15060972
Jiang C, Xu H, Tong Y, Li J. Anomalous Warm Temperatures Recorded Using Tree Rings in the Headwater of the Jinsha River during the Little Ice Age. Forests. 2024; 15(6):972. https://doi.org/10.3390/f15060972
Chicago/Turabian StyleJiang, Chaoling, Haoyuan Xu, Yuanhe Tong, and Jinjian Li. 2024. "Anomalous Warm Temperatures Recorded Using Tree Rings in the Headwater of the Jinsha River during the Little Ice Age" Forests 15, no. 6: 972. https://doi.org/10.3390/f15060972
APA StyleJiang, C., Xu, H., Tong, Y., & Li, J. (2024). Anomalous Warm Temperatures Recorded Using Tree Rings in the Headwater of the Jinsha River during the Little Ice Age. Forests, 15(6), 972. https://doi.org/10.3390/f15060972