Elevation Shapes Soil Microbial Diversity and Carbon Cycling in Platycladus orientalis Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Soil Properties Characterization
2.4. Soil DNA Extraction
2.5. Metagenomic Sequencing
2.6. Bioinformatics Analysis
2.7. Statistical Analysis
2.8. Data Availability
3. Results
3.1. Plant Community Diversity and Soil Physiochemical Properties
3.2. Diversity and Structure of Soil Microbial Communities
3.3. Microbial Genetic Capacity for Carbon Fixation and Decomposition
3.4. Mechanism Underlying Changes in Soil Organic Carbon Stock across Different Elevations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Mapping tree density at a global scale. Nature 2015, 525, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Hui, D.; Deng, Q.; Tian, H.; Luo, Y. Climate change and carbon sequestration in forest ecosystems. Handb. Clim. Change Mitig. Adapt. 2016, 555, 594. [Google Scholar]
- Onyango, L.A.; Ngonga, F.A.; Karanja, E.N.; Kuja, J.O.; Boga, H.I.; Cowan, D.A.; Mwangi, K.W.; Maghenda, M.W.; Marinho, L.P.; Kambura, A.K. The soil microbiomes of forest ecosystems in Kenya: Their diversity and environmental drivers. Sci. Rep. 2023, 13, 7156. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, C.; Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef] [PubMed]
- Cong, J.; Yang, Y.; Liu, X.; Lu, H.; Liu, X.; Zhou, J.; Li, D.; Yin, H.; Ding, J.; Zhang, Y. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession. Sci. Rep. 2015, 5, 10007. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Peng, J.; Liu, P.; Bei, Q.; Rensing, C.; Li, Y.; Yuan, H.; Liesack, W.; Zhang, F.; Cui, Z. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Sci. Total Environ. 2021, 785, 147329. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.K.; LaRue, E.A.; Kivlin, S.N.; Edwards, J.D.; Phillips, R.P.; Gallion, J.; Kong, N.; Parker, J.D.; McCormick, M.K.; Domke, G.; et al. Forest structural diversity is linked to soil microbial diversity. Ecosphere 2023, 14, 4702. [Google Scholar] [CrossRef]
- Baldrian, P.; Banin, E. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017, 41, 109–130. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; López-Mondéjar, R.; Kohout, P. Forest microbiome and global change. Nat. Rev. Microbiol. 2023, 21, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Anthony, M.A.; Tedersoo, L.; De Vos, B.; Croisé, L.; Meesenburg, H.; Wagner, M.; Andreae, H.; Jacob, F.; Lech, P.; Kowalska, A.; et al. Fungal community composition predicts forest carbon storage at a continental scale. Nat. Commun. 2024, 15, 2385. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Gu, R.; Gao, K.; Li, D. High plant species diversity enhances lignin accumulation in a subtropical forest of southwest China. Sci. Total Environ. 2023, 865, 161113. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yuan, Y.; Mou, Z.; Li, Y.; Kuang, L.; Zhang, J.; Wu, W.; Wang, F.; Wang, J.; Lambers, H.; et al. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration. Glob. Change Biol. 2023, 29, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Baath, E.; Pei, J.; Fang, C.; Nie, M. Temperature adaptation of soil microbial respiration in alpine, boreal and tropical soils: An application of the square root (Ratkowsky) model. Glob. Change Biol. 2021, 27, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Xiao, L.Q.; Wan, X.; Yu, T.; Liu, Y.F.; Liu, M.X. Research progress on microbial carbon sequestration in soil: A review. Eurasian Soil Sci. 2022, 55, 1395–1404. [Google Scholar] [CrossRef]
- Wu, H.; Cui, H.; Fu, C.; Li, R.; Qi, F.; Liu, Z.; Yang, G.; Xiao, K.; Qiao, M. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. Sci. Total Environ. 2024, 909, 168627. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, L.; Rensing, C.; Ye, J.; Nealson, K.H.; Zhou, S. Syntrophic interspecies electron transfer drives carbon fixation and growth by rhodopseudomonas palustris under dark, anoxic conditions. Sci. Adv. 2021, 7, eabh1852. [Google Scholar] [CrossRef]
- Yuan, H.; Ge, T.; Chen, C.; O’Donnell, A.G.; Wu, J. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl. Environ. Microbiol. 2012, 78, 2328–2336. [Google Scholar] [CrossRef] [PubMed]
- Shigyo, N.; Umeki, K.; Hirao, T. Seasonal dynamics of soil fungal and bacterial communities in cool-temperate montane forests. Front. Microbiol. 2019, 10, 1944. [Google Scholar] [CrossRef]
- Dai, Z.; Zang, H.; Chen, J.; Fu, Y.; Wang, X.; Liu, H.; Shen, C.; Wang, J.; Kuzyakov, Y.; Becker, J.N.; et al. Metagenomic insights into soil microbial communities involved in carbon cycling along an elevation climosequences. Environ. Microbiol. 2021, 23, 4631–4645. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Gunina, A.; Luo, Y.; Wang, J.; He, J.Z.; Kuzyakov, Y.; Hemp, A.; Classen, A.T.; Ge, Y. Contrasting patterns and drivers of soil bacterial and fungal diversity across a mountain gradient. Environ. Microbiol. 2020, 22, 3287–3301. [Google Scholar] [CrossRef]
- Nottingham, A.T.; Fierer, N.; Turner, B.L.; Whitaker, J.; Ostle, N.J.; McNamara, N.P.; Bardgett, R.D.; Leff, J.W.; Salinas, N.; Silman, M.R.; et al. Microbes follow Humboldt: Temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 2018, 99, 2455–2466. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Lee-Cruz, L.; Kim, W.; Kerfahi, D.; Chun, J.; Adams, J.M. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. Soil Biol. Biochem. 2014, 68, 140–149. [Google Scholar] [CrossRef]
- Cui, R.; Qi, S.; Wu, B.; Zhang, D.; Zhang, L.; Zhou, P.; Ma, N.; Huang, X. The influence of stand structure on understory herbaceous plants species diversity of Platycladus orientalis plantations in Beijing, China. Forests 2022, 13, 1921. [Google Scholar] [CrossRef]
- Deng, W.; Jia, G.; Liu, Y.; Chen, Q.; Huang, J.; Wen, L.; Zhang, L.; Liu, X.; Jia, J.; Peng, S. Long-term study on the seasonal water uptake of Platycladus orientalis in the Beijing mountain area, northern China. Agric. For. Meteorol. 2021, 307, 108531. [Google Scholar]
- Zhang, L.; Qi, S.; Li, P.; Zhou, P. Influence of stand and environmental factors on forest productivity of Platycladus orientalis plantations in Beijing’s mountainous areas. Ecol. Indic. 2024, 158, 111385. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.M.; Sun, H.N.; Li, J.; Zheng, J.P.; Zhang, P. Analysis on the characteristics of forest resources in the Beijing Shisanling Forest Farm. South China Agric. 2023, 17, 88–90. [Google Scholar]
- Luo, M.; Zheng, X.; Du, Y. Natural regeneration of an artificial Platycladus orientalis stand in Beijing. Nat. Environ. Pollut. Technol. 2017, 16, 287. [Google Scholar]
- Liu, G.S.; Jiang, N.H.; Zhang, L.D.; Liu, Z.L. Soil Physical and Chemical Analysis and Description of Soil Profiles; China Standard Methods Press: Beijing, China, 1996; Volume 24, p. 266. [Google Scholar]
- Baral, S.; Katzensteiner, K. Impact of biomass extraction on soil properties and foliar nitrogen content in a community forest and a semi-protected natural forest in the central mid-hills of Nepal. Trop. Ecol. 2015, 56, 323–333. [Google Scholar]
- Inubushi, K.; Brookes, P.C.; Jenkinson, D.S. Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigation-extraction method. Soil Biol. Biochem. 1991, 23, 737–741. [Google Scholar] [CrossRef]
- Das, D.; Nayak, A.K.; Thilagam, V.K.; Chatterjee, D.; Shahid, M.; Tripathi, R.; Mohanty, S.; Kumar, A.; Lal, B.; Gautam, P.; et al. Measuring potassium fractions is not sufficient to assess the long-term impact of fertilization and manuring on soil’s potassium supplying capacity. J. Soils Sediments 2018, 18, 1806–1820. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [PubMed]
- Li, R.; Li, Y.; Kristiansen, K.; Wang, J. SOAP: Short oligonucleotide alignment program. Bioinformatics 2008, 24, 713–714. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Zifcakova, L.; Vetrovsky, T.; Lombard, V.; Henrissat, B.; Howe, A.; Baldrian, P. Feed in summer, rest in winter: Microbial carbon utilization in forest topsoil. Microbiome 2017, 5, 122. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Huang, Y.; Wang, B.; Dippold, M.A.; Li, H.; Li, N.; Jia, P.; Zhang, H.; An, S.; Kuzyakov, Y. Metabolic pathways of CO2 fixing microorganisms determined C-fixation rates in grassland soils along the precipitation gradient. Soil Biol. Biochem. 2022, 172, 108764. [Google Scholar] [CrossRef]
- Singh, D.; Takahashi, K.; Kim, M.; Chun, J.; Adams, J.M. A Hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microb. Ecol. 2012, 63, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Aaron Hogan, J.; Crowther, T.W.; Xu, S.; Zhao, R.; Song, P.; Cui, M.; Song, X.; Cao, M.; Yang, J. Drivers and mechanisms that contribute to microbial β-diversity patterns and range sizes in mountains across a climatic variability gradient. Ecography 2024, 2024, e07049. [Google Scholar] [CrossRef]
- Corneo, P.E.; Pellegrini, A.; Cappellin, L.; Roncador, M.; Chierici, M.; Gessler, C.; Pertot, I. Microbial community structure in vineyard soils across altitudinal gradients and in different seasons. FEMS Microbiol. Ecol. 2013, 84, 588–602. [Google Scholar] [CrossRef] [PubMed]
- Siles, J.A.; Cajthaml, T.; Minerbi, S.; Margesin, R.; Max, H. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiol. Ecol. 2016, 92, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhou, Y.; Jia, X.; Han, L.; Liu, L.; Ren, K.; Ye, X.; Qu, Z.; Pei, Y. Soil characteristics and microbial community structure on along elevation gradient in a Pinus armandii forest of the Qinling Mountains, China. For. Ecol. Manag. 2022, 503, 119793. [Google Scholar] [CrossRef]
- Ivashchenko, K.; Sushko, S.; Selezneva, A.; Ananyeva, N.; Zhuravleva, A.; Kudeyarov, V.; Makarov, M.; Blagodatsky, S. Soil microbial activity along an altitudinal gradient: Vegetation as a main driver beyond topographic and edaphic factors. Appl. Soil Ecol. 2021, 168, 104197. [Google Scholar] [CrossRef]
- Xie, L.; Li, W.; Pang, X.; Liu, Q.; Yin, C. Soil properties and root traits are important factors driving rhizosphere soil bacterial and fungal community variations in alpine Rhododendron nitidulum shrub ecosystems along an altitudinal gradient. Sci. Total Environ. 2023, 864, 161048. [Google Scholar] [CrossRef] [PubMed]
- Zhalnina, K.; Dias, R.; de Quadros, P.D.; Davis-Richardson, A.; Camargo, F.A.; Clark, I.M.; McGrath, S.P.; Hirsch, P.R.; Triplett, E.W. Soil pH determines microbial diversity and composition in the park grass experiment. Microb. Ecol. 2015, 69, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Lynn, T.M.; Ge, T.; Yuan, H.; Wei, X.; Wu, X.; Xiao, K.; Kumaresan, D.; Yu, S.S.; Wu, J.; Whiteley, A.S. Soil Carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microb. Ecol. 2017, 73, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, H.; Tian, P.; Yao, X.; Sun, H.; Wang, Q.; Delgado-Baquerizo, M. Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biol. Biochem. 2020, 144, 107763. [Google Scholar] [CrossRef]
- Rappaport, H.B.; Oliverio, A.M. Extreme environments offer an unprecedented opportunity to understand microbial eukaryotic ecology, evolution, and genome biology. Nat. Commun. 2023, 14, 4959. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, U.N.; Ayres, E.; Wall, D.H.; Bardgett, R.D. Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity-function relationships. Eur. J. Soil Sci. 2011, 62, 105–116. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, J.; Yang, J.; Wu, G.; Hua, Z.; Dong, H.; Hedlund, B.P.; Baker, B.J.; Jiang, H. Compositional and metabolic responses of autotrophic microbial community to salinity in lacustrine environments. Msystems 2022, 7, e0033522. [Google Scholar] [CrossRef] [PubMed]
- Zarzycki, J.; Brecht, V.; Müller, M.; Fuchs, G. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc. Natl. Acad. Sci. USA 2009, 106, 21317–21322. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Hao, X.; Qin, F.; Delgado Baquerizo, M.; Liu, Y.; Zhou, J.; Cai, P.; Chen, W.; Huang, Q. Microbial autotrophy explains large-scale soil CO2 fixation. Glob. Change Biol. 2023, 29, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Schimel, J.P.; Schaeffer, S.M. Microbial control over carbon cycling in soil. Front. Microbiol. 2012, 3, 348. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; He, K.; Zhang, Q.; Han, M.; Zhu, B. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Glob. Change Biol. 2022, 28, 3426–3440. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Anderson, I.C.; Singh, B.K. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 2013, 21, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Dungait, J.A.J.; Lu, X.; Yang, Y.; Hartley, I.P.; Zhang, W.; Mo, J.; Yu, G.; Zhou, J.; Kuzyakov, Y.; et al. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Glob. Change Biol. 2019, 25, 3267–3281. [Google Scholar] [CrossRef] [PubMed]
- Hartman, W.H.; Ye, R.; Horwath, W.R.; Tringe, S.G. A genomic perspective on stoichiometric regulation of soil carbon cycling. ISME J. 2017, 11, 2652–2665. [Google Scholar] [CrossRef] [PubMed]
- Hicks, L.C.; Lajtha, K.; Rousk, J. Nutrient limitation may induce microbial mining for resources from persistent soil organic matter. Ecology 2021, 102, e03328. [Google Scholar] [CrossRef] [PubMed]
Plot Number | Elevation (m) | Slope (°) | Aspect | Mean Diameter at Breast Height (cm) | Stand Density (per/hm2) |
---|---|---|---|---|---|
A_100 | 118 | 26 | NW | 11.50 | 1350 |
B_300 | 300 | 26 | NW | 10.98 | 1375 |
C_500 | 505 | 27 | NW | 11.74 | 1375 |
Elevation/m | 118 | 300 | 505 |
---|---|---|---|
TN (g kg−1) | 1.48 ± 0.16 b | 1.65 ± 0.05 b | 2.62 ± 0.27 a |
SOC (g kg−1) | 17.5 ± 2.18 b | 19.2 ± 0.96 b | 26.4 ± 2.00 a |
TK (g kg−1) | 18.9 ± 0.05 b | 21.6 ± 0.15 a | 21.2 ± 0.43 ab |
TP (g kg−1) | 0.36 ± 0.02 b | 0.30 ± 0.01 b | 0.43 ± 0.02 a |
AK (mg kg−1) | 178 ± 9.87 a | 207 ± 16.4 a | 199 ± 15.9 a |
AP (mg kg−1) | 2.42 ± 0.50 a | 1.40 ± 0.15 a | 2.35 ± 0.21 a |
C:N | 11.8 ± 0.32 a | 11.7 ± 0.30 a | 10.2 ± 0.36 b |
C:P | 48.2 ± 4.53 a | 63.2 ± 5.03 a | 61.7 ± 2.93 a |
N:P | 4.08 ± 0.30 b | 5.40 ± 0.32 a | 6.09 ± 0.37 a |
pH | 7.45 ± 0.05 a | 6.87 ± 0.04 b | 7.04 ± 0.15 ab |
SMBC (mg kg−1) | 462 ± 154 a | 390 ± 208 a | 389 ± 112 a |
SMBC:SOC | 0.03 ± 0.01 a | 0.02 ± 0.01 a | 0.01 ± 0.004 a |
SMBN (mg kg−1) | 12.1 ± 4.02 a | 11.2 ± 2.01 a | 8.48 ± 2.21 a |
NH4+-N (mg kg−1) | 2.61 ± 0.11 b | 6.44 ± 0.60 a | 4.45 ± 0.14 ab |
NO3−-N (mg kg−1) | 5.95 ± 1.34 a | 3.43 ± 0.90 a | 7.21 ± 1.18 a |
Herb Shannon | 1.25 ± 0.28 a | 1.12 ± 0.13 a | 0.88 ± 0.32 a |
Shrub Shannon | 0.53 ± 0.21 a | 0.74 ± 0.31 a | 0.73 ± 0.11 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yuan, C.; Hu, D.; Zhang, Y.; Hou, L.; Li, J.; Han, S.; Dou, Y.; Cao, J. Elevation Shapes Soil Microbial Diversity and Carbon Cycling in Platycladus orientalis Plantations. Forests 2024, 15, 979. https://doi.org/10.3390/f15060979
Zhang Y, Yuan C, Hu D, Zhang Y, Hou L, Li J, Han S, Dou Y, Cao J. Elevation Shapes Soil Microbial Diversity and Carbon Cycling in Platycladus orientalis Plantations. Forests. 2024; 15(6):979. https://doi.org/10.3390/f15060979
Chicago/Turabian StyleZhang, Yushu, Chao Yuan, Dongyang Hu, Yong Zhang, Lina Hou, Jinyu Li, Siyu Han, Yuanyang Dou, and Jixin Cao. 2024. "Elevation Shapes Soil Microbial Diversity and Carbon Cycling in Platycladus orientalis Plantations" Forests 15, no. 6: 979. https://doi.org/10.3390/f15060979
APA StyleZhang, Y., Yuan, C., Hu, D., Zhang, Y., Hou, L., Li, J., Han, S., Dou, Y., & Cao, J. (2024). Elevation Shapes Soil Microbial Diversity and Carbon Cycling in Platycladus orientalis Plantations. Forests, 15(6), 979. https://doi.org/10.3390/f15060979