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Abstract: The traditional volume-derived biomass method is limited because it does not fully consider
the carbon sink of young trees, which leads to the underestimation of the carbon sink capacity of a
forest ecosystem. Therefore, there is an urgent need to establish an allometric biomass model of young
trees to provide a quantitative basis for accurately estimating the carbon storage and carbon sink of
young trees. The destructive data that were used in this study included the biomass of the young
trees of the two dominant species (Betula pendula subsp. mandshurica (Regel) Ashburner & McAll
and Populus × tomentosa Carrière) in China, which was composed of the aboveground biomass (Ba),
belowground biomass (Bb), and total biomass (Bt). Univariate and bivariate dimensions were selected
and five candidate biomass models were independently tested. Two additive allometric biomass
model systems of young trees were established using the proportional function control method and
algebraic sum control method, respectively. We found that the logistic function was the most suitable
for explaining the allometric growth relationship between the Ba, Bt, and diameter at breast height
(D) of young trees; the power function was the most suitable for explaining the allometric growth
relationship between the Bb and D of young trees. When compared with the independent fitting
model, the two additive allometric biomass model systems provide additive biomass prediction
which reflects the conditions in reality. The accuracy of the Bt models and Ba models was higher,
while the accuracy of the Bb models was lower. In terms of the two dimensions—univariate and
bivariate, we found that the bivariate additive allometric biomass model system was more accurate.
In the univariate dimension, the proportional function control method was superior to the algebraic
sum control method. In the bivariate dimension, the algebraic sum control method was superior
to the proportional function control method. The additive allometric biomass models provide a
reliable basis for estimating the biomass of young trees and realizing the additivity of the biomass
components, which has broad application prospects, such as the monitoring of carbon stocks and
carbon sink evaluation.

Keywords: young tree; forest carbon sink; allometric growth; additive model

1. Introduction

The assessment of the carbon sink capacity must be based on an accurate biomass,
which is then converted into the carbon content and carbon dioxide equivalent. The volume-
derived biomass method is used for the evaluation of forest carbon sinks and considers trees
with a diameter at breast height >5 cm. However, the volume-derived biomass method has
not been able to assess the carbon sink of young trees, which leads to the underestimation
of the carbon sink capacity of forest ecosystems [1]. The assessment of the carbon sink
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capacity of forest ecosystems has received extensive global attention [2–4]. To address the
limitations of the volume-derived biomass method, it is necessary to evaluate the carbon
sink of young trees.

The lack of allometric biomass models of young trees affects the accuracy of assessing
the available forest biomass, forest fuel load, and carbon sink [5]. Due to the small size of
young trees, not calculating the volume of a few young trees will not have a significant
impact on the estimation of the carbon stock. However, young trees contribute significantly
to the carbon sink because they grow faster than large-diameter trees [6,7]. In addition,
reliable biomass models of young trees are particularly important in fire-prone forest
ecosystems. For example, in the Pinus brutia Ten. forests in Turkey, nearly 15% of the forest
area is dominated by young trees (D ranges from 0.1 to 8) [1].

There are differences in the definition of a young tree in different regions. In Turkey,
trees with a diameter at breast height of <8 cm are considered to be young trees and are
not measured in conventional forest inventory applications such as industrial round-wood
production [1]. In China, trees with a diameter at breast height of <5 cm are considered
to be young trees and are not measured in forest resource inventories [6]. The biomass
estimation of young trees in Turkey mainly targeted the crown biomass component and
was based on a small sample size [8]. Due to the difficulty of obtaining biomass samples,
the development of an allometric biomass model of young trees in China has been limited
to a few studies.

The main methods for estimating the forest biomass include the model and remote
sensing inversion methods. The most reliable way to determine the forest biomass would
be to cut and weigh all the trees in the forest. However, this would be destructive, time-
consuming, costly, and could only be conducted on a small scale [9]. The model method
can be used to estimate the forest biomass non-destructively. It estimates the forest biomass
using readily measurable tree factors [9,10]. In the model method, the biomass can be
estimated either by tree volume and biomass expansion factor or by the allometric biomass
model. Biomass estimation on a large spatial scale can be realized using the remote sensing
inversion method but atmospheric interference can affect the estimation accuracy of satellite
data [11]. Therefore, using allometric biomass models is often the best choice for estimating
the forest biomass if there is information on individual trees.

The allometric relationship of young trees is different from that of old trees [12,13].
Bond-Lamberty et al. (2002) found that when using data samples with a large diameter
at breast height, the allometric biomass models were significantly biased in estimating
the biomass of small-diameter trees [14]. Small-diameter trees play an important role in
estimating forest biomass because they account for a large number of the individual trees
that make up the biomass [12]. Therefore, it is necessary to separately develop an allometric
biomass model of young trees. However, only a few studies have modeled the biomass of
young trees [12,15,16].

The selection of the predictor is particularly important when developing an allometric
biomass model. Many allometric biomass models were established between tree biomass
and easily measured tree variables, such as the diameter at breast height, tree height, crown
width, and wood density [17–19]. For these developed models, the diameter at breast height
is the most commonly used and reliable predictor [20,21]. It has also been suggested that
adding tree height as a predictor to allometric biomass models can significantly improve
model performance [22,23].

Model form selection is an important uncertainty in estimating tree biomass. The
power function is the most commonly used to model allometric biomass [24,25]. The
exponential growth of biomass based on individual size is described in a power function
form [26,27]. However, due to resource competition, the continuous acceleration and infi-
nite growth of individual tree biomass in forest ecosystems is not valid. The logistic model
is a classical method for predicting population size. The logistic model has similar rapid
growth to the power function, which then gradually flattens out and finally approaches
the asymptotic value [28]. The logistic model and power function have the same statistical
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validity, but the logistic model has better ecological significance and can better estimate
shrub biomass [29].

For the modeling of tree biomass, the additivity of the biomass components should be
ensured, that is, the total biomass of the trees should be equal to the sum of the biomass of
each component. The total biomass of the trees is usually divided into different components
based on their physiological function, such as the trunk, branch, leaf, and root biomass.
When more than two tree components are involved, if the biomass model of each component
is fitted separately, the intrinsic correlation between the tree components is not considered.
In some studies, mathematical models were selected for the different tree components,
parameter fitting was carried out independently, and allometric biomass models of each
component were developed. When these models were used for prediction, there was a
non-additivity problem between the predicted total biomass of the trees and the predicted
biomass of each component [14,30–32].

To solve the additivity problem, different models and estimation methods have been
proposed, such as the generalized moment method (GMM) [33], error-in-variable simulta-
neous equations method (EIV) [34], proportional function control method, and algebraic
sum control method [35,36]. Among these methods, there is no unified conclusion on the
best method. Zheng et al. (2022) showed that the prediction accuracy of the proportional
function control method was higher [37]. Moreover, Xiong et al. (2023) showed that the
GMM method had a better fitting performance [25]. Fu et al. showed that the EIV method
has more advantages and potential [38].

Considering that the growth of young trees is different from that of old trees, it needs
to be confirmed that the conclusions made in previous literature based on the allometric
biomass model are applicable to young trees. In this study, based on the measured de-
structive data of young trees of Betula pendula subsp. mandshurica (Regel) Ashburner &
McAll and Populus × tomentosa Carrière, the additive allometric biomass model system was
established with the diameter at breast height and tree height as the predictors to ensure the
additive relationship between the total biomass, aboveground biomass, and belowground
biomass. We compared two additive methods, namely the proportional function control
method and the algebra sum control method, to determine which method was better. We
hypothesized that (1) the bivariate additive allometric biomass model system is more accu-
rate; (2) when compared with the power function, the logistic model can better estimate
the allometry of young trees; and (3) among the two additive methods, the proportional
function control method is superior to the algebra sum control method.

2. Materials and Methods
2.1. Study Site and Data
2.1.1. Study Site

Beijing is located at the junction of the Inner Mongolia Plateau and the North China
Plain. The elevation is ≤100 m and the elevation of most areas ranges between 30 and
50 m. The climate is a warm temperate semi-humid continental monsoon climate with four
distinct seasons, a hot and rainy summer and a cold and dry winter. The average annual
temperature is about 11.5 ◦C and the frost-free period is 5 to 6 months annually. The annual
average precipitation is 585 mm, with the summer precipitation accounting for about 74%
of the annual precipitation. According to zonal vegetation types, Beijing belongs to the
warm temperate deciduous broad-leaved forest area [39].

2.1.2. Data Collection

We obtained data during the peak annual biomass accumulation period from Septem-
ber to October 2021. A total of 44 plantation plots of 30 m × 30 m were investigated, and
all the young trees with diameters below 5 cm and heights above 130 cm were measured
(Table S1).

Table 1 shows the descriptive statistics of the data. The data was collected from
167 young trees: 104 Betula pendula subsp. mandshurica (Regel) Ashburner & McAll trees
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and 63 Populus × tomentosa Carrière trees. The factors that were measured for each tree
included the diameter at breast height, tree height, aboveground biomass, belowground
biomass, and total biomass. For each tree, the fresh weight of the trunk, branches, and
leaves were weighed and samples were taken. The sample was dried in the oven at 105 ◦C
to obtain the dry mass. According to the proportion of the fresh mass and dry mass of
the sample, the dry mass of each component was calculated, and then the parts of the
tree were added together to obtain the aboveground biomass. The belowground biomass
was determined using the full excavation method. The whole root system was dug out
manually, the soil on the root was cleared, and then the total fresh weight of the rhizome
(≥5 mm), coarse roots (2–5 mm), and fine roots (<2 mm) were weighed. The sample was
dried in the oven at 105 ◦C to obtain the dry mass. According to the proportion of the fresh
mass and dry mass of the sample, the dry mass of each component was calculated, and
then the parts of the tree were added together to obtain the belowground biomass. The total
biomass of the tree was obtained by adding the aboveground and belowground biomass.

Table 1. Statistics of the tree characteristics (N, D, and H) and biomass components (Ba, Bb,
and Bt) of two tree species (Betula pendula subsp. mandshurica (Regel) Ashburner & McAll and
Populus × tomentosa Carrière).

Tree Species N D (Mean ± S.D.) H (Mean ± S.D.) Ba (Mean ± S.D.) Bb (Mean ± S.D.) Bt (Mean ± S.D.)

Betula pendula subsp.
mandshurica (Regel)
Ashburner & McAll

104 3.0 ± 1.0 4.4 ± 1.4 2.095 ± 1.425 0.631 ± 0.540 2.727 ± 1.778

Populus × tomentosa Carrière 63 3.1 ± 1.0 4.5 ± 1.4 1.650 ± 1.184 0.445 ± 0.389 2.095 ± 1.513

Note: S.D.—Standard deviation, N—number of samples, D—diameter at breast height (cm), H—tree height (m),
Ba—aboveground biomass (kg), Bb—belowground biomass (kg), Bt—total biomass (kg).

2.2. Statistical Analysis
2.2.1. Independent Fitting Model

Many biomass models have been widely used to assess the carbon sink of global forest
ecosystems [29,32,40,41]. In this study, five kinds of biomass models commonly used in the
past were tested. Univariate and bivariate combinations were considered: (1) diameter at
breast height (D); and (2) D and tree height (H). Among them, the three model forms of
logistics function (Model 1), quadratic polynomial function (Model 2), and power function
(Model 3) only include D.

Model 1: B = a0/
(
1 + ea1+a2·D

)
Model 2: B = a0 + a1D + a2D2

Model 3: B = a0Da1

Model 4: B = a0Da1 Ha2

Model 5: B = exp
[
a0 + a1 · ln

(
H × D2)]

Model 5: The Akaike information criterion (AIC) statistics were used to assess the
model complexity and its goodness of fit, with preference being given to the model with a
smaller AIC value. Using the AIC minimization criterion, the optimal model form for the
aboveground biomass, belowground biomass, and total biomass in terms of the univariate
and bivariate combinations was selected.

2.2.2. Proportional Function Control Method

The basic principle of the proportional function control method is to directly fit the
total biomass model and then assign the total biomass to the aboveground biomass and the
belowground biomass. The method is specified below.

Steps: based on the optimal model form for the total biomass (Bt) in Section 2.2.1,
Bt = f1(D) and Bt = f2(D, H) were developed to obtain the estimated value of the total
biomass under two dimensions. Then, the scale function under two dimensions was
set to: g1(D) = b1Dc1 and g1(D, H) = d1De1 H f1 . With the estimated total biomass as
the control, the biomasses of the two components were combined into a simultaneous



Forests 2024, 15, 991 5 of 17

equations system, and the parameters of the system were estimated by nonlinear seemingly
unrelated regression. The univariate and bivariate additive allometric biomass model
systems were expressed as follows:{

Ba =
1

1+g1(D)
× f1(D) + ε1

Bb = g1(D)
1+g1(D)

× f1(D) + ε2{
Ba =

1
1+g1(D,H)

× f2(D, H) + ε1

Bb = g1(D,H)
1+g1(D,H)

× f2(D, H) + ε2

2.2.3. Algebraic Sum Control Method

The basic principle of the algebraic sum control method is that the aboveground
biomass, belowground biomass, and total biomass are combined into equations, and the to-
tal biomass model is obtained by adding the two-component models. The regression model
of each component contains its own independent variables. The method is specified below.

Steps: based on the optimal model form from Section 2.2.1, the optimal model form of
the aboveground biomass (Ba) in two dimensions was determined as follows: Ba = m1(D)
and Ba = m2(D, H), and the optimal model form of the belowground biomass (Bb) under
the two dimensions was calculated as follows: Bb = n1(D) and Bb = n2(D, H). The
two biomass components and the total biomass were combined into a set of equations,
and the parameters of the equations were estimated by nonlinear seemingly uncorrelated
regression. The univariate and bivariate additive allometric biomass model systems were
expressed as follows: 

Ba = m1(D) + ε1
Bb = n1(D) + ε2
Bt = m1(D) + n1(D) + ε3

Ba = m2(D, H) + ε1
Bb = n2(D, H) + ε2
Bt = m2(D, H) + n2(D, H) + ε3

2.2.4. Model Evaluation

The coefficient of determination (R2) represents the ratio of the proportion of the
variance that is explained by the independent variable to the variance of the dependent
variable. When R2 is close to 1, it indicates that the model can explain the change in
the dependent variable well. The root mean square error (RMSE) measures the average
deviation between the observed and predicted values. The smaller the RMSE, the better
the predictive ability of the model. The formulae for the R2 and RMSE are specified below:

RMSE =

√
1
n

n

∑
i=1

(
Mi − M̂i

)2

R2 = 1 − ∑n
i=1 (Mi − M̂i)

2

∑n
i=1 (Mi − M)

2

where, Mi is the measured value (%), M̂i is the predicted value (%), M is the average
measured value (%), and n is the sample number.

Figure 1 shows the data collection and analysis process. All the statistical calculations
were performed using R 4.3.1 [42]. The systemfit package was used to estimate the parame-
ters of the simultaneous equations [43]. The ggplot2 package (version 3.4.4) was used to
display the data [44].
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3. Results
3.1. Correlation Analysis of Variables

The correlation analysis results are shown in Figure 2. Both D and H were positively
correlated with Ba, Bb, and Bt. The correlation coefficient of Betula pendula subsp. mand-
shurica (Regel) Ashburner & McAll ranged from 0.3 to 0.97. The correlation coefficient of
Populus × tomentosa Carrière ranged from 0.52 to 0.99.

The stacked kernel density of Ba, Bb, and Bt is shown in Figure 3. Skewness is a
measure of the asymmetry degree in data distribution. The skewness of Betula pendula
subsp. mandshurica (Regel) Ashburner & McAll ranged from 0.4973 to 2.0447, and that of
Populus × tomentosa Carrière ranged from 0.7338 to 2.0037. The asymmetry degree of Bb is
higher, and the asymmetry degree of Ba and Bt is lower.
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Ashburner & McAll. (b) Populus × tomentosa Carrière.
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Figure 3. Stacked kernel density plot of three biomass components (aboveground biomass [Ba],
belowground biomass [Bb], and total biomass [Bt]). (a) Betula pendula subsp. mandshurica (Regel)
Ashburner & McAll. (b) Populus × tomentosa Carrière.

3.2. Analysis of the Independent Fitting Model

Based on the AIC minimization principle, the optimal model form was selected from
the five candidate models. In the univariate dimension, the optimal model form for the
aboveground biomass of the two species was Model 1, the optimal model form for the
belowground biomass was Model 3, and the optimal model form for the total biomass was
Model 1 (Figure 4, Table 2). In the bivariate dimension, the optimal model form for the
aboveground biomass, belowground biomass, and total biomass of the two species was
Model 4 (Table 3).
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Figure 4. Comparative analysis of three univariate candidate models (Model 1, Model 2, and Model 3)
with two tree species and three biomass components (aboveground biomass [Ba], belowground
biomass [Bb], and total biomass [Bt]). (a–c) is the result of Betula pendula subsp. mandshurica (Regel)
Ashburner & McAll. (d–f) is the result of Populus × tomentosa Carrière.

Table 2. Parameter estimation (a0, a1, and a2) and Akaike information criterion (AIC) results for
three univariate candidate models (Model 1, Model 2, and Model 3) with two tree species (Betula
pendula subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière) and three
biomass components (aboveground biomass [Ba], belowground biomass [Bb], and total biomass [Bt]).

Tree Species Component Model a0 a1 a2 AIC

Betula pendula
subsp.

mandshurica
(Regel)

Ashburner &
McAll

Ba (1) 6.0309 4.1417 −1.1056 160.28
Ba (2) 0.0385 −0.034 0.215 166.39
Ba (3) 0.2085 2.0017 NA 164.41
Bb (1) 1.4627 3.5013 −1.0489 123.81
Bb (2) −0.2264 0.2456 0.0122 125.17
Bb (3) 0.107 1.5734 NA 123.23
Bt (1) 7.4355 3.9978 −1.0944 202.02
Bt (2) −0.1882 0.212 0.2272 210.81
Bt (3) 0.3099 1.8962 NA 208.64

Populus ×
tomentosa
Carrière

Ba (1) 16.5001 4.9433 −0.8015 54.30
Ba (2) 1.4302 −1.1264 0.3487 55.26
Ba (3) 0.0877 2.4293 NA 56.36
Bb (1) 4.6766 4.5959 −0.6928 24.74
Bb (2) 0.0914 −0.0682 0.053 24.78
Bb (3) 0.038 2.0698 NA 22.81
Bt (1) 22.3301 4.9061 −0.7718 114.68
Bt (2) 1.5216 −1.1946 0.4017 115.44
Bt (3) 0.124 2.3484 NA 114.84

Note: NA indicates no parameter.
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Table 3. Parameter estimation (a0, a1, and a2) and Akaike information criterion (AIC) results
of two bivariate candidate models (Model 4 and Model 5) with two tree species (Betula pendula
subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière) and three biomass
components (aboveground biomass [Ba], belowground biomass [Bb], and total biomass [Bt]).

Tree Species Component Model a0 a1 a2 AIC

Betula pendula
subsp.

mandshurica
(Regel) Ashburner

& McAll

Ba (4) 0.2157 2.0291 −0.0442 166.14
Ba (5) −1.6713 0.6432 NA 220.91
Bb (4) 0.1879 2.0841 −0.7946 117.52
Bb (5) −2.299 0.4976 NA 135.52
Bt (4) 0.3538 2.0019 −0.1724 206.67
Bt (5) −1.2791 0.6106 NA 273.25

Populus ×
tomentosa Carrière

Ba (4) 0.0649 2.2219 0.3585 41.19
Ba (5) −2.6711 0.8104 NA 67.90
Bb (4) 0.0268 1.8741 0.3782 22.78
Bb (5) −3.6567 0.7321 NA 22.82
Bt (4) 0.0905 2.1431 0.3649 106.15
Bt (5) −2.3654 0.7943 NA 120.52

Note: NA indicates no parameter.

3.3. Analysis of the Two Additive Allometric Biomass Models

According to the estimation results of the optimal total biomass that was selected in
Tables 2 and 3, the proportional function was set and the equations were combined into
simultaneous equations. The parameter estimation of the proportional function control
method is shown in Table 4. According to the optimal model forms for the aboveground and
belowground biomass that were selected in Tables 2 and 3, the equations were combined
into simultaneous equations. The parameter estimation using the algebraic sum control
methods is shown in Table 5.

Table 4. Parameter results of the total biomass model and proportional function for two tree species
(Betula pendula subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière)
using the univariate and bivariate proportional function control method.

Species Dimension Model
Total Biomass Proportional Function

a0 a1 a2 b0 b1 b2

Betula pendula subsp. mandshurica
(Regel) Ashburner & McAll

Univariate 1 7.4355 3.9978 −1.0944 0.5107 −0.4223 /
Bivariate 4 0.3538 2.0019 −0.1724 0.9139 −0.0397 −0.6976

Populus × tomentosa Carrière Univariate 1 22.3301 4.9061 −0.7718 0.3929 −0.2906 /
Bivariate 4 0.0905 2.1431 0.3649 0.3879 −0.3167 0.0305

Table 5. Parametric results of the aboveground biomass and belowground biomass model for two
tree species (Betula pendula subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa
Carrière) using the univariate and bivariate algebraic sum control method.

Species Dimension Model
Aboveground Biomass

Model
Belowground Biomass

b0 b1 b2 c0 c1 c2

Betula pendula subsp. mandshurica
(Regel) Ashburner & McAll

Univariate 1 5.9573 4.1662 −1.1197 3 0.1086 1.5628 /
Bivariate 4 0.2153 2.0213 −0.0366 4 0.1867 2.0909 −0.7964

Populus × tomentosa Carrière Univariate 1 12.2232 4.7389 −0.8437 3 0.0374 2.0816 /
Bivariate 4 0.0642 2.2329 0.3555 4 0.0247 1.9306 0.3798

Figure 5 shows the logistic function results in Table 4. Both coefficients of the logistic
function have ecological significance; a0 refers to the equilibrium biomass and −a2 is
the growth rate relative to the equilibrium biomass. A larger −a2 value indicates that
individual trees will rapidly increase in biomass at a younger stage, which is known as the
equilibrium growth rate.
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Figure 5. Visualizations of logistic function in Table 4. (a) Comparative analysis of the equilibrium
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The results showed that the equilibrium biomass of Bt and Ba of Populus × tomentosa
Carrière was higher than that of Betula pendula subsp. mandshurica (Regel) Ashburner &
McAll. The equilibrium growth rate of Bt and Ba of Betula pendula subsp. mandshurica (Regel)
Ashburner & McAll is higher than that of Populus × tomentosa Carrière (Tables 4 and 5).

The parameter estimation processes of the two additive allometric biomass models
were different but the accuracy performance of the models was similar. For the proportional
function control method, the R2 of the total biomass model and aboveground biomass
model was higher (0.861–0.9292) when compared with the R2 of the belowground biomass
model (0.3899–0.5101). For the algebraic sum control methods, the R2 of the total biomass
model and aboveground biomass model was high (0.8604–0.9293), while the R2 of the
belowground biomass model was low (0.3795–0.5100; Table 6).

Table 6. Precision index (R2 and RMSE) results of the proportional function control and algebraic
sum control methods in the univariate and bivariate dimensions with two tree species (Betula pendula
subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière) and three biomass
components (aboveground biomass [Ba], belowground biomass [Bb], and total biomass [Bt]).

Species Dimension Additive
Method

Total Biomass Aboveground
Biomass

Belowground
Biomass

R2 RMSE R2 RMSE R2 RMSE

Betula pendula subsp.
mandshurica (Regel)
Ashburner & McAll

Univariate 1 0.8756 0.6272 0.8683 0.5247 0.3899 0.4257
Univariate 2 0.8749 0.6289 0.8681 0.5252 0.3795 0.4293
Bivariate 1 0.8795 0.6174 0.8748 0.5091 0.4221 0.4164
Bivariate 2 0.8804 0.6150 0.8753 0.5106 0.4239 0.4157

Populus × tomentosa
Carrière

Univariate 1 0.8610 0.5643 0.9128 0.3552 0.4943 0.2809
Univariate 2 0.8604 0.5655 0.9127 0.3584 0.4941 0.281
Bivariate 1 0.8786 0.5273 0.9292 0.3229 0.5101 0.2788
Bivariate 2 0.8786 0.5272 0.9293 0.3227 0.5100 0.2789

Combining the prediction accuracy of the three biomasses, the two dimensions were
compared. The bivariate additive allometric biomass model system was the most accurate
(Table 6). Then, the two additive methods were compared. In the univariate dimension, the
proportional function control method was superior to the algebraic sum control method. In
the bivariate dimension, the algebraic sum control method was superior to the proportional
function control method (Table 6).
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For Betula pendula subsp. mandshurica (Regel) Ashburner & McAll, the model perfor-
mance was optimal when the algebraic sum control methods were used in the bivariate
dimension (total biomass model: R2 = 0.8804, aboveground biomass model: R2 = 0.8753,
belowground biomass model: R2 = 0.4239). For Populus × tomentosa Carrière, the model
performance was optimal when the algebraic sum control methods were used in the bivari-
ate dimension (total biomass model: R2 = 0.8786, aboveground biomass model: R2 = 0.9293,
belowground biomass model: R2 = 0.5100; Figure 6).
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Figure 6. Regression results of the observed values and the predicted values of the proportional
function control and algebraic sum control methods in the univariate and bivariate dimensions with
two tree species and three biomass components (aboveground biomass [Ba], belowground biomass
[Bb], and total biomass [Bt]). (a–c) is the result of Betula pendula subsp. mandshurica (Regel) Ashburner
& McAll. (d–f) is the result of Populus × tomentosa Carrière.

In addition, we conducted validation and found that the two additive allometric
biomass models were additive and met the needs of practical applications, and the inde-
pendent regression models were not additive (Figure 7).
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Figure 7. Additivity verification of the independent fitting model and two additive allometric biomass
models (proportional function control method and algebraic sum control method). (a) Independent
fitting model. (b) Proportional function control method. (c) Algebraic sum control method.

4. Discussion

A robust allometric biomass model should be built from a large number of data sam-
ples. When the sample size of the biomass data is relatively small, the accuracy of the model
may be reduced. Consequently, this study included 167 young trees, which was sufficient
to conduct robust biomass modeling for two tree species. Wang (2006) established indepen-
dent biomass models with only 10 trees per species using biomass data from Pinus koraiensis
and Larix gmelinii [45]. Additionally, Zheng et al. (2022) used the biomass data from 137
young trees on the Qinghai–Tibet Plateau to establish independent biomass models with
the ground diameter instead of the diameter at breast height as a predictor [37]. Wang et al.
used destructive biomass data from 501 trees in three provinces of young trees in north-
east China to establish a biomass model [13]. Furthermore, Dong et al. (2014) established
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an additive allometric biomass model system with sample sizes of 41 Pinus koraiensis
and 122 Larix gmelinii [46]. Then, Cui et al. (2020) harvested 45 Robinia pseudoacacia L. in
the Loess Plateau of Shaanxi Province and established an additive allometric biomass
model system [22]. This study did not collect samples from different ecological regions, so
this is a potential limitation. Therefore, it is suggested that young trees of Betula pendula
subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière should
be sampled in different ecological zones in the future.

We found that the logistic function was the optimal model form for the aboveground
biomass and total biomass, and the power function was more suitable for fitting the
belowground biomass. Whether the traditional allometric biomass model (that is, the
power function model) can fit all the observed biomass data well has been investigated
by ecologists [24,47,48]. Although the power function has been verified statistically in
previous biomass studies, it has been challenged theoretically [26,29]. Consistent with our
study, Ma et al. (2021) found that the logistic function was superior to the power function
for estimating the allometry relationship of shrub biomass [29]. In addition, Zhou et al.
(2021) proposed the concept of a dynamic allometric scaling relationship between the trunk
biomass and aboveground biomass, which was fitted to an asymptotic allometric model,
and it was verified that it could fit biomass data better than a power function [26].

As hypothesized, we found that the prediction accuracy of the model that included
tree height as a predictor was significantly improved. This is consistent with many other
studies [22,49,50]. In contrast, Zhang et al. (2016) discovered that the addition of tree height
to the biomass model did not improve the model performance as expected, especially
for the branch biomass and leaf biomass [51]. Tree height is often overlooked in forest
models because it is difficult to accurately measure tree height in closed-canopy forests, and
there has been substantial debate on whether to use tree height as a predictor for biomass
models [52]. For young trees, it is easy to measure the tree height. Therefore, in practical
applications, it is more appropriate to use the bivariate additive allometric biomass model
that was developed in this study.

We have verified that the sum of the predicted values of each biomass component
model was different from the predicted values of the total biomass model when using
the independent fitting model. The disadvantage of the independent fitting model is that
additivity is not satisfied. In contrast, the two additive allometric biomass models that
were developed have clear advantages. The models of the total biomass, aboveground
biomass, and belowground biomass were fitted using simultaneous equations to explain
the intrinsic correlation between the biomass components of the same tree. Therefore,
it is crucial to emphasize the benefit of using the additive allometric biomass model in
practical applications.

There are many additive modeling methods. However, we found that the proportional
function control method was superior to the algebraic sum control method in the univari-
ate dimension, and the algebraic sum control method was superior to the proportional
function control method in the bivariate dimension. Many studies have used algebraic
sum and proportional function control methods to construct additive allometric biomass
model systems. For instance, Liu et al. (2023) conducted destructive sampling of trees on
Hainan Island and established an additive allometric biomass model using the algebraic
sum control method, which satisfied the additivity of the aboveground biomass, branch
biomass, and leaf biomass [19]. Furthermore, Wang et al. (2018) established an additive
allometric biomass model based on diameter at breast height and height in a young forest
of Betula pendula subsp. mandshurica (Regel) Ashburner & McAll in northeast China using
the algebraic sum control method [13]. Moreover, Fu et al. (2016) established an additive
allometric biomass model with Pinus massoniana Lamb. in southern China using the al-
gebraic sum control method [38]. Then, Zhang et al. (2016) established one-, two-, and
three-variable additive allometric biomass models for Populus × tomentosa Carrière in the
Jiangsu Province, China using the proportional function control method [51]. Zeng et al.
(2017) realized the additivity between the aboveground biomass and four biomass com-
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ponents, the trunk, bark, branches, and leaves [53]. The proportional function control
method is first fitted to the whole tree biomass, and then the proportional function is used
to allocate the tree biomass to each biomass component. The algebraic sum control method
is used to directly model the biomass component, and then the total biomass is obtained by
adding the biomasses of each component. In the practice of forestry production, the goal is
to obtain the whole tree biomass or the aboveground biomass, so the additive model that is
developed using the proportional function control method is more practical.

Whether the sample data need to be divided into modeling data and testing data is
still a controversial issue. Some studies suggest that the applicability of evaluating the
predictive ability of the model by calculating the evaluation index of the modeling data
must be tested [54]. However, Kozak and Kozak (2003) concluded that grouping samples
for suitability tests would result in the loss of part of the modeling information and would
not provide additional information for model evaluation [55]. To make full use of the
sample information, this study did not distinguish between modeling samples and test
samples, and all the sample data were used to build the biomass models.

5. Conclusions

In this study, two additive allometric biomass model systems of young trees of Betula
pendula subsp. mandshurica (Regel) Ashburner & McAll and Populus × tomentosa Carrière
were established, these provide a theoretical reference and technical support for estimating
the biomass of young trees at a single tree scale. The two yield table is given for the
application of the model (Tables S2 and S3). Our research results will provide a quantitative
basis for the monitoring of carbon stocks and carbon sink evaluation of young trees in
China. We found that the logistic function was more suitable for explaining the allometric
growth relationship between the aboveground biomass, total biomass, and diameter at
breast height of young trees; the power function was more suitable for explaining the
allometric growth relationship between the belowground biomass and diameter at breast
height of young trees. In the actual modeling process, an appropriate model form should
be selected for the different biomass components since the biomass results of independent
fitting models are not additive. The bivariate additive allometric model system has higher
accuracy. Thus, in practical applications, we recommend the bivariate additive allometric
model as the first choice. There was no consensus on which of the two additive methods
was better. In the univariate dimension, the proportional function control method was
superior to the algebraic sum control method. In the bivariate dimension, the algebraic
sum control method was superior to the proportional function control method. In the
actual modeling process, it is necessary to compare the methods and choose the best
additive method.

The biomass of young trees is influenced by a variety of abiotic and biological factors,
including climate, stand structure, and site conditions. Thus, it is suggested that future
studies should consider including these factors as additional predictors. Mixed effect
models have been shown to have advantages in improving the accuracy of model estimation.
Therefore, the biomass prediction could be improved by combining the mixed effect model
with the additive model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f15060991/s1, Table S1: Location and basic stand factors of
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McAll. Table S3: Yield table of Populus × tomentosa Carrière.
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