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Abstract: Diameter at breast height (DBH) is a unique attribute used to characterize forest growth
and development for forest management planning and to understand forest ecology. Forest managers
require an array of DBHs of forest stands, which can be reconstructed using selected probability
distribution functions (PDFs). However, there is a lack of practices that fit PDFs of sub-dominating
species grown in natural mixed forests. This study aimed to fit PDFs and develop predictive models
for PDF parameters, so that the predicted distribution would represent dynamic forest structures
and compositions in mixed forest stands. We fitted three of the simplest forms of PDFs, log-normal,
gamma, and Weibull, for the DBH of eight tree species, namely balsam fir (Abies balsamea [L.] Mill.),
eastern white pine (Pinus strobus L.), paper birch (Betula papyrifera Marshall), red maple (Acer rubrum
L.), red pine (Pinus resinosa Aiton), sugar maple (Acer saccharum Marshall), trembling aspen (Populus
tremuloides Michx), and white spruce (Picea glauca [Moench] Voss), all grown in natural-origin mixed
forests in Ontario province, Canada. We estimated the parameters of the PDFs as a function of DBH
mean and standard deviation for these species. Our results showed that log-normal fit the best among
the three PDFs. We demonstrated that the predictive model could estimate the recovered parameters
unbiasedly for all species, which can be used to reconstruct the DBH distributions of these tree species.
In addition to prediction, the cross-validated R2 for the DBH mean ranged between 0.76 for red maple
and 0.92 for red pine. However, the R2 for the regression of the standard deviation ranged between
0.00 for red pine and 0.69 for sugar maple, although it produced unbiased predictions and a small
mean absolute bias. As these mean and standard deviations are regressed with dynamic covariates
(such as stem density and stand basal area), in addition to climate and static geographic variables,
the predicted DBH distribution can reflect change over time in response to management or any type
of disturbance in the regime of the given geography. The predictive model-based DBH distributions
can be applied to the design of appropriate silviculture systems for forest management planning.

Keywords: DBH distribution; mixed forest; mixed model; probability distribution; parameter
recovery; sub-dominating species

1. Introduction

Tree diameter at breast height (DBH) is the fundamental attribute used to characterize
individual trees and stand-level forest growth and development. It has always been used in
forest management planning [1,2] to predict other tree- and stand-level attributes, such as
tree height, tree forms, stem density, basal area, stand structure and composition, and wood
biomass and volume [3]. Model-based prediction systems for assessing forest resources
require DBH at the foremost, as it is an input variable used in growth model simulators,
which are used in management planning and implementation. The Forest Vegetation
Simulator (FVS) [4], Mixedwood Growth Model [5], NATURA [6], and the Tree and Stand
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Simulator [7] are a few examples of growth simulators used in various parts of North
America that rely on DBH. These simulators are used to characterize forest stand growth
and predict long-term timber volumes, stand density, and basal area [8,9] as needed for
forest management.

Silviculture practices in commercially managed forest largely depend on stand-level
basal area and stem density to regulate and direct the succession trajectory throughout the
rotation cycle of forest stands. The stand density management diagram [10,11] and the
stocking diagram [12,13] are examples of decision tools for regulating silvicultural systems.
The proper maintenance of DBH (class) distribution, stand age, structure, composition,
relative frequency (or proportion) [14], and gap dynamics [15] are the basis for regulating
forests over rotation cycles.

The DBH distribution of naturally grown forests can serve as a reference for manage-
ment. For example, it helps minimize the differences of age classes in frequency distribu-
tions, while applying silviculture systems and harvest schedules. Management requires
accounting for gap dynamics [15] for competition-related mortality, natural senescence,
and other forms of natural disturbance like wildfire, insect epidemics, and disease [16,17],
in order to mimic the natural process of stand development. An appropriate silvicultural
strategy can convert evenly aged forest stands into close-to-naturally grown unevenly aged
structures [18] using stem density manipulation over time. Growth models provide a useful
decision support tool in long-term forest management, so more precise predictive systems
are beneficial [19].

An array of individual tree DBHs may follow some (standard) probability distribution
functions (PDFs) depending on various environmental variables, such as the following
dendrometric variables: stem density, basal area, dominant height, and species composi-
tion, including age structure. Geo- and topographic variables like elevation, slope, aspect,
geographic position, and climate, particularly precipitation and temperature, among oth-
ers, also affect species’ DBH distribution [20,21]. Some of these variables are static (e.g.,
geographic position) but many are dynamic (e.g., vegetation structure and bioclimate).
Therefore, the parameter of the PDFs, once fitted, may change over time, which may be
predicted by developing some predictive models [22–24]. Alternatively, the parameters of
the probability density function can be mathematically calculated by solving the system
of equations of moments and percentiles [22,25,26], which can be regressed in terms of
dynamic variables.

Several tree species in the province of Ontario, Canada are commercially important.
Although black spruce (Picea mariana (Mill) B.S.P) and jack pine (Pinus banksiana Lamb) are
dominating species in terms of presence and abundancy across the province, 82 species are
listed in provincial inventory data, of which 42 occur in our current study site in various
proportions [27]. Among these, a few have a substantial presence, depending on location
and ecological distribution. These species have two sources of origin: naturally grown,
mainly by wildfire disturbance, which encompasses about 75% of the sample plots or
plantation origin. Naturally originated stands are richer in diversity in DBH, height, and
age than the plantation origin stands [28,29].

There have been a few studies on the development of diameter distribution models
for jack pine and black spruce grown in Ontario [22,30–32]. However, these models are not
available for many other commercially important tree species which are less common or sub-
dominating in terms of abundancy in Ontario. The study scoped that the developed model
would be used in need-based forest management planning, along with being valued for
use in the scientific literature for DBH simulations using simple statistics-based parameter
recovery techniques. The goal of this study was to develop dynamic models for DBH
distributions of eight commercial tree species grown in natural-origin mixed stands across
Ontario, namely balsam fir (Abies balsamea (L.) Mill.), eastern white pine (Pinus strobus L.),
paper birch (Betula papyrifera Marshall), red maple (Acer rubrum L.), red pine (Pinus resinosa
Aiton), sugar maple (Acer saccharum Marshall), trembling aspen (Populus tremuloides Michx),
and white spruce (Picea glauca [Moench] Voss). The specific objectives were to: (a) fit
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selected three PDFs, gamma, log-normal, and Weibull, for the DBHs of these species,
(b) compare DBH distributions reconstructed based on the parameters obtained using
maximum likelihood and parameter recovery methods, and (c) construct predictive models
for the estimated parameters as functions of stand-level dynamic variables, using data
collected from permanent sample plots across Ontario.

2. Methods
2.1. Description of Study Area

Our study area is spread across Ontario, Canada. It expands between 75◦ W and 95◦ W
longitude and 43◦ N and 53◦ N latitude. All sample plots taken in this study are located in
the Ontario Shield and Mixedwood Plains ecozones (Figure 1).
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Figure 1. Study area showing the sample plots (points) distributions, and ecozone, within Ontario.
The provincial base maps and ecozone polygons were downloaded from Ontario GeoHub (https:
//geohub.lio.gov.on.ca/) on 26 December 2023.

The area features wildfire-origin coniferous pure or mixed forest stands in the north
and windthrow and insect epidemics (especially, spruce budworm—Choristoneura fumifer-
ana [Clemens])-origin mixed species in the south [33,34]. Black spruce, jack pine, balsam
fir, and tamarack (Larix laricina) are dominating coniferous species in the northern region,
whereas deciduous mixtures of sugar maple and American beech (Fagus grandifolia) are
found in the southern region of this ecozone. Although the structural compositions of the
vegetation vary, black spruce and jack pine are universal across this ecozone [35]. Other
species can be found in various proportions.

https://geohub.lio.gov.on.ca/
https://geohub.lio.gov.on.ca/
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2.2. Data Source

Data collected from permanent sample plots, which were established and repeatedly
measured by the Ontario Ministry of Natural Resources and Forestry, were used in our
study. These plots were established and maintained in the natural and planted forest
stands, comprising different forest types in terms of ecology, geography, and species
composition [36]. Most of the sample plots have repeated measurements, but the number
of repetitions varied between two and five. However, a few sample plots had one time
measurement. Among these, we used DBH data selected from live trees grown only in
natural mixed stands.

The tree species (other than black spruce and jack pine) that accounted for at least 20%
of the basal area in each sample plot was selected for this study. That threshold resulted
in eight species with varying numbers of sample plots, repeatedly measured plots, and
individual trees (Table 1). The mean proportions of the selected species varied between
27% and 71%, but in some cases were 100%, signifying a single-species sample plot.

Table 1. Species included in this study and sample numbers for two plot types and individual trees.
The species codes in this table are used throughout the paper to refer to the respective species.

Species Code Species Botanical Name
Sample Number

Spatial Plot Repeated Plot Individual Trees

BF Balsam fir Abies balsamea (L.) Mill. 857 1433 47,597
EWP Eastern white pine Pinus strobus L. 139 472 8409

PB Paper birch Betula papyrifera Marshall 783 1149 23,033
RM Red maple Acer rubrum L. 176 454 9153
RP Red pine Pinus resinosa Aiton 56 165 2865
SM Sugar maple Acer saccharum Marshall 136 578 19,274
TA Trembling aspen Populus tremuloides Michx. 881 1211 43,953
WS White spruce Picea glauca (Moench) Voss 278 423 4812

To avoid the non-convergence problem when fitting probability distribution functions,
we selected plots for the species that included at least five individual trees’ DBH measure-
ments of the same species individually. Summary statistics of tree-level DBHs are presented
in Table 2.

Table 2. Summary statistics of diameters at breast height of selected eight species from the selected
sample plots.

Species Min.
(cm)

Median
(cm)

Mean
(cm)

Max
(cm)

Std. Dev
(cm)

Balsam fir 1.00 5.00 5.46 57.50 4.20
Eastern white pine 2.50 11.00 16.34 88.50 13.98

Paper birch 2.50 6.30 8.16 58.90 5.69
Red pine 2.50 22.60 22.04 57.30 2.31

Red maple 1.30 4.40 5.95 51.40 4.49
Sugar maple 2.50 7.60 12.09 83.50 10.96

Trembling aspen 2.50 7.30 9.68 64.80 7.15
White spruce 2.50 8.00 11.03 57.20 8.43

2.3. Model Development

We fit and evaluated two types of models. The first was to fit the probability distribu-
tion functions (PDFs) of the DBHs of individual trees of eight selected species. To fit the
PDFs, we used the entire individual trees for global fit and, for each repeated plot, DBH
for a plot (stand)-level fit, assuming the repeated data were independent (Table 1). The
second was to construct two regression models; one for the DBH’s mean and another for
standard deviation, from which we could recover parameters of the PDFs. We constructed
the regression fitting at the spatial plot level by considering a hierarchical random effect for
the repeated measurements within the spatial plot.
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2.3.1. Fitting Probability Distribution Functions

The parameters of any PDFs may be estimated using distribution fitting that involves
the maximum likelihood method. Alternatively, these parameters can be estimated or
calculated using simple statistics like the mean and standard deviation, which is often
referred to as the parameter recovery method [25,37]. This method has been used in studies
by several researchers such as Liu et al. [22,23] and Zhang et al. [38], among others. In
this method, the parameters of PDFs are functionally linked to the stand-level mean and
standard deviation of DBH [22,23]. We reconstructed DBH distributions for eight species
(Table 1) based on the parameters estimated using both methods and constructed 5 cm
DBH classes. The mathematical forms of selected PDFs, their relationships with the mean
and standard deviation of the data (DBH), and their respective parameters are described in
the following subsections.

We fit three PDFs, namely log-normal [39] adopted from [24], gamma [40], and
Weibull [41–43], which are suitable for fitting positive and continuous random variables.
Although there are several types of PDFs suitable for these types of variables that have been
used and tested for selected tree species (see [24,26,44,45]), we selected the simplest that
could readily be applicable for forest management for all species considered in this study.

Log-Normal Probability Distribution Function

Let us suppose X is a random variable (DBH in our case) with positive values (non-
negative). The log-transformed variable (log(X) follows a normal distribution with a mean
(µ > 0) and standard deviation (σ > 0), provided the variable X follows a log-normal
distribution. Here, µ and σ are the mean and standard deviation of the log-transformed
random variable log(X). The PDF (f ) of X is as given in Equation (1) below. For simplicity,
Equations (1)–(9) are reproduced here from Rijal and Sharma [32].

f
(

X
∣∣∣µ, σ2

)
=

1
xσ

√
2π

exp[
(log(x)− µ)2

2σ2 ] (1)

We estimate the parameters µ and σ using the maximum likelihood method. The
sample mean (x) and standard deviation (s) of the random variable (X) can be used to
calculate the parameters (µ: population mean and σ: standard deviation), as they are
unbiased estimators, using the following simultaneous Equations (2) and (3):

µ = log(
x√(

s2

x2 + 1
) ) (2)

σ =

√
log

(
s2

x2 + 1
)

(3)

The “fitdistrplus” package [46] in R [47] was used to fit Equation (1) and estimate the
parameters for the available DBH data values. In the parameter recovery method, these pa-
rameters were calculated by solving two simultaneous equations (Equations (2) and (3)), re-
lating the parameters with the sample mean (x) and sample variance s2. The “nleqslv” pack-
age [48] in R was used to solve the system of simultaneous equations (Equations (2) and (3)).

Weibull Probability Distribution Function

Assume X is a positive and continuous random variable. The PDF of the Weibull
distribution with scale parameter α (>0) and shape parameter β (>0) is given in Equation (4),
as follows:

f (X, α, β) =
β

α

( x
α

)β−1
∗ exp

(
− x

α

)β
(4)

The parameters α and β are estimated using the maximum likelihood method. We
used the “fitdistrplus” package to estimate these parameters, as above in Equation (1), for
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an array of the DBH. Alternatively, these parameters can be calculated using the sample
mean (x) and sample standard deviation (s) of an array of DBHs by solving simultaneous
Equations (5) and (6), as given below:

µ = αΓ(1 +
1
β
) (5)

σ2 = α2Γ
(

1 +
2
β

)
− µ2 (6)

where Γ is the gamma function. Please note that the sample mean and standard deviation
are the unbiased estimators of population mean (µ) and standard deviation (σ).

As described in the section “Log-Normal Probability Distribution Function”, pa-
rameters α and β were found as the solution values of Equation (4) using the maximum
likelihood method. The parameters in Equations (5) and (6) were calculated as the solution
of two simultaneous equations. Like above, the “nleqslv” package was used to solve the
system of simultaneous equations (Equations (5) and (6)).

Gamma Probability Distribution Function

Let us suppose X is a positive continuous random variable (>0 to ∞). The PDF of
gamma distribution of random variable X with the (shape) parameter β (>0) and (rate)
parameter λ (>0) is given by Equation (7), as follows:

f (x) =
λβ

Γβ
x(β−1)e−λx (7)

µ =
β

λ
(8)

σ2 =
β

λ2 (9)

Once again, as described in the sections “Log-normal probability distribution func-
tion” and “Weibull probability distribution function” above, parameters β and λ were
estimated by solving Equation (7) using the “fitdistrplus” package. The simultaneous
Equations (8) and (9) were solved to find parameters β and λ, using the sample mean and
standard deviation as an unbiased estimator of the population mean (µ) and standard devi-
ation (σ). As above, the simultaneous equations were solved using the “nleqslv” package.

2.3.2. Development of Regression Models

The distribution of DBH depends on various environmental variables, including den-
drometric variables such as competition-related attributes like basal area, stem density,
dominant height, species composition [22,49], and age structure; geographic variables such
as elevation, slope, aspect, geographic position, and climate [20,21,49], chiefly precipita-
tion and temperature, among others. These are either static or dynamic variables. The
dendrometric variables are dynamic as they change over time in response to management
interventions or natural growth and disturbances, whereas the geographic variables are
considered static as they do not change within the span of a forest rotation. It indicates
that the parameters of the PDFs may change over time and can be predicted by devel-
oping the models based on the dendrometric variables like site index, stand density, age,
basal area, or quadratic mean diameter (QMD) [22–24], in addition to static variables like
geographic attributes.

To construct predictive models, we require model covariates. From an array of mea-
sured DBHs of species-wise individual trees listed in each sample plot, we computed the
following stand-level dendrometric variables: species-wise and total basal area per ha
(BAPH), stem density per ha, quadratic mean diameter, and dominant height for each sam-
ple plot (Table 3). Additionally, we received simulated climatic attributes such as annual
and monthly mean precipitation, temperature, number of growing days, and moisture
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index from Natural Resources Canada, Great Lake Forestry Centre, Ontario, for each sam-
ple plot. We calculated the overall annual mean and standard deviation of these variables
and used them as model covariates. Some variables were log-transformed to eliminate the
possible effects of multicollinearity among the covariates considered in our full models,
especially basal area, stem density, and total and species-wise attributes for the given stands.
The formulation of the regressions is given in Equation (10) and detailed with the examined
covariates in Equation (11).

Table 3. Summary statistics of stand-level derived variables for eight selected species found in sample
plots of this study.

Species Min. Median Mean Max Std. Dev

Species-wise density (No./ha)
Balsam fir 55.56 500.00 793.17 9975.00 872.06

Eastern white pine 125.00 300.00 445.39 3800.00 436.48
Paper birch 61.77 300.00 502.23 4150.00 515.04

Red pine 125.00 325.00 434.09 2375.00 342.42
Red maple 125.00 375.00 504.02 2975.00 425.59

Sugar maple 125.00 775.00 833.65 2900.00 456.37
Trembling aspen 58.59 450.00 890.21 9475.00 1250.45

White spruce 48.83 200.00 269.90 1800.00 188.68

Total stand density (No./ha)
Balsam fir 200.00 2100.00 2459.68 11,250.00 1435.08

Eastern white pine 175.00 1800.00 1932.20 6800.00 986.06
Paper birch 361.45 2350.00 2763.22 12,375.00 1689.96

Red pine 425.00 2000.00 2078.33 6075.00 824.39
Red maple 425.00 1900.00 2107.27 7775.00 1069.05

Sugar maple 175.00 1200.00 1329.24 4000.00 632.46
Trembling aspen 175.00 2500.00 2853.84 17,625.00 1837.25

White spruce 225.00 2025.00 2343.60 11,250.00 1445.39

Species-wise basal area (m2/ha)
Balsam fir 0.05 2.06 3.67 33.71 4.49

Eastern white pine 0.09 15.32 16.17 50.91 10.15
Paper birch 0.07 1.96 3.83 31.05 4.82

Red pine 0.29 21.67 21.73 50.36 12.69
Red maple 0.10 1.44 2.20 16.71 2.37

Sugar maple 0.09 18.77 17.44 43.52 9.81
Trembling aspen 0.09 6.98 9.95 45.13 9.29

White spruce 0.11 2.51 3.89 39.07 4.61

Stand level basal area (m2/ha)
Basam fir 0.42 26.65 26.83 67.95 11.37

Eastern white pine 0.93 32.42 32.07 67.95 11.49
Paper birch 0.87 24.62 24.95 67.95 10.27

Red pine 1.32 38.20 37.56 67.95 12.08
Red maple 4.23 29.70 30.07 61.08 10.10

Sugar maple 5.48 26.86 27.01 51.52 6.94
Trembling aspen 0.44 25.04 25.29 61.79 9.95

White spruce 6.13 28.86 29.15 65.23 10.37

We fit the two models, one for the DBH mean and another for standard deviation, as a
function of stand-level covariates. These response variables (mean and standard deviation)
were used to compute the parameters of each PDF using the equations aforementioned
(Equations (2), (3), (5), (6), (8) and (9)) and then simulate the DBH distributions using
selected three PDFs.
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Let Y be a random variable (DBH) representing one of our response variables (the
mean of DBH and standard deviation of DBH of (each) sample plot i).

The expected value of Yi is subjected to the random effect of the sample plot i. The
expected values (E(Yi)) are regressed with model covariates using a generalized linear
modelling technique [47] with m (=1, 2, 3, . . .) covariates using link function g(.) [50],
as follows:

g(E(Yi))= (β 0 + φi + φij
)
+ βmxim (10)

where β0 is the intercept parameter for fixed effects, φi is the plot level random effect,
and φij is the year-level random effect nested within the plot. The random effects were
considered only in the intercept portion of the parameters model for simplicity, and βm
(m = 1, 2, 3, . . .) are parameters associated with other model covariates, as presented in
Equation (11).

Our model response variables, the mean and standard deviation, are positive contin-
uous numbers. Therefore, the parameters of these models were estimated assuming the
gamma-distributed random errors, e.g., [22], instead of the traditional practice of assuming
the normality of the errors.

Foremost, we fit full models that consisted of all dendrometric, geographic, and
climatic attributes as model covariates, as mentioned above, for these two models, one for
DBH mean and another for DBH standard deviation, for all eight species. We sorted out
the model covariates to construct the reduced models using Bayesian information criteria
(BIC) [51] and removed the covariates that had the highest non-significant (>0.05) p-value
systematically one at a time. We were cautious of the possible impacts of multicollinearity
on the estimated parameters. We calculated the pairwise variance inflation factor (VIF)
among the covariates that we considered in our full model. We kept the threshold value
of VIF less than 5 (or Pearson’s correlation coefficient of about 0.90), following the thumb
rule [52]. In addition to a high VIF, the impact of multicollinearity could be observed
through the inconsistent signs of estimated parameters and/or high t-values associated
with model variables [53].

Our preliminary analyses showed that adding a hierarchal level for repeated measures,
i.e., random effect (φij), did not improve the model. Therefore, these repeated sample
plots were also considered to be independent samples in our study. The mathematical
formulation of the regression model is as follows:

g(E(Yik|µi)) = (β 0 + φi) + β1Tot_BA + β2Species_BA + β3 log(Tot_Density)
+β4Species_Density + β5Tot_QMD + β6Species_QMD
+β7jClimateVariables

(11)

where Species_BA and Tot_BA are species-wise and total basal area (m2ha−1), respectively.
Likewise, density is the stand-level stem density (no. ha−1) and QMD is the quadratic
mean diameter (cm). The model includes a set of climate variables (j). The random effects
were applied only to the plot level in our reduced model. The glmmTMB package [54]
in R was used to fit the equations. We fit Equation (11) for the DBH mean and standard
deviation separately. When we fit for the mean, the µ represents the mean of the DBH
mean, whereas when we fit for standard deviation, the notation µ represents the mean of
standard deviation.

2.4. Model Performances

The foremost statistical tool we used to compare the PDF was the BIC [51]. We
simulated DBH distribution using the parameters estimated, using both approaches for the
same number of individual trees for all species separately, as we had in the original dataset
for each sample plot (Table 1). To predict consistent DBH distributions, we repeated the
simulations 1000 times and calculated the mean of the model-predicted DBH distributions
of these 1000 repetitions. We used the same random seed at the start of each species
and PDF to make the results comparable while reconstructing the simulation-based DBH
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distributions. We compared the simulated DBH with the observed data. In addition, DBH
class intervals of five centimeters (<5 cm, 5–10 cm, . . ., 45–50 cm) were constructed for the
observed data array and the simulated values. We used the terms “fitted parameter” for the
solutions obtained from distribution fitting and “recovered parameters” for those obtained
from solving simultaneous equations. A Chi-squared test was performed to evaluate the
hypothesis of whether the simulated and observed DBH were significantly different or not.
In addition, we calculated the mean absolute bias (MAB), mean bias (MB), and R2 from the
mean of 1000 repeated simulations and observed DBHs. We relied on the differences in the
graphical presentation, as well as on other statistics.

We applied a cross-validation technique to compare the model performance statistics.
For this, a one-fold 20% leave-out method was applied, and the process was repeated
200 times [55,56]. These 200 iterations produced the distribution of MB, MAB, and R2, but,
for simplicity, we present the median and 90% confidence band of these statistics.

3. Results
3.1. Distribution Fitting

Firstly, we selected three probability distribution functions, which were fitted for eight
species separately, using all trees from all sample plots to obtain a landscape level (Table 1)
model for each species. Comparatively, these PDFs fit well with the observed data across
the data range, as shown in Figure 2.

However, the BIC values showed that the log-normal distribution fit best for seven
species, excluding red pine, which seemed to have a bimodal or multimodal distribution
that differed from the other seven species, which had reverse j-shaped curves (Figure 2).
Using the sample plot-wise large dataset, the model-estimated parameters were used to
reconstruct the DBH distributions at the forest landscape level (Table 4) using any of the
three PDFs.

Table 4. Fitted and recovered parameters of species-wise three probability distribution functions
(Equations (1)–(9)) at landscape level (all sample plots) for eight species. The species are balsam fir
(BF), eastern white pine (EWP), paper birch (PB), red maple (RM), red pine (RP), sugar maple (SM),
trembling aspen (TA), and white spruce (WS).

Probability
Distribution

Estimation
Method

Parameter
Species Code

BF EWP PB RM RP SM TA WS

Gamma
Fitted

Shape 3.232 1.411 2.611 2.947 2.382 1.540 2.387 2.011
Rate 0.501 0.086 0.320 0.495 0.108 0.127 0.247 0.182

Recovered
Shape 2.362 1.367 2.056 1.759 3.204 1.217 1.830 1.710
Rate 0.366 0.084 0.252 0.296 0.145 0.101 0.189 0.155

Log-normal

Fitted
Mean 1.703 2.399 1.895 1.604 2.869 2.134 2.046 2.132

Standard
deviation 0.545 0.922 0.625 0.552 0.755 0.838 0.655 0.732

Recovered
Mean 1.689 2.519 1.901 1.559 2.957 2.193 2.052 2.170

Standard
deviation 0.542 0.676 0.575 0.612 0.476 0.707 0.603 0.619

Weibull
Fitted

Shape 1.701 1.200 1.580 1.542 1.816 1.212 1.503 1.417
Scale 7.308 17.437 9.172 6.693 24.729 12.984 10.830 12.225

Recovered
Shape 1.595 1.185 1.479 1.359 1.882 1.112 1.388 1.338
Scale 7.200 17.313 9.018 6.497 24.832 12.578 10.604 12.007
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Figure 2. Overall fit of one empirical and three parametric probability distribution functions (PDFs)
for eight species. The species are balsam fir (BF), eastern white pine (EWP), paper birch (PB), red
maple (RM), red pine (RP), sugar maple (SM), trembling aspen (TA), and white spruce (WS). Bayesian
information criteria of the fits are provided in parentheses.

We then fitted these three PDFs of the individual tree DBHs for each species for each
sample plot. The number of sample plots varied from 165 (for red pine) to 1433 (for balsam
fir). The sample plot-wise distributions fits for all species using these three PDFs seemed
to be alike in graphical representation (Figure 3a,b). However, the values of BIC showed
that the log-normal distribution fit best in most of the sample plots (for all except red
pine; Table 5).
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We compared the recovered and fitted parameters of these three PDFs. The differences
between these two for the landscape level fit were not substantial (Table 3). Our analysis
results for sample plot-wise model fits and recoveries for all cases (Table 6) showed that
we can precisely estimate the parameters of these distributions using simple and widely
available variables, namely the computed mean and standard deviation of DBH. Depending
on individual sample plots and the size of the sample, DBH distributions varied across
species based on the median and 90% percentiles (Table 6).

Thereafter, we grouped the continuous values of observed and simulated DBHs into
class intervals of 5 cm and reconstructed the DBH class-wise frequency distribution. The
class interval of simulated DBH and observed DBH applying the three PDFs (log-normal,
gamma, and Weibull) and recovered and fitted parameters showed that they were alike in
general. The p values of the Chi-squared test ranged from 0.22 to 0.99 for all PDFs for all
species, except for the Weibull distribution for red pine (p = 0.01). The p values greater than
our threshold, 0.05, suggested that the distribution which we selected can represent the
observed values that correspond to the ones in Figure 3.

Table 5. Number of sample plots with best fit for three probability distribution fittings based on
Bayesian information criteria for eight species taken in this study.

Species Total No. of
Sample Plot

Number of Superior Plots

Gamma Log-Normal Weibull

Balsam fir 1433 168 1005 (70%) 260
Eastern white pine 472 45 231 (49%) 196

Paper birch 1149 158 701 (61%) 290
Red pine 165 11 38 116 (70%)

Red maple 454 26 352 (77%) 76
Sugar maple 578 55 408 (71%) 115

Trembling aspen 1211 233 514 (42%) 464
White spruce 423 37 236 (56%) 150

Table 6. The median and 90% confidence band of fitted and recovery parameter distributions of the
diameters at breast height of eight species for all sample plots fitted individually. The species are
balsam fir (BF), eastern white pine (EWP), paper birch (PB), red maple (RM), red pine (RP), sugar
maple (SM), trembling aspen (TA), and white spruce (WS).

Species
(Code)

Statistics
Gamma Log-Normal Weibull

Fitted Recovered Fitted Recovered Fitted Recovered
Shape Rate Shape Rate Mean Std.Dev Mean Std.Dev Shape Scale Shape Scale

BF
Median 5.145 0.817 4.493 0.685 1.666 0.444 1.660 0.436 5.145 0.817 2.261 6.661

5% 2.246 0.232 1.583 0.197 1.263 0.225 1.248 0.225 2.246 0.232 1.283 4.022
95% 19.821 4.759 17.336 4.254 2.357 0.694 2.389 0.660 19.821 4.759 4.707 13.692

EWP
Median 3.458 0.210 3.689 0.191 2.797 0.567 2.888 0.470 3.484 0.210 2.031 22.488

5% 1.059 0.058 0.686 0.053 1.582 0.240 1.542 0.225 1.056 0.058 0.815 6.020
95% 18.062 1.182 16.426 1.047 3.560 1.057 3.565 0.933 19.032 1.190 4.571 42.043

PB
Median 7.170 0.923 6.564 0.823 1.872 0.381 1.884 0.363 7.170 0.923 2.778 8.211

5% 2.306 0.228 1.713 0.185 1.233 0.175 1.226 0.178 2.306 0.228 1.340 3.899
95% 31.933 5.979 26.977 5.248 2.888 0.676 2.897 0.648 31.933 5.979 5.985 21.192

RM
Median 5.840 0.963 4.755 0.772 1.576 0.414 1.564 0.419 5.840 0.963 2.332 6.082

5% 1.905 0.210 1.146 0.151 1.187 0.196 1.165 0.202 1.905 0.210 1.077 3.736
95% 25.406 6.100 20.223 5.073 2.504 0.714 2.529 0.759 25.406 6.100 5.118 15.704

RP
Median 8.852 0.374 8.723 0.366 3.167 0.358 3.176 0.306 8.852 0.374 19.501 25.871

5% 1.920 0.105 1.906 0.114 2.109 0.130 2.141 0.121 1.920 0.105 6.268 9.518
95% 62.278 2.444 57.955 2.191 3.678 0.804 3.677 0.631 62.278 2.444 32.341 40.794
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Table 6. Cont.

Species
(Code) Statistics

Gamma Log-Normal Weibull
Fitted Recovered Fitted Recovered Fitted Recovered

Shape Rate Shape Rate Mean Std.Dev Mean Std.Dev Shape Scale Shape Scale

SM
Median 2.076 0.166 1.788 0.133 2.179 0.716 2.234 0.653 2.076 0.166 1.371 12.643

5% 1.145 0.075 0.665 0.061 1.553 0.316 1.492 0.291 1.145 0.075 0.801 5.756
95% 11.206 1.218 10.621 1.076 3.029 1.001 3.059 0.945 11.206 1.218 3.607 26.087

TA
Median 10.177 1.003 9.985 0.964 2.284 0.320 2.298 0.301 10.177 1.003 3.489 11.728

5% 2.188 0.157 2.040 0.158 1.357 0.142 1.340 0.141 2.188 0.157 1.473 4.523
95% 49.690 4.007 43.706 3.700 3.359 0.718 3.359 0.608 49.690 4.007 7.777 31.540

WS
Median 11.728 0.435 4.310 0.397 2.114 0.479 2.129 0.431 4.811 0.435 2.211 11.077

5% 4.523 0.109 1.172 0.095 1.352 0.231 1.334 0.231 1.502 0.109 1.090 4.592
95% 31.540 3.461 17.105 3.105 3.059 0.863 3.066 0.741 18.689 3.461 4.672 25.452
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Figure 3. Sample plots-wise observed (empirical probability) and parametric probability distributions
fitted diameter at breast height for four species, namely (a) balsam fir (BF), Eastern white pine (EWP),
paper birch (PB), and red maple (RM). And (b) red pine (RP), sugar maple (SM), trembling aspen
(TA), and white spruce (WS). Please note that each line represents an array of DBHs of a single stand
and the line colors represent DBHs of different stands, though they overlap with the same set of
colors for multiple stands.

3.2. Fitting Regression Models

We constructed predictive models for the mean and standard deviation DBH
(Equation (11)) in terms of dendrometric and environmental covariates. The covari-
ates had different levels of impact and significance in predicting the mean (Table 7a) and
standard deviation (Table 7b).



Forests 2024, 15, 977 14 of 25

Table 7. (a) Estimated parameters of species-wise regression fit for (response variable) stand-level
mean with environmental variables. The species are balsam fir (BF), eastern white pine (EWP),
paper birch (PB), red maple (RM), red pine (RP), sugar maple (SM), trembling aspen (TA), and white
spruce (WS). The numbers presented in the table are significant values at a significance level of
0.05. Parameter details with t and p values are presented in Table A1. (b) Estimated parameters of
species-wise regression fit for (response variable) stand-level standard deviation with environmental
variables. The species are balsam fir (BF), eastern white pine (EWP), paper birch (PB), red maple
(RM), red pine (RP), sugar maple (SM), trembling aspen (TA), and white spruce (WS). Numbers
presented in the table are significant values at the probability significance level of 0.05. The details of
the parameters with t and p values are presented in Table A2.

(a) Estimates for Species—Mean

Parameters BF EWP PB RM RP SM TA WS

Intercept - - - - - - - -
BAPH Total - - −0.0023 −0.0041 −0.0120 −0.0081 0.0038 -

BAPH Species - - - - 0.0095 - - −0.0102
log (Density Total) 0.0291 0.0753 0.0728 0.0819 0.2445 0.0558 0.0934 0.0741

Density Species (Respective) - −0.0001 0.0000 0.0000 −0.0003 - 0.0000 0.0504
log (QMD Total) - 0.1769 0.2710 0.1807 0.7400 0.2809 0.4125 0.1623

QMD Species 0.1143 0.0515 0.0897 0.0998 0.0352 0.0645 0.0554 0.0805
Dominant Height - - - 0.0039 - - - 0.0042

Longitude 0.0070 0.0569 - - 0.0193 - - -
Latitude 0.0396 - - - - - - -
Elevation - - - - - - - -

Temperature: Mean 0.0675 0.0832 - - - - 0.0215 -
Temperature: Standard

Deviation - 3.7628 - - - - 0.4068 -

No. of Growing Days: Mean −0.0048 - - - - - - -
Precipitation: Standard

Deviation −0.0004 0.0075 - - 0.0036 - - -

No. of Growing Days:
Standard Deviation 0.0130 - - - - - −0.0501 -

Moisture Index: Mean - 0.2077 - - - 0.0025 - -

Random effect 0.0608 0.1588 0.1124 0.1575 0.0905 0.1148 0.1510 0.1086
Residual standard deviation 0.0606 0.0819 0.0661 0.0817 0.0553 0.0790 0.0776 0.0755

(b) Estimates for Species—Standard Deviation

Parameters BF EWP PB RM RP SM TA WS

Intercept - −14.2566 - 19.6753 −0.0226 −5.0884 −5.1396 −1.8670
BAPH Total - −0.0211 −0.0092 - - - −0.0183 -

BAPH Species −0.0210 - −0.0227 - - - - −0.0489
log (Density Total) - 0.7612 0.1621 - 0.9856 - 0.4854 0.2585

Density Species (Respective) 0.0001 - 0.0002 0.0708 −0.1343 0.0002 - 0.1443
log (QMD Total) - 1.4041 0.6792 0.2721 1.7694 −0.2352 1.0895 0.3235

QMD Species 0.1743 0.0283 0.1049 0.1335 - 0.0844 0.0457 0.1198
Dominant Height 0.0037 - −0.0081 - - - 0.0113 -

Longitude - - - −0.0447 - - - -
Latitude −0.0167 - - −0.4636 −0.1843 0.2268 - -
Elevation - - - −0.0030 - - - -

Temperature: Mean −0.0326 - - −0.4820 - 0.5496 - -
Temperature: Standard

Deviation - 3.2186 - - - - 0.8155 −1.5078

Precipitation: Mean - - - - - 0.0007 - -
No. of Growing Days: Mean - 0.0221 −0.0082 - - −0.0380 - -

Precipitation: Standard
Deviation - - - - - - −0.0026 -

No. of Growing Days:
Standard Deviation - - - - - - −0.0774 -

Moisture Index: Mean 0.1264 - −0.2333 - - - - -

Random effect 0.1718 0.3392 0.3237 0.2811 0.2814 0.2620 0.3525 0.3174
Residual standard deviation 0.2700 0.2474 0.2990 0.3096 0.2793 0.2171 0.2482 0.2374
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We initially considered two levels of random effects, namely sample plot and repeated
measurement. Our analyses indicated that the impact of repeated-measurement-related ran-
dom effects were nonsignificant. They only increased computational complexity and caused
problems with model convergence, along with producing inconsistent parameter estimates.

The sample plot-level random effects were higher than the residual standard deviation
for the models of the mean for all species (Table 7a). Similarly, the random effects were
higher for the model of standard deviation for all species, except for paper birch and red
maple. The comparative numbers of random effects and residuals standard deviation could
infer that the random effects were substantial in explaining the model variability.

We examined models’ performances based on cross-validated statistics, namely MB,
MAB, and R2. The models yielded unbiased prediction at 90% confidence intervals for
the mean (Table 8a) and the standard deviation (Table 8b) for all species. The median of
mean absolute bias varied between 0.48 and 2.74, and between 0.72 and 2.56 for mean and
standard deviation, respectively. Likewise, the R2 varied between 0.76 and 0.92 for the
mean and 0 and 0.46 for the standard deviation.

Table 8. Species-wise regression model performance statistics, using regression for the (a) mean and
(b) standard deviation. The species are balsam fir (BF), eastern white pine (EWP), paper birch (PB),
red maple (RM), red pine (RP), sugar maple (SM), trembling aspen (TA), and white spruce (WS).

Species Mean Bias Mean Absolute Bias R2

Median 5% 95% Median 5% 95% Median 5% 95%

(a) Model performance for DBH mean (cm)
BF 0.046 −0.488 0.439 0.481 0.420 0.564 0.906 0.828 0.947

EWP −0.213 −5.204 3.773 2.742 2.005 4.354 0.844 0.000 0.927
PB −0.046 −1.081 0.884 1.034 0.821 1.389 0.786 0.564 0.933
RM −0.427 −4.388 1.143 0.885 0.567 4.453 0.758 0.000 0.947
RP 1.134 −7.437 5.492 1.807 1.276 3.869 0.915 0.631 0.968
SM −0.071 −2.526 1.669 1.394 1.039 1.837 0.852 0.722 0.923
TA −0.183 −1.915 1.452 1.794 1.422 2.311 0.776 0.578 0.913
WS 0.008 −1.978 1.540 1.236 0.987 1.620 0.909 0.823 0.950

(b) Model performance for DBH standard deviation (cm)
BF −0.044 −0.560 0.310 0.871 0.722 1.098 0.349 0.000 0.680

EWP 0.803 −0.424 1.785 3.092 2.555 3.662 0.281 0.000 0.500
PB −0.233 −0.862 0.315 1.338 1.096 1.745 0.182 0.000 0.621
RM −0.222 −7.427 0.923 1.298 0.845 8.229 0.188 0.000 0.652
RP 0.495 −0.441 1.426 2.724 2.097 3.652 0.000 0.000 0.351
SM 0.126 −1.977 1.482 2.353 1.821 3.192 0.408 0.000 0.687
TA −0.128 −0.648 0.372 1.503 1.254 1.769 0.461 0.249 0.599
WS 0.106 −1.016 0.966 1.798 1.471 2.294 0.388 0.000 0.673

Corresponding to unbiased parameters (Table 8), our simulated DBH distributions
applying the recovered parameters (using the parameter recovery technique) from the
model-predicted mean and standard deviation (Equation (11)) also produced similar pat-
terns of DBH class distribution, as presented in Figure 4a,b.
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Figure 4. Comparative presentation of stand-wise diameter at breast height class distribution among
observed, simulated, and predicted values for four species, namely (a) balsam fir (BF), eastern white
pine (EWP), paper birch (PB), and red maple (RM), and (b) red pine (RP), sugar maple (SM), trembling
aspen (TA), and white spruce (WS).

4. Discussion

DBH is a uniquely important attribute in forest research and management planning.
It can be measured or estimated at the individual tree level or at a stand level. For man-
agement and harvest schedule planning, stand-level attributes are needed. Although the
measurement of individual tree DBHs is common, stand-level estimates may often be more
precise than individual tree level measurements, due to higher chances of error accumu-
lation [57]. On the other hand, stand-level DBH distribution can be used to reconstruct
individual tree DBHs [30] or size class distributions [58].
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Fitting DBH probability distributions and undertaking the reconstruction of distribu-
tions are not new techniques, but they are rarely used in practice and only for dominating
species in localized geography [24,26]. Nonetheless, these still lack models for multiple
species growing in mixed forests. We evaluated three commonly tested PDFs for eight
commercial tree species in Ontario grown in natural mixed stands. The use of Weibull PDF
for DBH distribution fitting is very common in a wide range of the literature [59], with a
few studies reflecting comparative analyses among competing PDFs for different species
globally, e.g., [60,61].

We compared three PDFs: Weibull, gamma, and log-normal. Log-normal is the
simplest form of distribution, after negative exponential, to fit positive continuous random
variables like DBH. Our preliminary analysis indicated that the one-parametric negative
exponential did not fit at all for any species. But all three PDFs generally fit well for all
species except red pine. Among these PDFs, log-normal fitted the best at the landscape and
sample plot levels (Figure 2, Table 5) for all species. In a similar study, Rijal and Sharma [30]
found that gamma PDF was the best among these three PDFs for two dominant species,
jack pine and black spruce, which are also grown in Ontario. This difference could be
because of the number of individual trees in the sample plots and the range of DBH. The
less dominating eight species consisted of a lower number of trees within the sample plots,
but the range of DBH was wider. This resulted in higher standard deviations and, hence, a
longer right tail (Figures 3 and 4) for these species, compared to the ones for jack pine and
black spruce. Highly right-skewed data favor log-normal distribution, which is consistent
with the previous works, e.g., [60,61].

We confined this study to the naturally grown forest stands. The DBH distribution of
species in naturally grown forests features opposite J-shaped curves [62]. This characteristic
reverse J-shape is approximately met based on the graphical presentation for all species,
with a very high negative slope at the beginning of the curves (Figure 3). The DBH class
distributions show a similar pattern for all species, except for trembling aspen and white
spruce in the DBH class (0–5] and the DBH class up to (25–30] for red pine (Figure 4). A
reason for such a lower density in the DBH class below five cm might have been attributed
to the undercounting of seedlings and saplings. To our knowledge, there were no recent
disturbances in the area. Nevertheless, the selected PDF could fit well for trembling aspen
and white spruce. In the case of red pine, it seemed that there could have been more
intensive forest management intervention in the recent decades that resulted roughly
uniform distribution or may require multimodal PDF. The selected eight species were
sub-dominant species after jack pine and black spruce in the study area. There could be a
small number of individual trees that could escape from suppression, resulting in a DBH
with a long right tail, which supports log-normal distribution.

The first part of this study examined two approaches to parameter estimations, namely
maximum likelihood and parameter recovery methods for the selected three PDFs, but
both require solving non-linear functions. The parameter recovery technique involves
stand-level attributes [37], belonging to simple statistics, such as the mean, the standard
deviation, a percentile of an array of the data, or the dominant diameter [22,26], among
others. Among them, we used the mean and standard deviation, which are the simplest
statistics and most common variables in forest management planning [3]. Using these
variables in determining distribution functions worked well compared to the maximum
likelihood method (Tables 3 and 5, Figure 4). Mathematically, the maximum likelihood or
moment-based methods (Equations (1)–(9)) are the same, and we should have the same
results, provided there are no computational problems. Our results with the use of the
selected three PDFs have demonstrated that DBH distribution can be simulated using any
parametric PDFs for any range of DBHs for any species and can evaluate their performance
from such simple statistics (mean and standard deviation).



Forests 2024, 15, 977 19 of 25

From the perspective of forest management planning, our study would help the
development of DBH distributions in response to various silvicultural treatments with
the use of dynamic variables. The statistics of DBH change over time in response to
various natural and anthropogenic disturbance factors. Consequently, either only the
parameters of the PDF or the form of distribution may vary though time. More importantly,
when there is intensive forest management, the growth trajectories of different species
can vary substantially in a way that can be addressed with the use of simple statistics.
Fitting regression models with dendrometric, geographic, and climatic variables in the
second component of our work helped to update the parameters of PDF. Among the
evaluated model covariates, the dendrometric variables could explain more than the
selected geographic and climatic variables for most of the examined species. The parameters
associated with geographic variables (longitude and latitude), as well as the annual mean
and variability (standard deviation) of bioclimatic variables, were also significant for some
species like balsam fir and eastern white pine when we fit of an array of DBH for eight
species for mean and standard deviation (Table 7a-b). These results correspond to previous
pieces of work that showed that geography and climate can substantially impact DBH
growth [20,49]. When dendrometric variables have a strong relationship with the response
variables, like DBH, the bioclimatic variables may come to be insignificant [32], even though
these variables are always important in forest growth and development.

Stand dendrometric attributes like basal area, stem density, QMD, dominant height,
and age are common as covariates in predictive modelling, e.g., [22,26,30,31]. Based on
the data availability, we limited dendrometric covariates (Table 1), and the regression
evaluations demonstrated that total and species-wise stand attributes, especially QMD,
stem density, and basal area, were significant covariates for predicting the mean and
standard deviation for the selected species, but showed different magnitudes and signs
of parameters (Table 5). For example, total basal area as a model covariate had a negative
parameter sign whenever it was significant for all species in regressions for DBH mean and
standard deviation, except for the mean of trembling aspen. Stem density had a positive
relationship with the DBH mean. Likewise, the QMD was positively related to the mean
and the standard deviation. A reason for the opposite behaviors of the stem density and
basal area could be due to the fact that the stands were dominated by small-sized trees [63].
Such a parametric relationship with the response variable, DBH mean, was consistent with
an earlier study for two dominant species: black spruce and jack pine, in the same study
area [32].

Our regression models for the DBH mean and standard deviation for eight species
using various model covariates performed differently in terms of model performance
statistics. In all cases, they yielded unbiased predictions. The magnitude of cross-validated
other statistics, namely MAB and R2, varied by model for each species, but the median
and 90 percentile range (confidence interval) values inferred that these models’ fit had
precise predictions. However, there was a wide range of variations in R2, especially for the
model of standard deviation. The model for the mean had a range of R2 between 0.76 and
0.91, whereas the values for the standard deviation were between zero and 0.46. The mean
values are generally related linearly to the examined dendrometric covariates, resulting in
a high R2. On the other hand, the standard deviation, a form of transformation of the DBH,
is not linearly related to the model covariates, resulting in low R2 values despite seeing
unbiased predictions.

The simulation of DBH distribution for multiple species is challenging for sub-
dominating species because of their limited presence in various proportions or absence
in many sample plots. There were more than 80 individual tree species listed. Modelling
for all individual trees’ DBHs is neither desirable for increased complexity, nor do we
achieve better estimates for very small number of sample trees. For better consistency of
model parameters, we set a minimum threshold of five individual trees, and, even with
this, we often encountered problems with convergence or inconsistent parameters and
required several iterations for better results. Despite the possibility that other forms of PDF
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may still be better than ours for some species we covered, we had to limit ourselves to
only these three PDFs. Nevertheless, there can be some extended avenue of improvement,
leading to covering a wide spectrum by developing multi-modal distributions to capture
the characteristics of the growth responses of different types of silvicultural operations
in managed forests. For example, distribution fitting for red pine, in our case, may have
warranted exploring multimodal PDFs, but we limited ourselves to unimodal PDFs for
some resource constraints and because we hoped to keep this method operationally simple
and feasible for other practitioners. A general model can be developed for minor species,
in terms of their presence, by taking them together. A comparative study of the model
parameters of individual trees and combined parameters for all minor species may help
us to understand the species’ ecology and growth dynamics in the given forest stands.
These parameters, more specific to general levels of PDF and regression fit, would help
with selecting better silviculture systems for directing and maintaining forest growth and
development trajectory, as desired by forest management planners and managers.

5. Conclusions

This study comprised a comparative analysis of three probability distribution functions
for the individual tree diameters at breast height (DBHs) of eight sub-dominating tree
species. Past studies have shown that the Weibull probability distribution function (PDF) is
the best fit for dominant species, whereas our results indicated that log-normal PDF was
the best fit for sub-dominant species. While several PDFs have been evaluated in research,
only a few have been used in practice. The parameter estimation of individual PDFs using
the mean and standard deviation can be simpler than the maximum likelihood method.
Moreover, we illustrated that these simple statistics, mean and standard deviation, can
be used simultaneously to estimate the parameters of three PDFs and to reconstruct DBH
distributions using these PDFs. As all statistical PDFs are mathematically related to the
mean and standard deviation, albeit with varying computation complexity, our study has
opened an avenue of reconstruction and evaluation of any PDF using just the mean and
standard deviation. Another advantage of the use of the mean is that it is usually modelled
for many purposes. Our construction of predictive models using dynamic variables shows
that we can fit dynamic probability distribution functions in response to forest management
and or any type of forest growth or disturbances over time.
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Appendix A

Table A1. Estimated parameters of species-wise regression equation for the DBH mean.

Variable Estimate Std. Error z Value p Value

Balsam fir (BF)
log (Density Total) 0.029 0.005 6.318 0.000

QMD Species 0.114 0.001 137.195 0.000
Longitude 0.007 0.001 5.247 0.000
Latitude 0.040 0.006 6.240 0.000

Temperature Mean 0.068 0.016 4.350 0.000
No. of Growing Days Mean −0.005 0.001 −3.504 0.000

Precipitation SD 0.000 0.000 −2.276 0.023
No. of Growing Days SD 0.013 0.005 2.550 0.011

Eastern white pine (EWP)
log (Density Total) 0.075 0.018 4.104 0.000

log(Density Species + 1) 0.000 0.000 −4.947 0.000
log (QMD Total) 0.177 0.035 4.986 0.000

QMD Species 0.051 0.001 50.785 0.000
Longitude 0.057 0.014 3.997 0.000

Temperature Mean 0.083 0.019 4.371 0.000
Moisture Index Mean 0.208 0.059 3.504 0.000

Precipitation SD 0.008 0.002 4.934 0.000
Temperature SD 3.763 1.083 3.474 0.001

Paper birch (PB)
BAPH Total −0.002 0.000 −4.902 0.000

log (Density Total) 0.073 0.003 24.776 0.000
log(Density Species + 1) 0.000 0.000 4.188 0.000

log (QMD Total) 0.271 0.012 22.529 0.000
QMD Species 0.090 0.001 91.304 0.000

Red maple (RM)
BAPH Total −0.004 0.001 −4.595 0.000

log (Density Total) 0.082 0.008 9.957 0.000
log(Density Species + 1) 0.000 0.000 1.908 0.056

Dominant Height 0.004 0.002 1.693 0.090
log (QMD Total) 0.181 0.027 6.705 0.000

QMD Species 0.100 0.003 39.759 0.000

Red pine (RP)
BAPH Total −0.012 0.001 −8.280 0.000

BAPH Species 0.010 0.001 7.505 0.000
log (Density Total) 0.245 0.021 11.531 0.000

log(Density Species + 1) 0.000 0.000 −9.260 0.000
log (QMD Total) 0.740 0.049 15.031 0.000

QMD Species 0.035 0.002 21.121 0.000
Longitude 0.019 0.003 5.790 0.000

Precipitation SD 0.004 0.001 2.740 0.006

Sugar maple (SM)
BAPH Total −0.008 0.001 −7.476 0.000

log (Density Total) 0.056 0.020 2.729 0.006
log (QMD Total) 0.281 0.045 6.289 0.000

QMD Species 0.064 0.001 46.395 0.000
No. of Growing Days Mean 0.003 0.001 2.097 0.036
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Table A1. Cont.

Variable Estimate Std. Error z Value p Value

Trembling aspen (TA)
BAPH Species 0.004 0.001 4.485 0.000

log (Density Total) 0.093 0.009 10.633 0.000
log(Density Species + 1) 0.000 0.000 −2.760 0.006

log (QMD Total) 0.412 0.021 19.367 0.000
QMD Species 0.055 0.001 50.896 0.000

Temperature Mean 0.022 0.007 3.222 0.001
Temperature SD 0.407 0.084 4.836 0.000

No. of Growing Days SD −0.050 0.009 −5.289 0.000

White spruce (WS)
BAPH Species −0.010 0.003 −3.829 0.000

log (Density Total) 0.074 0.010 7.195 0.000
log(Density Species + 1) 0.050 0.016 3.113 0.002

Dominant Height 0.004 0.002 2.451 0.014
log (QMD Total) 0.162 0.022 7.433 0.000

QMD Species 0.080 0.002 41.674 0.000

Table A2. Estimated parameters of species-wise regression equation for the DBH standard deviation.

Variable Estimate Std. Error z Value p Value

Balsam fir (BF)
BAPH Species −0.021 0.005 −4.392 0.000

log(Density Species + 1) 0.000 0.000 5.699 0.000
Dominant Height 0.004 0.002 1.763 0.078

QMD Species 0.174 0.005 33.606 0.000
Latitude −0.017 0.005 −3.650 0.000

Temperature Mean −0.033 0.010 −3.396 0.001
Moisture Index Mean 0.126 0.049 2.589 0.010

Eastern white pine (EWP)
Intercept −14.257 2.176 −6.552 0.000

BAPH Total −0.021 0.005 −4.595 0.000
log (Density Total) 0.761 0.116 6.580 0.000
log (QMD Total) 1.404 0.235 5.976 0.000

QMD Species 0.028 0.003 11.238 0.000
No. of Growing Days Mean 0.022 0.005 4.823 0.000

Temperature SD 3.219 0.937 3.436 0.001

Paper birch (PB)
BAPH Total −0.009 0.003 −3.653 0.000

BAPH Species −0.023 0.006 −3.569 0.000
log (Density Total) 0.162 0.040 4.034 0.000

log(Density Species + 1) 0.000 0.000 3.670 0.000
Dominant Height −0.008 0.004 −1.870 0.062
log (QMD Total) 0.679 0.088 7.724 0.000

QMD Species 0.105 0.005 19.696 0.000
No. of Growing Days Mean −0.008 0.002 −4.589 0.000

Moisture Index Mean −0.233 0.076 −3.087 0.002

Red maple (RM)
Intercept 19.675 6.678 2.946 0.003

log(Density Species + 1) 0.071 0.032 2.246 0.025
log (QMD Total) 0.272 0.091 2.985 0.003

QMD Species 0.133 0.007 19.387 0.000
Longitude −0.045 0.022 −1.998 0.046
Latitude −0.464 0.162 −2.863 0.004
Elevation −0.003 0.001 −3.705 0.000

Temperature Mean −0.482 0.139 −3.467 0.001
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Table A2. Cont.

Variable Estimate Std. Error z Value p Value

Red pine (RP)
BAPH Total −0.023 0.006 −4.094 0.000

log (Density Total) 0.986 0.114 8.621 0.000
log(Density Species + 1) −0.134 0.055 −2.442 0.015

log (QMD Total) 1.769 0.221 8.007 0.000
Latitude −0.184 0.027 −6.802 0.000

Sugar maple (SM)
Intercept −5.088 3.687 −1.380 0.168

log(Density Species + 1) 0.000 0.000 5.885 0.000
log (QMD Total) −0.235 0.082 −2.867 0.004

QMD Species 0.084 0.004 22.554 0.000
Latitude 0.227 0.088 2.589 0.010

Precipitation Mean 0.001 0.000 2.307 0.021
Temperature Mean 0.550 0.166 3.301 0.001

No. of Growing Days Mean −0.038 0.012 −3.191 0.001

Trembling aspen (TA)
Intercept −5.140 0.887 −5.795 0.000

BAPH Total −0.018 0.004 −4.906 0.000
log (Density Total) 0.485 0.070 6.970 0.000
Dominant Height 0.011 0.004 2.571 0.010
log (QMD Total) 1.090 0.134 8.142 0.000

QMD Species 0.046 0.003 14.717 0.000
Precipitation SD −0.003 0.001 −2.324 0.020
Temperature SD 0.816 0.299 2.732 0.006

No. of Growing Days SD −0.077 0.032 −2.398 0.016

White spruce (WS)
Intercept −1.867 0.831 −2.245 0.025

BAPH Species −0.049 0.008 −5.990 0.000
log (Density Total) 0.258 0.059 4.416 0.000

log(Density Species + 1) 0.144 0.048 3.002 0.003
log (QMD Total) 0.323 0.109 2.964 0.003

QMD Species 0.120 0.006 20.941 0.000
Temperature SD −1.508 0.393 −3.834 0.000

References
1. Hara, T.; Kimura, M.; Kikuzawa, K. Growth patterns of tree height and stem diameter in populations of Abies veitchii, A. mariesii

and Betula ermanii. J. Ecol. 1991, 79, 1085–1098. [CrossRef]
2. Sterck, F.J.; Bongers, F. Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees. Am. J. Bot. 1998,

85, 266–272. [CrossRef]
3. Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer Science & Business Media: Berlin, Germany, 2012; 458p.
4. Crookston, N.L.; Dixon, G.E. The forest vegetation simulator: A review of its applications, structure, and content. Comput.

Electron. Agric. 2005, 49, 60–80. [CrossRef]
5. Johnson, K.; Comeau, P.; Bokalo, M. Best Practices for Using the Mixedwood Growth Model (MGM21–VS8. 2.21. 39/Rev6378).

2022. Available online: https://mgm.ualberta.ca/wp-content/uploads/sites/60/2022/02/MGM21_Best_Practices_Feb_28_22.
pdf (accessed on 2 January 2023).

6. Pothier, D.; Auger, I. NATURA-2009: Un Modèle de Prévision de la Croissance à l’échelle du Peuplement Pour les Forêts du Québec;
Ministère des Ressources Naturelles et de la Faune, Direction de la Recherche Forestière: Quebec, QC, Canada, 2011.

7. Mitchell, K.J.; Stone, M.S.E.; Grout, M.; Di Lucca Nigh, G.D.; Goudie, J.W.; Stone, J.N.; Nussbaum, A.J.; Yanchuk, A.; Stearns-Smith,
S.; Brockley, R. TIPSY Version 3.2 [Online]; Ministry of Forests and Range, Research Branch: Victoria, BC, Canada, 2004. Available
online: http://www.for.gov.bc.ca/hre/software/tipsy3.htm (accessed on 15 December 2023).

8. Siitonen, M. Experiences in the use of forest management planning models. Silva Fenn. 1993, 27, 167–178. [CrossRef]
9. Avery, T.E.; Burkhart, H.E. Forest Measurements, 5th ed.; Waveland Press, Inc.: Long Grove, IL, USA, 2015; p. 456.
10. Drew, T.J.; Flewelling, J.W. Some recent Japanese theories of yield density relationships and their application to Monterey pine

plantations. For. Sci. 1977, 23, 517–534.
11. Flewelling, J.W.; Wiley, K.N.; Drew, T.J. Stand Density Management in Western Hemlock; Weyerhaeuser Corporation: Vancouver, BC,

Canada; Western Forestry Research Centre: Vancouver, BC, Canada, 1980.

https://doi.org/10.2307/2261100
https://doi.org/10.2307/2446315
https://doi.org/10.1016/j.compag.2005.02.003
https://mgm.ualberta.ca/wp-content/uploads/sites/60/2022/02/MGM21_Best_Practices_Feb_28_22.pdf
https://mgm.ualberta.ca/wp-content/uploads/sites/60/2022/02/MGM21_Best_Practices_Feb_28_22.pdf
http://www.for.gov.bc.ca/hre/software/tipsy3.htm
https://doi.org/10.14214/sf.a15670


Forests 2024, 15, 977 24 of 25

12. Gingrich, S.F. Measuring and evaluating stocking and stand density in upland hardwood forests in the Central States. For. Sci.
1967, 13, 38–53.

13. Larsen, D.R.; Dey, D.C.; Faust, T. A stocking diagram for midwestern eastern cottonwood-silver maple-American sycamore
bottomland forests. N. J. Appl. For. 2010, 27, 132–139. [CrossRef]

14. Eriksson, S.; Hammer, M. The challenge of combining timber production and biodiversity conservation for long-term ecosystem
functioning—A case study of Swedish boreal forestry. For. Ecol. Manag. 2006, 237, 208–217. [CrossRef]

15. Oliver, C.D.; Larson, B.C. Forest Stand Dynamics: Updated Edition; John Wiley and Sons: Hoboken, NJ, USA, 1996.
16. Hunter Jr, M.L. Natural fire regimes as spatial models for managing boreal forests. Biol. Conserv. 1993, 65, 115–120. [CrossRef]
17. Harvey, B.D.; Leduc, A.; Gauthier, S.; Bergeron, Y. Stand-landscape integration in natural disturbance-based management of the

southern boreal forest. For. Ecol. Manag. 2002, 155, 369–385. [CrossRef]
18. Grondin, P.; Noël, J.; Hotte, D. Raréfaction de L’épinette Blanche dans la Sapinière de la Forêt Boréale; Grondin et, P., Cimon, A., Eds.;

Les Enjeux de Biodiversité Relatifs à la Composition Forestière; Ministère des Ressources Naturelles, de la Faune et des Parcs,
Direction de la Recherche Forestière et Direction de l’Environnement Forestier: Quebec, QC, Canada, 2003; pp. 67–84. Available
online: https://diffusion.mern.gouv.qc.ca/public/Biblio/Mono/2011/08/1086366.pdf (accessed on 2 January 2023).

19. Pretzsch, H.; Zenner, E.K. Toward managing mixed species stands: From parametrization to prescription. For. Ecosyst. 2017, 4, 19.
[CrossRef]

20. Sharma, M. Modelling climate effects on diameter growth of red pine trees in boreal Ontario, Canada. Trees For. People 2021,
4, 100064. [CrossRef]

21. Latterini, F.; Pawlik, L.; Stefanoni, W.; Dyderski, M.K. The effects of geomorphology, soil and climate on the trajectory of
aboveground biomass accumulation of beech (Fagus sylvatica L.) at the southern range margin. Catena 2024, 237, 107787.
[CrossRef]

22. Liu, C.; Zhang, S.Y.; Lei, Y.; Newton, P.F.; Zhang, L. Evaluation of three methods for predicting diameter distributions of black
spruce (Picea mariana) plantations in central Canada. Can. J. For. Res. 2004, 34, 2424–2432. [CrossRef]

23. Liu, C.; Beaulieu, J.; Pregent, G.; Zhang, S.Y. Applications and comparison of six methods for predicting parameters of the Weibull
function in unthinned Picea glauca plantations. Scand. J. For. Res. 2009, 24, 67–75. [CrossRef]

24. Duchateau, E.; Schneider, R.; Tremblay, S.; Dupont-Leduc, L. Density and diameter distributions of saplings in naturally
regenerated and planted coniferous stands in Québec after various approaches of commercial thinning. Ann. For. Sci. 2020, 77, 38.
[CrossRef]

25. Hyink, D.M.; Moser, J.W. A generalized framework for projecting forest yield and stand structure using diameter distributions.
For. Sci. 1983, 29, 85–95.

26. Mauro, F.; García-Abril, A.; Ayuga-Téllez, E.; Rojo-Alboreca, A.; Valbuena, R.; Manzanera, J.A. Comparison of two parameter
recovery methods for the transformation of Pinus sylvestris yield tables into a diameter distribution model. Ann. For. Sci. 2021,
78, 12. [CrossRef]

27. [OMNR] Ontario Ministry of Natural Resources. Forest Resources of Ontario 2006: State of the Forest Report 2006; Ontario Ministry
of Natural Resources, Queen’s Printer: Ontario, ON, Canada, 2006; 159p.

28. Morris, D.M.; Reid, D.E.; Kwiaton, M.; Hunt, S.L.; Gordon, A.M. Comparing growth patterns of jack pine and black spruce in
mixed natural stands and plantations. Ecoscience 2014, 21, 1–10. [CrossRef]

29. Sharma, M.; Reid, D.E. Stand height/site index equations for jack pine and black spruce trees grown in natural stands. For. Sci.
2017, 64, 33–40. [CrossRef]

30. Newton, P.F.; Lei, Y.; Zhang, S.Y. Stand-level diameter distribution yield model for black spruce plantations. For. Ecol. Manag.
2005, 209, 181–192. [CrossRef]

31. Newton, P.F.; Amponsah, I.G. Evaluation of Weibull-based parameter prediction equation systems for black spruce and jack pine
stand types within the context of developing structural stand density management diagrams. Can. J. For. Res. 2005, 35, 2996–3010.
[CrossRef]

32. Rijal, B.; Sharma, M. Modelling diameter at breast height distribution of jack pine and black spruce natural stands in eastern
Canada. Can. J. For. Res. 2023, 54, 5. [CrossRef]

33. Baldwin, D.J.B.; Desloges, J.R.; Band, L.E. Physical geography of Ontario. In Ecology of a Managed Terrestrial Landscape: Patterns and
Processes of Forest Landscapes in Ontario; Perera, A.H., Euler, D.L., Thompson, I.D., Eds.; University of British Columbia Press:
Vancouver, BC, Canada, 2000; pp. 12–29. 336p.

34. Thompson, I.D. Forest Vegetation of Ontario: Factors Influencing Landscape Change. In Ecology of a Managed Terrestrial Landscape:
Patterns and Processes of Forest Landscapes in Ontario; Perera, A.H., Euler, D.L., Thompson, I.D., Eds.; UBC Press: Vancouver, BC,
Canada, 2000; pp. 30–53+336.

35. Rowe, J.S. Forest Regions of Canada. Canadian Forestry Service Publication 1300; Department of Environment: Ottawa, ON, Canada,
1972; 172p.

36. [OMNR] Ontario Ministry of Natural Resources and Forestry Growth and Yield Program. PSP and PGP Reference Manual; Sault
Ste.: Marie, ON, Canada, 2016; 677p.

37. Strub, M.R.; Burkhart, H.E. A class-interval-free method for obtaining expected yields from diameter distributions. For. Sci. 1975,
21, 67–69.

https://doi.org/10.1093/njaf/27.4.132
https://doi.org/10.1016/j.foreco.2006.09.046
https://doi.org/10.1016/0006-3207(93)90440-C
https://doi.org/10.1016/S0378-1127(01)00573-4
https://diffusion.mern.gouv.qc.ca/public/Biblio/Mono/2011/08/1086366.pdf
https://doi.org/10.1186/s40663-017-0105-z
https://doi.org/10.1016/j.tfp.2021.100064
https://doi.org/10.1016/j.catena.2023.107787
https://doi.org/10.1139/x04-117
https://doi.org/10.1080/02827580802644599
https://doi.org/10.1007/s13595-020-0929-5
https://doi.org/10.1007/s13595-021-01028-5
https://doi.org/10.2980/21-1-3646
https://doi.org/10.5849/FS-2016-133
https://doi.org/10.1016/j.foreco.2005.01.020
https://doi.org/10.1139/x05-216
https://doi.org/10.1139/cjfr-2023-0101


Forests 2024, 15, 977 25 of 25

38. Zhang, L.; Packard, K.C.; Liu, C. A comparison of estimation methods for Fitting Weibull and Johnson’s SB distributions to mixed
spruce–fir stands in northeastern North America. Can. J. For. Res. 2003, 33, 1340–1347. [CrossRef]

39. Bliss, C.I.; Reinker, K.A. A lognormal approach to diameter distributions in even-aged stands. For. Sci. 1964, 10, 350–360.
40. Nelson, T.C. Diameter distribution and growth of loblolly pine. For. Sci. 1964, 10, 105–114.
41. Bailey, R.L.; Dell, T.R. Quantifying diameter distributions with the Weibull function. For. Sci. 1973, 19, 97–104.
42. Cao, Q.V. Predicting parameters of a Weibull function for modeling diameter distribution. For. Sci. 2004, 50, 682–685. [CrossRef]
43. Poudel, K.P.; Cao, Q.V. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. For. Sci.

2013, 59, 243–252. [CrossRef]
44. Gorgoso-Varela, J.J.; Adedapo, S.M.; Ogana, F.N. A Comparison of Probability Density Functions Fitted by Moments and

Maximum Likelihood Estimation Methods Used for Diameter Distribution Estimation. Forests 2024, 15, 425. [CrossRef]
45. Paradis, G.; Lebel, L. Diameter Distribution Models for Quebec, Canada; CIRRELT, Centre interuniversitaire de recherche sur

les réseaux d’entreprise, la logistique et le transport; Interuniversity Research Centre on Enterprise Networks, Logistics and
Transportation: Quebec, QC, Canada, 2017.

46. Delignette-Muller, M.L.; Dutang, C. Fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 2015, 64, 1–34. [CrossRef]
47. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2020; Available online: https://www.R-project.org/ (accessed on 7 August 2023).
48. Hasselman, B. Nleqslv: Solve Systems of Nonlinear Equations_R Package, Version 3.3.4; R Foundation for Statistical Computing:

Vienna, Austria, 2023.
49. Subedi, N.; Sharma, M. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario. Canada.

Glob. Change Biol. 2013, 19, 505–516. [CrossRef]
50. McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 1989.
51. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
52. O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [CrossRef]
53. Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; John Wiley & Sons:

Hoboken, NJ, USA, 2005; Volume 571.
54. Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.L.; Bolker, B.M.

glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R. J. 2017, 9,
378–400. [CrossRef]

55. Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B (Methodol.) 1974, 36, 111–133.
[CrossRef]

56. Yadav, S.; Shukla, S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In
Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February
2016; pp. 78–83.

57. Weiskittel, A.R.; Hann, D.W.; Kershaw, J.A., Jr.; Vanclay, J.K. Forest Growth and Yield Modelling; John Wiley & Sons, Ltd.: Chichester,
UK, 2011.

58. Qin, J.; Cao, Q.V. Using disaggregation to link individual-tree and whole-stand growth models. Can. J. For. Res. 2006, 36, 953–960.
[CrossRef]

59. Maltamo, M.; Eerikäinen, K.; Pitkänen, J.; Hyyppä, J.; Vehmas, M. Estimation of timber volume and stem density based on
scanning laser altimetry and expected tree size distribution functions. Remote Sens. Environ. 2004, 90, 319–330. [CrossRef]

60. Sheykholeslami, A.; Pasha, K.; Lashaki, K. A study of tree distribution in diameter classes in natural forests of Iran (case study:
Liresara forest). Ann. Biol. Res. 2011, 2, 283–290.

61. Ibrahim, A.D. Evaluation of probability distribution functions for modeling forest tree diameters on agricultural landscapes in
Ogun State, Nigeria. Open J. For. 2022, 12, 432–442. [CrossRef]

62. Rouvinen, S.; Kuuluvainen, T. Tree diameter distributions in natural and managed old Pinus sylvestris-dominated forests. For.
Ecol. Manag. 2005, 208, 45–61. [CrossRef]

63. Rijal, B.; Power, H.; Auger, I.; Guillemette, F.; Bedard, S.; Schneider, R. Development of tree recruitment models for 10 species
groups in the sugar maple-dominated mixed forests of eastern Canada. Can. J. For. Res. 2023, 53, 134–150. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1139/x03-054
https://doi.org/10.1093/forestscience/50.5.682
https://doi.org/10.5849/forsci.12-001
https://doi.org/10.3390/f15030425
https://doi.org/10.18637/jss.v064.i04
https://www.R-project.org/
https://doi.org/10.1111/gcb.12033
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1007/s11135-006-9018-6
https://doi.org/10.32614/RJ-2017-066
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1139/x05-284
https://doi.org/10.1016/j.rse.2004.01.006
https://doi.org/10.4236/ojf.2022.124024
https://doi.org/10.1016/j.foreco.2004.11.021
https://doi.org/10.1139/cjfr-2022-0111

	Introduction 
	Methods 
	Description of Study Area 
	Data Source 
	Model Development 
	Fitting Probability Distribution Functions 
	Development of Regression Models 

	Model Performances 

	Results 
	Distribution Fitting 
	Fitting Regression Models 

	Discussion 
	Conclusions 
	Appendix A
	References

