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Abstract: This paper takes the central area of Shenzhen as an example to explore the correlation
and differences between 2D and 3D green spaces on urban roads during the summer of 2023. By
collecting street view image data and using convolutional neural networks for image semantic
segmentation, the Green View Index (GVI) was calculated and combined with the Normalized
Difference Vegetation Index (NDVI) for analysis. The results show that the road greening levels
in Nanshan District, Futian District, and Luohu District of Shenzhen are relatively high, with GVI
exceeding 25%. The Pearson correlation coefficient between the 2D and 3D greening data is 0.5818,
indicating a moderate correlation. By analyzing four typical greening scenarios (high NDVI and high
GVI, high NDVI and low GVI, low NDVI and high GVI, and low NDVI and low GVI), the study
found specific reasons for the differences in green data in different dimensions; the analysis revealed
that factors such as building height, density, and elevated transportation facilities significantly affect
the accuracy of NDVI in urban spaces. The study suggests that in urban greening assessments,
the complementarity and differences between street view data and remote sensing data should be
comprehensively considered to improve the accuracy and comprehensiveness of the analysis.

Keywords: street greening; street view imagery; semantic segmentation; green view index;
Shenzhen; China

1. Introduction

Against the backdrop of high-quality development of urban and rural living environ-
ments today, China’s urbanization rate has increased from 17.92% to 66.16% [1,2] over the
55 years from 1978 to 2023, with an average annual increase of 0.88%. The urban population
has rapidly expanded, with nearly half of the population concentrated in cities, causing
the initially developed old urban areas to face various “urban diseases” [3], and residents’
physical and mental health issues have gradually emerged from the shadow of urban phys-
ical space development. For instance, the quality of buildings in old urban areas is inferior
to that in new areas. Buildings in old areas have been in place for a long time and were
built according to lower design standards of the time, which leads to structural problems
and safety hazards, thereby reducing residents’ satisfaction with life [4,5]. Additionally,
infrastructure in old urban areas, such as water, electricity, and transportation systems, is
aging and cannot meet the current demands of urban development [6]. The health status of
residents is also lower than that in new urban areas [7]. Old facilities, congested traffic, and
a dense population exacerbate environmental problems. In high-density old urban areas,
residents often face higher stress and health risks due to environmental impacts such as
noise pollution, light pollution, and air pollution [8].

In the stages of urban development, urban space and urban ecological space can
exist simultaneously as two independent systems [9,10] that influence each other. Urban
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green space plays a key role in improving residents’ physical and mental health [11],
alleviating the urban heat island effect [12,13], and enhancing the quality of the living
environment [14].

Road greening, as part of urban green infrastructure, is a public resource with im-
portant landscape and ecological functions for the city [15]. Lower-grade roads, such as
pedestrian-friendly streets, are the main carriers of outdoor public life [16]. Their quality
plays a crucial role in enhancing urban vitality and residents’ quality of life. Road greening
has been proven to promote walking behavior [17,18], and can also improve public health
and enhance happiness [19,20]. Therefore, the creation of road green spaces is a key issue
in the construction of ecological cities.

Road green space has always been a hot research topic for scholars both domestically
and internationally. The research methods for road green spaces have evolved from
traditional survey techniques to the adoption of information technology methods. In
traditional research methods, road greening is usually assessed by on-site observations [21],
and some scholars use questionnaires [22]. However, these methods have limitations
such as limited sample size, time-consuming processes, and susceptibility to subjective
bias from evaluators. With technological advancements, NDVI (Normalized Difference
Vegetation Index), a commonly used remote sensing index, has gradually been adopted
by the academic community. Scholars commonly use the NDVI to study the extent of
vegetation cover in an area. NDVI is calculated by comparing the reflectance in the near-
infrared (NIR) and red (R) bands. Positive values usually indicate vegetation cover, with
values closer to 1 indicating greater vegetation density.

As research deepens and cities expand rapidly, the analysis of traditional 2D data can
no longer meet the needs of modern cities for large-scale green space research. In recent
years, with the development of information technology, data have gradually shifted from
a “God’s perspective” to a “resident’s perspective,” and various information technology
methods can apply more diverse data to urban green space research. For example, using
street view map “big data” as a data source for analyzing the Green View Index (GVI) allows
for more precise identification of green spaces. For instance, Li et al. (2015) [23] proposed
using the Google Street View (GSV) of the target area to assess urban street greening
and classify green areas in the images. Meanwhile, methods that calculate vegetation
proportions using image segmentation based on color pixel recognition have also become
more common. For example, Lu et al. (2018) [24] used a deep learning algorithm called
“semantic segmentation” to calculate the GSV of the target city. This study showed that
urban greening, especially greening assessed from a pedestrian’s perspective using Google
Street View and deep learning technology, has a significant positive impact on promoting
walking behavior. Kameoka T (2022) [25] used a convolutional neural network model for
image analysis, utilizing GSV and the “slicing method” to determine the GVI of the target
urban area. This method allows for a more accurate and cost-effective evaluation of urban
greening, thereby promoting the development of urban greening research in various fields.
Chiang, YC (2023) et al. [26] used deep learning, employing the sky view factor (SVF) and
GVI to quantitatively study the impact of SVF and GVI on thermal comfort in urban street
spaces. Scholars’ research has effectively laid the foundation for comparing urban green
spaces from both 2D and 3D perspectives.

However, in current urban green space research, scholars typically use either 2D or
3D data to perceive and evaluate green spaces, often overlooking the “natural” differences
between spatial data in different dimensions—both the “resident’s perspective” and the
“God’s perspective” have their own observational limitations.Due to the different perspec-
tives, the greening rate represented by remote sensing technology and the GVI represented
by field observations are complementary in urban ecological monitoring. Remote sensing
technology provides macroscopic, continuous greening coverage data, while field obser-
vations provide microscopic, detailed environmental quality information. Therefore, the
comparison between 2D and 3D greening is not just a numerical game of environmental
indicators but an important factor that needs to be comprehensively considered in urban
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planning, environmental protection, and ecological monitoring. Combining the two can not
only detail the mapping relationship between different data and find the specific reasons
for the differences, but also more accurately assess the urban greening status, optimize
the evaluation methods of urban greening, and provide strong data support and scientific
evidence for urban planning and ecological environment improvement.

Shenzhen is a rapidly rising city in China, with a very intense urban development
process and a very rapid urbanization process. However, today Shenzhen is considered a
very successful ecological city, where economic and urban development have not caused
the city to neglect the harmonious coexistence of humans and nature. On the contrary,
its green infrastructure construction is well-developed. Nanshan District, Futian District,
and Luohu District, as old urban areas of Shenzhen, remain classic examples of green
space construction in China’s megacities, providing guiding roles for the evolution of green
infrastructure in other cities during their development.

This study hypothesizes that there is a significant correlation between 2D and 3D
greening data of urban roads; at the same time, it is hypothesized that there are significant
differences between 2D and 3D greening data at the same locations in different urban
scenarios. We selected Shenzhen as the research object, using road green spaces as the entry
point. Based on panoramic static image data, we conducted image semantic segmentation
using a convolutional neural network model to identify the GVI. Combined with Pearson’s
coefficient, we analyzed the correlation and differences between 2D and 3D greening data
in Nanshan District, Futian District, and Luohu District of Shenzhen. The study aims
to explore the correlation and differences between 2D and 3D greening data at the same
locations by comparing and analyzing road greening data in these three areas. The specific
objectives include (1) evaluating the correlation between NDVI and GVI, (2) analyzing
the main factors leading to differences between NDVI and GVI, and (3) summarizing the
applicability and limitations of NDVI and GVI in different urban areas.

2. Study Area and Data
2.1. Overview of the Study Area

Shenzhen is located in the southern part of Guangdong Province, China
(Figures 1 and 2), south of the Tropic of Cancer, on the eastern coast of the Pearl River Delta,
adjacent to Hong Kong, with geographical coordinates of 113◦46′ to 114◦37′ east longitude
and 22◦27′ to 22◦52′ north latitude. Shenzhen has a subtropical monsoon climate with mild
weather, abundant sunshine, plentiful rainfall, and rich natural resources (Table 1). Over
the past 41 years, Shenzhen has rapidly transformed from a small border town into a high-
density, super-large modern metropolis. In 2022, the city’s permanent population reached
17.66 million, with an urbanization rate of 99.79% (Shenzhen Bureau of Statistics, 2024) [27].
Among them, Nanshan District, Futian District, and Luohu District are the initial develop-
ment areas of the Shenzhen Special Economic Zone. According to statistics released by the
Shenzhen Municipal Government in 2023, the population densities of the three districts
in 2022 were 9652 people per square kilometer, 12,927 people per square kilometer, and
19,256 people per square kilometer, respectively, with Luohu District having the highest
population density in the city. At the same time, the GDPs of the three districts in that year
were 116.25 billion USD, 79.02 billion USD, and 37.34 billion USD, respectively, with per
capita GDP ranking first, second, and fourth in those cities. After more than 40 years of
continuous development, these three districts have grown into the most densely populated,
economically developed, and mature urban center areas of Shenzhen. Urban construction
has entered an era of stock development.

Nanshan District, Futian District, and Luohu District, as the old urban areas of Shen-
zhen, each have unique green space resources that significantly contribute to the city’s
ecological environment (Table 2). Nanshan District has 61.70% of its land used for urban
construction, but still retains 24.63% forest land and 8.77% farmland, mainly concentrated
in Nanshan Park and the northern mountainous areas, providing important ecological
services. Futian District, as an administrative and commercial center, has 76.73% of its
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land used for urban construction, with 18.06% forest land, mainly distributed in Lianhua
Mountain Park, Xiangmi Lake area, and the northern mountainous areas. Despite the
high development intensity, it still provides residents with high-quality recreational green
spaces. Luohu District has 39.50% of its land used for urban construction, with a lower
development intensity compared to the other two districts. It has 49.10% forest land, mainly
concentrated in the Wutong Mountain Scenic Area and Donghu Park area, forming an
important ecological barrier for the city. The water areas in the three districts account for
3.05%, 4.21%, and 5.64%, respectively, while the grassland areas account for 1.86%, 0.24%,
and 1.03%, respectively.
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Figure 2. Image map of the study area.

The road network in the central area of Shenzhen is characterized by high density,
multifunctionality, multiple levels, and complex structures. It not only bears the main
traffic flow but also reflects advanced road greening design and implementation results.
Shenzhen’s continuous attention and investment in the urban ecological environment
have ensured that, despite high-intensity land development, green spaces still maintain
high vegetation coverage, diverse vegetation types, and well-developed three-dimensional
greening. As a modern super-large city with an urbanization rate close to 100%, Shenzhen is
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one of the representatives of ecological cities in China. Its urban greening and development
coexist harmoniously, forming a “half-green, half-city” landscape. Nanshan District, Futian
District, and Luohu District, as the earliest developed areas of Shenzhen, have not seen a
significant decline in the quality of their green spaces despite high-intensity construction,
complex traffic structures, and high population density. These three areas not only provide
rich research samples for urban green infrastructure but also offer strong empirical evidence
for studying the evolution of urban greening, the perception of urban green spaces, and
related fields.

Table 1. Statistical Table of Basic Natural Information of Shenzhen, Guangdong Province, China
(Shenzhen Bureau of Statistics, 2024) [27].

Climate Elements Natural Vegetation Types Land Use Information

Average temperature (◦C) 23.3
Percentage of subtropical and tropical

evergreen broad-leaved and deciduous
broad-leaved shrubs (%)

64.59% Cultivated land (%) 5.95%

Relative humidity (%) 74 Percentage of tropical mangroves (%) 0.78% Forest land (%) 29.14%

Precipitation (mm) 1932.9 Percentage of cultivated vegetation
(artificial turf, artificial forests) (%) 25.29% Grassland (%) 1.23%

Sunshine hours (h) 1853.0 Percentage of subtropical coniferous
forests (%) 8.56% Water area (%) 3.95%

High temperature days (d) 4.4 Percentage of subtropical and tropical
grasses (%) 0.78% Urban construction land (%) 59.73%

Table 2. Statistics of land use information in Shenzhen, Guangdong Province, China (Shenzhen
Bureau of Statistics, 2024) [27].

Land Type Ratio Shenzhen Nanshan Futian Luohu

Arable land (%) 5.95 8.77 0.76 4.73
Woodland (%) 29.14 24.63 18.06 49.10
Grassland (%) 1.23 1.86 0.24 1.03

Waters (%) 3.95 3.05 4.21 5.64
Urban construction land (%) 59.73 61.70 76.73 39.50

2.2. Data Source and Data Preprocessing
2.2.1. Various Data Sources and Related Software Versions

The data (Table 3) for this study were collected in July 2023. The research process
was based on the ArcGIS 10.7 operating platform for data calculation and visualization.
Python 3.11, PyTorch 2.0, and Deeplabv3 were used to train the image semantic segmenta-
tion prediction model and calculate the green view rate of urban street scenes.

Table 3. Summary of data sources for application data.

No. Data Name Data Source

1 Population data Shenzhen Statistical Yearbook 2023 [27]
2 GDP data Shenzhen Statistical Yearbook 2023 [27]
3 Urbanization rate data Shenzhen Statistics Bureau
4 Climate element information Shenzhen Statistics Bureau
5 Natural vegetation type “1:1,000,000” China Vegetation Atlas

6 Land use information Chinese Academy of Sciences Resource and
Environmental Science Data Center

7 Administrative division Open Street Map
8 Road information Open Street Map
9 Panoramic static image Baidu Map Open Platform
10 Normalized difference vegetation index Google Earth Engine
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2.2.2. Administrative Divisions and Road Data

Based on Open Street Map (OSM), administrative and road network data for the
Nanshan, Futian, and Luohu districts of Shenzhen were extracted, and roads were classified
into nine levels according to China’s road spatial distribution grades: primary roads,
secondary roads, tertiary roads, quaternary roads, national highways, provincial roads,
county roads, township roads, and expressways. In this study, ArcGIS was used to segment
the road data at equal intervals of 100 m, yielding a total of 17,342 sampling points. Based
on this, roads were filtered to exclude township roads with insufficient data, ultimately
retaining eight levels of road classification. To ensure more accurate and efficient subsequent
calculations, the road network data were processed to simplify and consolidate multi-lane
road structures, with all urban roads eventually being calculated in a single-line form.

In this study, based on the spatial distribution of sampling points in the above types
of roads, combined with the relationship between humans and vehicles and road grades,
eight levels of urban roads were reclassified into three types of roads to facilitate the
comparison of the characteristics of green spaces among different road levels. These are
high-grade thoroughfares primarily for vehicular traffic, medium-grade roads primarily for
vehicular use with pedestrian walkways on both sides, and low-grade roads primarily for
pedestrian use. The high-grade thoroughfares include primary roads, national highways,
provincial roads, county roads, and expressways, while the medium-grade roads include
secondary and tertiary roads, and the low-grade roads include quaternary roads. The basic
distribution of sampling points is shown in Figure 3 below.
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2.2.3. NDVI and Street View Image Data

Based on the Google Earth Engine (GEE) platform, Landsat data were preprocessed
and the maximum NDVI was extracted [28]. The sampled data were validated, and data
with significant cloud cover were removed. Finally, five consecutive images near July 2023
were selected to reduce the impact of data anomalies.

After obtaining the sampling point coordinates through ArcGIS, a Python script was
written to convert and upload the sampling point coordinate data, and the Baidu Maps
open platform API was used to collect panoramic static images of the streets. The sampling
data were validated, resulting in a total of 14,264 effective samples, each with a resolution
of 2048 pixels by 1024 pixels.

3. Research Methodology
3.1. Analytical Framework

This study is based on Shenzhen’s road network data, utilizing ArcGIS equidistant
segmentation technology to generate observation points and export their coordinates, in
conjunction with Baidu Maps API to obtain panoramic street images of the observation
points. Fully convolutional networks are used to perform semantic segmentation on each
panoramic street image, obtaining the area ratio of each semantic object and calculating the
street green view index. Finally, combined with the results measured by the Normalized
Difference Vegetation Index, a two-dimensional and three-dimensional correlation analysis
of the green spaces of Shenzhen’s streets is conducted.The technical path of this study is
shown in Figure 4 below.
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3.2. NDVI Calculation

NDVI, generally used to indicate vegetation coverage, ranges from [−1, 1], where
negative values represent high-reflectance ground cover such as clouds, snow, and water,
and positive values indicate vegetation cover, with values closer to 1 indicating greater
vegetation coverage. The formula for calculating NDVI is as follows:

NDVI =
NIR − R
NIR + R

(1)

In the formula, NIR (near infrared) represents the near-infrared band; R is the red band.
In practical applications, NDVI data may have null values, meaning some areas lack

data, which can be due to various reasons: cloud cover and atmospheric particles (such
as smoke and dust) can obscure the surface, preventing satellite images from capturing
ground information, resulting in null values in NDVI calculations. Additionally, the strong
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red light absorption and weak near-infrared reflection by water bodies lead to extremely
low NDVI values, which are sometimes erroneously processed as no data. Limitations
in the resolution or detection capabilities of satellite sensors, especially for very small or
narrow surface features, can also result in null values in NDVI maps. Seasonal changes in
vegetation, such as dormancy in winter, can cause significant decreases in NDVI values,
which, if not properly identified, may be mistakenly marked as no data.

To reduce errors and optimize data quality, we selected remote sensing images from
five adjacent time periods with the least cloud cover for analysis. In the final raster cal-
culation, the average of non-null values was used to ensure the accuracy and reliability
of the NDVI results. Through spatial autocorrelation analysis of the data, a z-score of
406.189840901 (Figure 5) was obtained, indicating a less than 1% probability of this clus-
tering pattern occurring by chance. The Moran index of 0.804601, close to 1, indicates a
significant positive spatial autocorrelation in the analyzed features, meaning similar values
tend to cluster in space. The p-value is zero, with a confidence level above 99%.
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3.3. GVI Calculation

The GVI is a measure of the visible green vegetation area in a specific urban area or
street, reflecting the level of greening in that area. Its core concept includes the ratio of the
green vegetation area visible to the human eye within a certain range to the overall visible
area. A higher GVI indicates better greening of the area.

3.3.1. GVI Recognition Based on Image Semantic Segmentation Neural Network

The Convolutional Neural Network (CNN) is a deep learning model used for image
and video analysis. It performs convolution operations on input data through convolutional
kernels, automatically learning to extract spatial features from images, followed by pooling
for dimensionality reduction and fully connected layers for classification, thus enabling
tasks such as image classification, object detection, and semantic segmentation. CNNs
have achieved excellent recognition performance and are now widely used in the fields
of computer vision and image processing (Yao et al., 2019) [29]. The Deep Convolutional
Neural Network (DCNN) gradually extracts increasingly abstract features through the
combination of multiple convolutional and pooling layers, starting from simple edges to
complex object parts, ultimately forming an understanding of the whole object. This char-
acteristic of layer-by-layer extraction and abstraction makes DCNNs perform exceptionally
well in image recognition tasks and they are now widely used in the fields of computer
vision and image processing [30].

Cityscapes is a benchmark suite and dataset used for training and testing pixel-level
and instance-level semantic segmentation. It consists of a large and diverse set of stereo
video sequences recorded in 50 different city streets, providing high-quality pixel-level
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annotations and a large number of coarse annotations to be used for the recognition of
various visual scenes [31].

The DeepLabV3+ segmentation model [32] is based on a Deep Convolutional Neural
Network and extracts and restores semantic information of images through an encoder-
decoder structure and ASPP (Atrous Spatial Pyramid Pooling). The encoder stage extracts
contextual features, while the decoder addresses the problem of edge information loss.
The detailed steps can be explained as follows (Figure 6): the Xception feature extraction
network is used for feature extraction, generating two effective feature layers, namely
shallow features and deep features; the extracted deep features are then input into the ASPP
module, which includes a 1 × 1 convolution and three 3 × 3 convolutions with dilation
rates of 6, 12, and 18, respectively. Different dilation rates are used in atrous convolutions to
improve the receptive field of the network, giving the network different feature reception
conditions. The ASPP layer compresses features through a 1 × 1 convolution, ultimately
outputting the features captured by the entire encoder network. The shallow features
generated by Xception enter the decoder, where multi-scale features are upsampled four
times and then fused with the shallow features, followed by feature extraction using a
3 × 3 convolution. Finally, after four upsamplings, the output image matches the input
image [33]. This model has outstanding performance in refining object boundary features
and improving segmentation results [34].
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In this study, the DeepLabV3+ segmentation model was used, trained on the CityScapes
open-source dataset using PyTorch to obtain the final prediction model, which recognizes
19 classes of image content (Table 4).
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Table 4. Semantic segmentation categories.

Number Semantic Segmentation Categories 10 Terrain

1 road 11 sky
2 sidewalk 12 person
3 building 13 rider
4 wall 14 car
5 fence 15 truck
6 pole 16 bus
7 traffic light 17 train
8 traffic sign 18 motorcycle
9 vegetation 19 bicycle

3.3.2. Minimizing Deformation Error

When capturing street panoramic images, the wide field of view of the camera and
the need for image stitching to achieve panoramic effects can cause certain degrees of
distortion and deformation at the top and bottom of the image. This distortion is primarily
manifested as the elongation and thinning of object shapes, with a change in the size ratio
between the top and bottom of the same object.

The deformation in panoramic images can have a negative impact on image semantic
segmentation algorithms based on convolutional neural networks. This is because the
convolutional kernel parameters in convolutional neural networks are typically learned
based on the features of objects in normal proportions, and when objects in the image are
distorted, their features undergo certain deviations. This reduces the network’s ability to
recognize objects in distorted areas, leading to an increase in pixel-level misclassifications
in the semantic segmentation results, especially for the top and bottom parts of the image.
To improve the accuracy of semantic segmentation of panoramic images, modifications
to the network structure are needed to accommodate the distortion in panoramic images,
modeling the feature changes in the top and bottom areas to reduce the decrease in semantic
segmentation accuracy caused by distortion.

To minimize errors, this study adopted the methods of Yin (2015) [35] and Ye (2019) [36]
(Figure 7), cropping the central part of the panoramic image to better match the perspective
of a normal pedestrian, more accurately reflecting the actual visual perception of urban
street greening.
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The semantic segmentation prediction model is used to calculate 14,264 processed
panoramic street view images. The proportion of the vegetation area at each sampling
point (Table 4) in the entire image is the GVI value of the point. The sampling point data are
imported into ArcGIS, and combined with information such as administrative boundaries,
the overall GVI score of different areas can be obtained.

3.3.3. Reasons for the Null Value of GVI Data

As shown in the comparison in Figure 8, the 3D green space data contain many null
values compared to the 2D data. This is because the street view map data used in this
study were obtained through street view collection vehicles, which cannot collect Green
View Index data for non-vehicular traffic areas. This means that GVI data for non-vehicular
areas such as urban parks and residential communities were not captured in this study. For
example, at the Shenzhen Golf Course (Figure 9), despite having extremely high greening
coverage, the GVI values are almost blank because the sampling vehicle could not access
these areas. Therefore, in this study, the correlation and difference analyses of the two-
dimensional data were conducted based on the intersection of NDVI images and street
view images.
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4. Results and Discussion
4.1. Overall Characteristics of Street Green Spaces
4.1.1. In Three-Dimensional Space, the Road Greening Levels in Shenzhen’s Nanshan,
Futian, and Luohu Districts Are Overall High

From the perspective of regional differences, this study compared the road greening
conditions in Shenzhen’s three major urban districts: Nanshan, Futian, and Luohu. The
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research results (Table 5) indicate that the road green view rates in the Nanshan, Futian,
and Luohu districts are similar, at 26.05, 25.82, and 26.51, respectively, all above 25%,
indicating a level of “comfort”. The absolute difference between the average and median
values is small, indicating an even distribution of data and no significant bias in green
space resources.

Table 5. Statistics of green vision rate in three districts of Shenzhen City.

District
Number of

Sampling Points
GVI

Mean Median Std Max Min

Nanshan District 5427 26.052504 20.763597 20.210768 95.885968 0
Futian District 4283 25.815859 20.475361 19.893862 87.554387 0
Luohu District 2544 26.505979 20.303072 22.538585 93.763146 0

Shenzhen’s main urban districts have a high level of road greening, with a wide
coverage and overall balance. The image data used in this study were mainly collected in
the summer, representing the vibrant summer scenery of Shenzhen’s road greening.

4.1.2. In Two-Dimensional Space, Urban and Forest Parks Form the Backbone, with Road
Greening Connecting to Form a Green Ecological Network

Through detailed analysis of vegetation coverage, it was observed that despite the
high urban development pressure, the core areas of Shenzhen still have generally high
NDVI values (Figure 10), demonstrating significant success in urban greening. The region
is scattered with parks and green spaces of various sizes, interconnected by meticulously
designed road greenings, together forming a coherent green ecological network.
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4.2. Correlation Analysis between Two-Dimensional and Three-Dimensional Street Green Space

To explore in depth the correlation and differences between three-dimensional blue-
green spaces from a pedestrian’s perspective and two-dimensional vegetation coverage
from an aerial perspective, this study extracted the NDVI and the corresponding GVI for
each sampling point. During the extraction process, bilinear interpolation [37] was used to
reduce errors, considering the potential influence of the surrounding environment.
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The correlation between GVI and NDVI for the same sampling point was analyzed us-
ing Pearson’s correlation coefficient to study the relationship between street green spaces in
two-dimensional and three-dimensional spaces. Pearson’s correlation coefficient (r) is calcu-
lated as the covariance of two variables divided by the product of their standard deviations.

r =
n(∑ xy)− (∑ x)(∑ y)√[

n∑ x2 − (∑ x)2
][

n∑ y2 − (∑ y)2
] (2)

Through calculation and analysis, the Pearson correlation coefficient between GVI
and NDVI was found to be 0.5818 (p < 0.001, where p represents the significance level),
indicating a moderate level of correlation. The results highlight the inconsistency between
remote sensing images and street view images in representing street green spaces.

4.3. Analysis of the Causes of Differences

Currently, scholars define the NDVI classification as follows: areas with less than 0.1
are non-vegetated; 0.1–0.3 are poorly vegetated; 0.3–0.6 are moderately vegetated; 0.6–0.8
are well vegetated; more than 0.8 are excellently vegetated [38,39]. However, this study
found that these classification thresholds are too high and do not accurately reflect the level
of vegetation cover in urban built-up areas, leading to a reclassification of the existing data
levels. Ultimately, this study meticulously reclassified NDVI and GVI using the natural
breaks method into five levels and further categorized into four typical greening scenarios
(Table 6, Figure 11): high NDVI with high GVI, high NDVI with low GVI, low NDVI with
high GVI, and low NDVI with low GVI. Of 14,264 valid sample points, 10,176 are in the
range considered ideal for green view rate and vegetation coverage (NDVI values between
0.13 and 0.4, GVI values between 0.15 and 0.60), accounting for 71.34%. These data indicate
that the core areas of Shenzhen have excelled in the construction of green infrastructure for
roads, with significant overall planning and implementation effects.

Table 6. Statistics of four categories of differences between the second and third dimensions of green space.

GVI Is Higher GVI Is Lower

NDVI is higher 495 133
NDVI is lower 179 2327
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The study analyzed the distribution and causes of four types of characteristics in
two- and three-dimensional green infrastructure, with particular focus on areas with a
notable contrast: those with low NDVI but high GVI, and those with high NDVI but
low GVI. Through in-depth analysis of these special cases, the study aims to uncover the
multidimensional characteristics of urban greening and the reasons behind their differences.

4.3.1. Areas with High NDVI and GVI and Their Main Causes

We overlaid the spatial distribution of sampling points with both high GVI and NDVI
characteristics with the spatial distribution of urban parks, and found that the locations of
these sampling points matched experimental expectations. The spatial locations of these
characteristic sampling points highly coincide with the areas rich in vegetation in the core
areas of Shenzhen in terms of spatial distribution (Figure 12).
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Specifically, in the core areas of Shenzhen, sampling points with high GVI and NDVI
values are mainly found in two types of areas: many such points are concentrated around
urban parks like OCT National Park (Figure 13), Nanshan Park, Xiangmi Park, and
Lianhua Mountain Park. Additionally, a few sampling points are located in non-park
places with rich vegetation and good environments, such as Shenzhen University and
Happy Valley (Figure 13). Both types of areas share the common features of having abun-
dant greenery and a good ecological environment, with mature trees, making the green
coverage not only rich from a horizontal perspective but also vibrant and diverse verti-
cally. This three-dimensional greening structure ensures the coexistence of high GVI and
NDVI values.
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4.3.2. Areas with Low NDVI and GVI and Their Main Causes

Sampling points characterized by low NDVI and GVI also display a certain regularity
in spatial distribution, primarily appearing in linear and clustered forms (Figure 14).
Addressing this phenomenon, the study investigates from two perspectives: the reasons
for the reduction in GVI and the causes of the decrease in NDVI. In analyzing GVI, to
minimize the impact of semantic segmentation classification accuracy on the research
findings, data from “wall” and “building” categories were combined into a “Building”
category. Furthermore, the study filtered potential influencing factors for the GVI values
of sampling points and conducted a correlation analysis on the sky retention rate, the
proportion of roads in the line of sight, and the proportion of buildings in the line of sight.
The analysis revealed a moderate negative correlation of −0.418 between Building and
Vegetation (Table 7). Comparing panoramic static images of the area, we found that in
areas with both low NDVI and GVI, the scant greenery between dense buildings is the
main factor causing the reduction in GVI.
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In the NDVI study, we also noticed that the number of low NDVI feature points
exceeded expectations, such as the situation at the intersection of Nanhai Avenue and
Beihuan Avenue in Figure 15. Upon further analysis of the data, a large number of null
values were found. Detailed analysis of the photos of sampling points in these null areas,
combined with research on urban roads and building heights, revealed that high-grade
roads (especially overpasses) and buildings also have a significant negative impact on the
calculation of NDVI values.
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Based on the aforementioned analysis, we observed that areas around high-grade
roads, primarily used for vehicular traffic, often exhibit low GVI and NDVI values. This
phenomenon is mainly due to the wide roadways and complex three-dimensional traffic
structures of high-grade roads, resulting in reduced green view rates and greening rates.
On the other hand, areas adjacent to medium-grade roads, primarily used for vehicular
traffic with pedestrian pathways on both sides, and low-grade roads, primarily used for
pedestrian traffic, also commonly have low GVI and NDVI values. This is because the
building heights and densities in these areas are too high and the roads are narrow, limiting
the implementation of large-scale greening; thus, both the green view rate and greening
rate are low.

4.3.3. Areas with High NDVI but Low GVI and Their Main Causes

Three typical scenarios of high NDVI but low GVI features occur at some urban center
intersections, specific tunnel sections, and certain road construction areas (Figure 16).

In some urban center intersections, low shrubs or lawns are often chosen for greening
layouts to ensure traffic safety and clear visibility. Although such greening methods can
maintain clear driving sightlines, the relatively sparse vegetation coverage results in lower
GVI in these areas. However, due to Shenzhen’s sufficient emphasis on the design of green
belts along roads, the NDVI values in these areas overall remain at a high level.

Another situation mainly occurs in tunnel sections like the Dongbin, Tanglangshan,
and Henglongshan tunnels (Figure 17). In these areas, the misalignment between the
sampling points of panoramic static images and the spatial locations represented by remote
sensing images can lead to biased results. Remote sensing images capture the green areas
on the mountaintops, leading to higher NDVI values, but the lack of vegetation inside the
tunnels results in extremely low GVI values in these areas.
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In special nodes of urban road construction areas, this result is also displayed: during
construction, the green belts along the roads are often temporarily blocked or covered to
ensure construction safety and convenience. This practical intervention inevitably affects
the visibility and observability of vegetation, leading to significant spatial distribution
inconsistencies between field observations and remote sensing image analysis. Although
remote sensing images may show high vegetation coverage in the area, the green view
rate observed on-site may be significantly reduced due to the obstruction of construction
barriers. However, considering that the update interval of urban street view image data is
long, the street construction time is generally short, and this type of feature points accounts
for a small proportion of the overall number, this study maintains that the error caused by
this situation will not have a decisive impact on the overall conclusion.

4.3.4. Areas with Low NDVI and High GVI and Their Main Causes

Through the analysis of the actual street view images of the difference points
(Figures 18 and 19), it is found that the phenomenon of low NDVI and high GVI is mainly
classified into the following two reasons.
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Figure 19. A large number of three-dimensional traffic and excessive building density in the core
area make the NDVI value lower than expected.

Firstly, the complexity of the three-dimensional traffic structure in the study area causes
a disparity between the two indicators, with sampling points fitting this characteristic
typically concentrated in areas with higher overpasses, such as Shennan Avenue and
Beihuan Avenue. Although the greening work at the base of these overpasses has been
adequately attended to and implemented, ensuring a suitable GVI range, the top structure
of the overpasses obscures the underlying vegetation, resulting in NDVI values that do
not accurately reflect the actual level of greening. This structural obstruction limits the
satellite’s direct observation of ground vegetation, thus affecting the accurate calculation
of NDVI.
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Secondly, the core areas of Shenzhen have a generally high building density, intense
urban development, and a modern architectural style, such as the Shenzhen High-Tech
Industrial Park, representing high-tech industries, and Baishizhou Urban Village, known
for its concentrated building density. This dense architectural layout poses a challenge
to the resolution accuracy of remote sensing images, making it difficult for satellites to
accurately identify green infrastructure around buildings. Moreover, the high-reflectance
materials used on some building surfaces further increase the difficulty of remote sensing
recognition, preventing the capture of valid vegetation information in these areas and
resulting in null values. Thus, the combined effect of physical obstruction by buildings and
the characteristics of high-reflectance surfaces also leads to NDVI values being lower than
expected, and in some cases, data are missing.

The complexity of urban three-dimensional traffic structures, increased building den-
sity, and the high reflectivity of specific materials are key factors causing the significant
discrepancy of low NDVI and high GVI. As evidenced by these findings, the impact of
urban structure and material properties on remote sensing data must be taken into account
when conducting urban vegetation monitoring and assessment to improve the accuracy
and reliability of the data. Meanwhile, in terms of optimizing urban green landscapes,
adopting multi-level greening methods and increasing street green spaces are good ways to
improve urban vegetation coverage and the quality of green spaces. Multi-level greening
methods require maximizing green coverage not only on the ground but also on building
roofs, building facades, and around roads, giving urban residents more opportunities to
interact with natural vegetation. Increasing street green spaces requires cities to find every
possible piece of land in densely built areas that can be used for green space construction.

4.4. Discussion

Does “the tree by the roadside” represent the same information in the eyes of planners
and residents?

In recent years, scholars have noticed various urban spatial data such as GVI and
NDVI when evaluating and perceiving urban green spaces, and have recognized the
differences between them, applying these insights to their own related research. In this
era of information technology explosion, research using data as a tool to understand
cities has made significant progress, enabling solutions to problems that were previously
unsolvable. Examples include using nighttime light images and deep learning to classify
land cover [28], summarizing global air pollution trends over a 20-year period [40], and
using convolutional neural networks to detect objects on roads [41]. Relevant research has
also gradually entered a period of rapid development.

The current mainstream direction is towards “big” data, and large datasets often tend
to overlook the precision of details. A considerable number of studies have pointed out
the limitations of different big datasets. For instance, Huang, S. et al. [42–44] identified
atmospheric effects, saturation phenomena, and sensor factors as major limitations in
the application of NDVI; Zhou et al. [45,46] pointed out the issues of POI data sparsity,
timeliness, and cold start; Huang et al. [47–49] highlighted problems such as the positional
uncertainty of mobile signaling data, poor data coverage, and data noise. When conducting
research at the urban scale, the limitations of datasets have a relatively small impact on the
final results. However, when the research scale is reduced to the neighborhood level, the
inherent limitations of the datasets can significantly affect the research outcomes.

Taking this study of urban street green space as an example, researchers have pointed
out the limitations of NDVI under atmospheric conditions [50] and its difficulty in identi-
fying vegetation [51], but they have not delved into the specific feedback of NDVI at the
urban street scale. At this scale, can planners still see “the tree by the roadside”?

This study attempts to use GVI and NDVI data as case studies to explore the corre-
lation and differences between them, and to summarize the real-world manifestations of
numerical anomalies. The aim of the research is to use real-world cases as intermediaries to
find the mapping relationships between different types and dimensions of data in reality,
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and to attempt to extend this experience to other datasets. In this way, scholars’ research
will no longer isolate data into different research systems, but instead will attempt to reveal
the intrinsic connections between data. Additionally, this study aims to enable planners,
when facing various spatial data, to go beyond a purely “God’s perspective” and avoid the
inherent limitations of the datasets. By understanding the intrinsic connections between
data, planners can align their perceptions with residents’ actual experiences.

5. Conclusions
5.1. Main Findings
5.1.1. Shenzhen’s Core Area Has Good Green Infrastructure Construction

This study focuses on the road greening conditions in Nanshan District, Futian District,
and Luohu District of Shenzhen, and finds that the GVI of roads in these three areas is
above 25%. The distribution of green space is relatively balanced, showing a high level of
greening. Especially in Nanshan District, which is one of the most modernized areas in
Shenzhen, the GVI is the highest. This indicates that modern urban construction in China
increasingly emphasizes the creation of green spaces. Additionally, by classifying the NDVI
and GVI of 14,264 valid sampling points, it is found that over 70% of the sample points
are in the ideal range for both GVI and vegetation coverage, indicating that Shenzhen has
achieved significant success in road greening and green infrastructure construction.

5.1.2. Moderate Correlation between 2D and 3D Greening Data

A comparative analysis of the NDVI and GVI indices at the sampling points revealed
a moderate correlation between these two indicators. This result highlights the potential
differences in observing green spaces from different perspectives (2D and 3D) and indicates
that visible green space does not necessarily equate to actual green space.

5.1.3. Four Classification Relationships between 2D and 3D Greening Data

The study further explored four typical greening scenarios: high NDVI and high GVI,
high NDVI and low GVI, low NDVI and high GVI, and low NDVI and low GVI. We found
that areas with high NDVI and high GVI are mainly distributed in vegetation-rich areas
such as urban parks. The greening structures in these areas perform well both horizontally
and vertically, making the greening levels consistent between remote sensing images and
actual perceptions. In contrast, areas with low NDVI and low GVI are usually located
between dense buildings or in areas affected by overpasses and structures, where these
factors limit the implementation of greening and the accuracy of remote sensing data.

5.1.4. The Limitation of the Sampler’s Perspective Is the Main Cause of Differences
between 2D and 3D Green Space Data

Additionally, we focused on analyzing the discrepancies between “what is seen”
and “what is measured”: areas with high NDVI but low GVI mainly appear at traffic
intersections and tunnel sections in urban centers. The greening layout in these areas
is influenced by traffic safety or construction activities, with factors such as mountains
above tunnels blocking satellite views and construction enclosures blocking the street view
sampling vehicle’s perspective, resulting in remote sensing observations being higher than
the actual green space. On the other hand, areas with low NDVI but high GVI are mainly
due to the impact of three-dimensional traffic structures and high-density buildings on
remote sensing images, which prevent remote sensing images from accurately capturing
pedestrian perceptions from an overhead perspective. These factors cause NDVI values to
be lower than the greening level actually perceived by residents in their daily lives.

5.1.5. Using GVI as a Substitute for NDVI Null Values Can Reduce Greening
Assessment Errors

Regarding the accuracy and reliability of remote sensing monitoring, this study indi-
cates that in urban environments, the height, density, material of buildings, and elevated
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transportation facilities can significantly interfere with the measurement of vegetation
indices, thereby affecting the accuracy of NDVI. Therefore, when using NDVI to analyze
the greening level of urban built-up areas, researchers need to pay close attention to the
null values of NDVI and consider using GVI as a supplement to represent the greening
level of the corresponding area. This method can further improve the accuracy of research
and ensure a more precise and comprehensive assessment of urban greening conditions.

5.2. Limitations

There are still some limitations in this research, which need to be further studied in the
future. Firstly, in this study, the collection points of street panorama images were limited
and could not fully represent the entire greening situation of the road segments. The
collected sample images could only reflect the local greening coverage of the road segment
and could not fully reflect the overall greening level of the road segment. Therefore, there
may be some discrepancies between the study results and the actual greening perceptions of
the residents in the area. Future research should prioritize comparing residents’ perceptions
of green spaces with the research results to address these discrepancies. Increasing the
number of sampling points or reducing the time interval for data updates may improve the
representativeness and accuracy of the results. Secondly, the image semantic segmentation
approach used in this study also introduces errors due to the inherent misrecognition rate of
the algorithm. The accuracy of the semantic segmentation algorithm, influenced by factors
such as training data, cannot reach 100%, which affects the final green view index statistics.
How to improve the robustness of segmentation algorithms is a direction that requires
further research. Thirdly, the panoramic image samples in this study were limited and
mainly collected from major streets in Shenzhen’s Nanshan, Luohu, and Futian districts.
Consequently, the conclusions of this study can only represent the green view rate levels of
these three districts during the summer, and the sample size is insufficient to generalize
to other seasons or the entire city’s greening coverage. Fourthly, since the road surface
occupies a large proportion in the vehicle-mounted perspective, and the greenery on both
sides of the road takes up a relatively small portion of the field of view, this differs from the
perspective of residents in their daily observations. The surrounding moving vehicles may
also further obstruct the green view, affecting the actual perception of green spaces.
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