Silver Fir (Abies alba Mill.): Review of Ecological Insights, Forest Management Strategies, and Climate Change’s Impact on European Forests
Abstract
:1. Introduction
2. Silver Fir Features and Its Distribution
3. Ecological Requirements and Productivity
4. Threats and Diseases
5. Impact of Climate Change
6. Seed Production and Nursery Management in the Context of Climate Change
7. Close-to-Nature Silvicultural Systems and Climate Change
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Prpic, B. Obicna jela (Abies alba Mill.) u Hrvatskoj; Akademija sumarskih znanosti: Zagreb, Croatia, 2001. [Google Scholar]
- Gazol, A.; Camarero, J.J.; Gutiérrez, E.; Ionel, P.; Andreu-Hayles, L.; Motta, R.; Nola, P.; Ribas, M.; Sangüesa-Barreda, G.; Urbinati, C.; et al. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J. Biogeogr. 2015, 42, 1150–1162. [Google Scholar] [CrossRef]
- Mauri, A.; de Rigo, D.; Caudullo, G. Abies alba in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the European Union: Luxembourg, 2016; p. E01493b+. [Google Scholar]
- Dobrowolska, D.; Bončina, A.; Klumpp, R. Ecology and silviculture of silver fir (Abies alba Mill.): A review. J. For. Res. 2017, 22, 326–335. [Google Scholar] [CrossRef]
- Bošeľa, M.; Lukac, M.; Castagneri, D.; Sedmák, R.; Biber, P.; Carrer, M.; Konôpka, B.; Nola, P.; Nagel, T.; Ionel, P.; et al. Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Sci. Total Environ. 2018, 615, 1460–1469. [Google Scholar] [CrossRef] [PubMed]
- Dinca, L.; Marin, M.; Vlad, R.; Murariu, G.; Drasovean, R.; Cretu, R.; Georgescu, L.; Voichița, T.-G. Which are the best site and stand conditions for silver fir (Abies alba Mill.) located in the Carpathian Mountains? Diversity 2022, 14, 547. [Google Scholar] [CrossRef]
- Vacek, S.; Vacek, Z.; Bulušek, D.; Bílek, L.; Schwarz, O.; Simon, J.; Štícha, V. The role of shelterwood cutting and protection against game browsing for the regeneration of silver fir. Aust. J. For. Sci. 2015, 132, 81–102. [Google Scholar]
- Mikulenka, P.; Prokůpková, A.; Vacek, Z.; Vacek, S.; Bulušek, D.; Simon, J.; Šimůnek, V.; Hájek, V. Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst. Cent. Eur. For. J. 2020, 66, 23–36. [Google Scholar]
- Šimůnek, V.; Prokůpková, A.; Vacek, Z.; Vacek, S.; Cukor, J.; Remeš, J.; Hájek, V.; D’Andrea, G.; Šálek, M.; Nola, P.; et al. Silver fir tree-ring fluctuations decrease from north to south latitude—Total solar irradiance and NAO are indicated as the main influencing factors. For. Ecosyst. 2023, 10, 100150. [Google Scholar] [CrossRef]
- MZE. Zpráva o Stavu Lesa a Lesního Hospodářství České Republiky v Roce 2021; Ministerstvo zemědělství: Praha, Czech Republic, 2022. [Google Scholar]
- Málek, J. Problematika Ekologie Jedle Bělokoré a Jejího Odumírání; Československá Akademie Věd Praha: Studie ČSAV: Praha, Czech Republic, 1983; Volume 11, p. 108. [Google Scholar]
- Novák, J.; Dušek, D. Thinning of silver fir stands—Review. Rep. For. Res. 2021, 66, 176–187. [Google Scholar]
- Klika, J. Lesní Dřeviny; Československá matice lesnická: Písek, Czech Republic, 1947; p. 394. [Google Scholar]
- Svoboda, P. Život Lesa; Brázda: Praha, Czech Republic, 1952; p. 894. [Google Scholar]
- Zlatník, A. Lesnická Fytocenologie; SZN: Praha, Czech Republic, 1976; p. 495. [Google Scholar]
- Málek, J. Problematik der Ökologie der Tanne (Abies alba Mill.) und ihres Sterbens in der ČSSR. Forstw. Cbl. 1981, 100, 170–174. [Google Scholar] [CrossRef]
- Santopuoli, G.; Lasserre, B.; Di Martino, P.; Marchetti, M. Dynamics of the silver fir (Abies alba Mill.) natural regeneration in a mixed forest in the Central Apennine. Plant Biosyst. 2014, 150, 217–226. [Google Scholar] [CrossRef]
- Dănescu, A.; Kohnle, U.; Bauhus, J.; Weiskittel, A.; Albrecht, A.T. Long-term development of natural regeneration in irregular, mixed stands of silver fir and Norway spruce. For. Ecol. Manag. 2018, 430, 105–116. [Google Scholar] [CrossRef]
- Farjon, A. A Handbook of the World’s Conifers; Leiden & Boston: Brill, The Netherlands, 2017; Volume 1, p. 1112. [Google Scholar]
- Pinto, P.E.; Gégout, J.-C.; Hervé, J.-C.; Dhôte, J.-F. Respective importance of ecological conditions and stand composition on Abies alba Mill. dominant height growth. For. Ecol. Manag. 2008, 255, 619–629. [Google Scholar] [CrossRef]
- Vitasse, Y.; Bottero, A.; Rebetez, M.; Conedera, M.; Augustin, S.; Brang, P.; Tinner, W. What is the potential of silver fir to thrive under warmer and drier climate? Eur. J. For. Res. 2019, 138, 547–560. [Google Scholar] [CrossRef]
- Kučeravá, B.; Dobrovolný, L.; Remeš, J. Responses of Abies alba seedlings to different site conditions in Picea abies plantations. Dendrobiology 2013, 69, 49–58. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J.; Colangelo, M.; de Luis, M.; Martinez del Castillo, E.; Serra-Maluquer, X. Summer drought and spring frost, but not their interaction, constrain European beech and silver fir growth in their southern distribution limits. Agric. For. Meteorol. 2019, 278, 107695. [Google Scholar] [CrossRef]
- Maxime, C.; Hendrik, D. Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees 2011, 25, 265–276. [Google Scholar] [CrossRef]
- Świercz, A.; Świątek, B.; Pietrzykowski, M. Changes in the concentrations of trace elements and supply of nutrients to silver fir (Abies alba Mill.) needles as a bioindicator of industrial pressure over the past 30 years in Świętokrzyski National Park (Southern Poland). Forests 2022, 13, 718. [Google Scholar] [CrossRef]
- Tinner, W.; Colombaroli, D.; Heiri, O.; Henne, P.; Steinacher, M.; Untenecker, J.; Vescovi, E.; Allen, J.; Carraro, G.; Conedera, M.; et al. The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol. Monogr. 2013, 83, 419–439. [Google Scholar] [CrossRef]
- Bošeľa, M.; Petráš, R.; Sitková, Z.; Priwitzer, T.; Pajtík, J.; Hlavatá, H.; Sedmák, R.; Tobin, B. Possible causes of the recent rapid increase in the radial increment of silver fir in the Western Carpathians. Environ. Pollut. 2014, 184, 211–221. [Google Scholar] [CrossRef]
- Boettger, T.; Haupt, M.; Friedrich, M.; Waterhouse, J.S. Reduced climate sensitivity of carbon, oxygen and hydrogen stable isotope ratios in tree-ring celulose of silver fir (Abies alba Mill.) influenced by background SO2 in Franconia (Germany, Central Europe). Environ. Pollut. 2014, 185, 281–294. [Google Scholar] [CrossRef]
- Vacek, S.; Černý, T.; Vacek, Z.; Podrázský, V.; Mikeska, M.; Králíček, I. Long-term changes in vegetation and site conditions in beech and spruce forests of lower mountain ranges of Central Europe. For. Ecol. Manag. 2017, 398, 75–90. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Prokůpková, A.; Bulušek, D.; Podrázský, V.; Hunova, I.; Putalova, T.; Král, J. Long-term effect of climate and air pollution on health status and growth of Picea abies (L.) Karst. peaty forests in the Black Triangle region. Dendrobiology 2020, 83, 1–19. [Google Scholar] [CrossRef]
- Gill, R.M.A. A review of damage by mammals in north temperate forests: 3. Impact on trees and forests. Forestry 1992, 65, 363–388. [Google Scholar] [CrossRef]
- Vacek, S.; Prokůpková, A.; Vacek, Z.; Bulušek, D.; Šimůnek, V.; Králíček, I.; Prausová, R.; Hájek, V. Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. J. For. Sci. 2019, 65, 331–345. [Google Scholar] [CrossRef]
- Huth, F.; Wehnert, A.; Tiebel, K.; Wagner, S. Direct seeding of silver fir (Abies alba Mill.) to convert Norway spruce (Picea Abies L.) forests in Europe: A review. For. Ecol. Manag. 2017, 403, 61–78. [Google Scholar] [CrossRef]
- Kupferschmid, A.; Zimmermann, S.; Bugmann, H. Browsing regime and growth response of naturally regenerated Abies alba saplings along light gradients. For. Ecol. Manag. 2013, 310, 393–404. [Google Scholar] [CrossRef]
- Kupferschmid, A. Selective browsing behaviour of ungulates influences the growth of Abies alba differently depending on forest type. For. Ecol. Manag. 2018, 429, 317–326. [Google Scholar] [CrossRef]
- Bernard, M.; Boulanger, V.; Dupouey, J.-L.; Laurent, L.; Montpied, P.; Morin, X.; Picard, J.-F.; Said, S. Deer browsing promotes Norway spruce at the expense of silver fir in the forest regeneration phase. For. Ecol. Manag. 2017, 400, 269–277. [Google Scholar] [CrossRef]
- Konôpka, B.; Šebeň, V.; Pajtík, J. Bark browsing and recovery: A comparative study between Douglas fir and silver fir species in the Western Carpathians. Sustainability 2024, 16, 2293. [Google Scholar] [CrossRef]
- Heuze, P.; Schnitzler, A.; Klein, F. Is browsing the major factor of silver fir decline in the Vosges Mountains of France? For. Ecol. Manag. 2005, 217, 219–228. [Google Scholar] [CrossRef]
- Häsler, H.; Senn, J. Ungulate browsing on European silver fir Abies alba: The role of occasions, food shortage and diet preferences. Wildl. Biol. 2012, 18, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Hanewinkel, M.; Cullmann, D.; Schelhaas, M.-J.; Nabuurs, G.J.; Zimmermann, N. Climate change may cause severe loss in economic value of European forestland. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Konôpková, A.; Kurjak, D.; Kmeť, J.; Klumpp, R.; Longauer, R.; Ditmarová, Ľ.; Gömöry, D. Differences in photochemistry and response to heat stress between silver fir (Abies alba Mill.) provenances. Trees—Struct. Funct. 2018, 32, 73–86. [Google Scholar] [CrossRef]
- Linares, J.C.; Camarero, J.J. From pattern to process: Linking intrinsic water-use efficiency to drought-induced forest decline. Glob. Chang. Biol. 2012, 18, 1000–1015. [Google Scholar] [CrossRef]
- Büntgen, U.; Tegel, W.; Kaplan, J.; Schaub, M.; Hagedorn, F.; Bürgi, M.; Brázdil, R.; Helle, G.; Carrer, M.; Heussner, K.-U.; et al. Placing unprecedented recent fir growth in a European-wide and Holocene-long context. Front. Ecol. Environ. 2014, 12, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Wolf, H. EUFORGEN Technical Guidelines for Genetic Conser-Vation and Use for Silver Fir (Abies alba); International PlantGenetic Resources Institute: Rome, Italy, 2003; p. 6. [Google Scholar]
- Musil, I.; Hamerník, J. Jehličnaté Dřeviny: Přehled Nahosemenných (i Výtrusných) Dřevin; Academia: Praha, Czech Republic, 2007; p. 352. [Google Scholar]
- Svoboda, M.; Nagel, T.A. Gap disturbance regime in an old-growth Fagus-Abies forest in the Dinaric Mountains, Bosnia-Herzegovina. Can. J. For. Res. 2008, 38, 2728–2737. [Google Scholar]
- Úradníček, L.; Madera, P.; Tichá, S.; Koblížek, J. Dřeviny České Republiky; Lesnická práce, s.r.o.: Kostelec nad Černými lesy, Czech Republic, 2009; p. 367. [Google Scholar]
- Ballian, D.; Bogunić, F.; Bajric, M.; Kajba, D.; Kraigher, H.; Monika, K. The genetic population study of Balkan silver fir (Abies alba Mill.). Period. Biol. 2012, 114, 55–65. [Google Scholar]
- Volařík, D.; Hédl, R. Expansion to abandoned agricultural land forms an integral part of silver fir dynamics. For. Ecol. Manag. 2013, 292, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Caudullo, G.; Tinner, W.; de Rigo, D. Picea abies in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the European Union: Luxembourg, 2016; pp. 114–116. [Google Scholar]
- Brichta, J.; Vacek, S.; Vacek, Z.; Cukor, J.; Mikeska, M.; Bílek, L.; Šimůnek, V.; Gallo, J.; Brabec, P.; Štefančík, I. Importance and potential of Scots pine (Pinus sylvestris L.) in 21 st century. Cent. Eur. For. J. 2023, 69, 3–20. [Google Scholar]
- Xiang, X.-G.; Cao, M.; Zhou, Z.-K. Fossil history and modern distribution of the genus Abies (Pinaceae). Front. For. China 2007, 2, 355–365. [Google Scholar] [CrossRef]
- Debreczy, Z.; Rácz, I. Conifers around the World: Conifers of the Temperate Zones and Adjacent Regions; Dendro Press: Wellesley, MA, USA, 2011. [Google Scholar]
- Žárník, M.; Holuša, O. Silver fir (Abies alba) in the forest-typological altitudinal vegetation zones of the Czech massif, Western and Eastern Carpathy Mts. In Jedle Bělokorá—2005. Proceedings of the Jedle Bělokorá—2005, Srní, Czech Republic, 31 October–1 November 2005; Neuhöferová, P., Ed.; ČZU FLE v Praze, Katedra Pěstování Lesů a Správa Národního Parku a Chráněné Krajinné Oblasti Šumava: Praha, Czech Republic, 2005; pp. 83–87. [Google Scholar]
- Míchal, I. Dynamika Přírodního Lesa I.—VI; Živa: Bled, Slovenia, 1983; Volume 31, pp. 8–12, 48–51, 85–88, 128–133, 163–168, 233–238. [Google Scholar]
- Poleno, Z.; Vacek, S.; Podrázský, V.; Remeš, J.; Štefančík, I.; Mikeska, M.; Kobliha, J.; Kupka, I.; Malík, V.; Turčáni, M.; et al. Pěstování Lesů III. Praktické Postupy Pěstování Lesů; Lesnická práce, s.r.o.: Kostelec nad Černými lesy, Czech Republic, 2009; p. 952. [Google Scholar]
- Zamora-Pereira, J.C.; Yousefpour, R.; Cailleret, M.; Bugmann, H.; Hanewinkel, M. Magnitude and timing of density reduction are key for the resilience to severe drought in conifer-broadleaf mixed forests in Central Europe. Ann. For. Sci. 2021, 78, 68. [Google Scholar] [CrossRef]
- Hilmers, T.; Avdagić, A.; Bartkowicz, L.; Bielak, K.; Binder, F.; Boncina, A.; Dobor, L.; Forrester, D.; Hobi, M.; Ibrahimspahic, A.; et al. The productivity of mixed mountain forests comprised of Fagus sylvatica, Picea abies, and Abies alba across Europe. Forestry 2019, 92, 512–522. [Google Scholar] [CrossRef]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 2017, 12, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Botany.cz. Available online: https://botany.cz/cs/abies-alba/ (accessed on 19 May 2024).
- Dobrowolska, D. Structure of silver fir (Abies alba Mill.) natural regeneration in the ‘Jata’ reserve in Poland. For. Ecol. Manag. 1998, 110, 237–247. [Google Scholar] [CrossRef]
- Novák, J.; Kacálek, D.; Fulín, M.; Čáp, J.; Beran, F.; Cafourek, J.; Kotrla, P.; Brožovičová, K.; Mačejovský, V.; Bezděčková, L.; et al. Podpora a Perskpetiva Jedle Bělokoré v Českých Zemích; Lesnická práce: Kostelec nad Černými lesy, Czech Republic, 2023; p. 240. [Google Scholar]
- Ferlin, F. The growth potential of understorey silver fir and Norway spruce for uneven-aged forest management in Slovenia. Forestry 2002, 75, 375–383. [Google Scholar] [CrossRef]
- Kacálek, D.; Mauer, O.; Podrázský, V.; Slodičák, M.; Houšková, K.; Špulák, O.E.A. Meliorační a Zpěvňující Funkce Lesních Dřevin; Lesnická Práce: Kostelec nad Černými lesy, Czech Republic, 2017; p. 300. [Google Scholar]
- Bercha, J. Konference: Jedle bělokorá—2005. Lesnická Práce 2006, 1, 10–11. [Google Scholar]
- Bledý, M. Využití Jedle Bělokoré (Abies alba Mill.) v Přírodě Blízkém Hospodaření v Podmínkách 2.-4. Lesního Vegetačního Stupně. Dissertation Thesis, Czech University of Life Sciences, Prague, Czech Republic, 2023. [Google Scholar]
- Hlásny, T.; Zimová, S.; Merganičová, K.; Štěpánek, P.; Modlinger, R.; Turčáni, M. Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. For. Ecol. Manag. 2021, 490, 119075. [Google Scholar] [CrossRef]
- Březina, D.; Michal, J.; Hlaváčková, P. The impact of natural disturbances on the Central European timber market—An analytical study. Forests 2024, 15, 592. [Google Scholar] [CrossRef]
- Jović, G.; Dukić, V.; Stajic, B.; Kazimirović, M.; Petrović, D. A dendroclimatological analysis of fir (Abies alba Mill.) growth in the Borja Mountain area of Bosnia and Herzegovina. Glas. Sumar. Fak. 2018, 118, 27–45. [Google Scholar] [CrossRef]
- Prokůpková, A.; Vacek, Z.; Vacek, S.; Bulušek, D. Natural regeneration potential of mixed forests in Kronoše Mts. National Park: Structure, dynamics and effect of game. In Proceedings of Central European Silviculture; Houšková, K., Jan, D., Eds.; Publishing Centre of Mendel University in Brno: Brno, Czech Republic, 2019; pp. 80–90. [Google Scholar]
- Hofmeister, Š.; Vacek, S.; Simon, J.; Minx, T. Struktura a vývoj přírodě blízkých porostů s jedlí bělokorou v genové základně Jánské Lázně v Krkonoších. In Increase of Close-to Nature Stand Component of Forests with Special Protection Status; Vacek, S., Ed.; Ústav Hospodářské Úpravy Lesů LDF MZLU v Brně a Katedra Pěstování Lesů FLE ČZU v Praze: Brno, Czech Republic, 2006. [Google Scholar]
- Šindelář, J.; Frýdl, J.; Novotný, P. Results of evaluation of the oldest provenance plot of the FGMRI Jíloviště-Strnady with silver fir established in 1961 on the locality Jíloviště, Baně. Rep. For. Res. 2005, 50, 24–32. [Google Scholar]
- Marage, D.; Lemperiere, G. The management of snags: A comparison in managed and unmanaged ancient forests of the Southern French Alps. Ann. For. Sci. 2005, 62, 135–142. [Google Scholar] [CrossRef]
- Motta, R.; Garbarino, F. Stand history and its consequences for the present and future dynamic in two silver fir (Abies alba Mill.) stands in the high Pesio Valley (Piedmont, Italy). Ann. For. Sci. 2003, 60, 361–370. [Google Scholar] [CrossRef]
- Jagodziński, A.M.; Dyderski, M.K.; Gęsikiewicz, K.; Horodecki, P. Tree and stand level estimations of Abies alba Mill. aboveground biomass. Ann. For. Sci. 2019, 76, 56. [Google Scholar] [CrossRef]
- Paluch, J. The influence of the spatial pattern of trees on forest floor vegetation and silver fir (Abies alba Mill.) regeneration in uneven-aged forests. For. Ecol. Manag. 2005, 205, 283–298. [Google Scholar] [CrossRef]
- Paluch, J. Ground seed density patterns under conditions of strongly overlapping seed shadows in Abies alba Mill. stands. Eur. J. For. Res. 2011, 130, 1009–1022. [Google Scholar] [CrossRef]
- Prokupková, A.; Brichta, J.; Vacek, Z.; Bielak, K.; Andrzejczyk, T.; Vacek, S.; Štefančík, I.; Bílek, L.; Fuchs, Z. Effect of vegetation on natural regeneration of mixed silver fir forests in lowlands: A case study from the Rogów region in Poland. Sylwan 2021, 165, 779–795. [Google Scholar]
- Tudoran, G.-M.; Avram, C.; Ciceu, A.; Dobre, A.-C. Growth relationships in silver fir stands at their lower-altitude limit in Romania. Forests 2021, 12, 439. [Google Scholar] [CrossRef]
- Štefančík, I. Comparison of growth of silver fir (Abies alba Mill.) in pure and mixed spruce, fir and beech stands. Rep. For. Res. 2019, 64, 94–101. [Google Scholar]
- Kobal, M.; Grčman, H.; Zupan, M.; Levanič, T.; Simončič, P.; Kadunc, A.; Hladnik, D. Influence of soil properties on silver fir (Abies alba Mill.) growth in the Dinaric Mountains. For. Ecol. Manag. 2015, 337, 77–87. [Google Scholar] [CrossRef]
- Sopushynskyi, I. Intraspecific structural signs of curly silver fir (Abies alba Mill.) growing in the Ukrainian Carpathians. J. For. Sci. 2020, 66, 299–308. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sc. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Peřina, V.; Kadlus, Z.; Jirkovský, V. Přirozená Obnova Lesních Porostů; SZN: Praha, Czech Republic, 1964; p. 167. [Google Scholar]
- Míchal, I.; Petříček, V.E.A. Péče o Chráněná Území, II. Lesní Společenstva; AOPK: Praha, Czech Republic, 1999; p. 713. [Google Scholar]
- Zakopal, V. Pěstovaní jedle ve světle nových poznatků. Rep. For. Res. 1970, 16, 24–32. [Google Scholar]
- Schütt, P. Tannenarten Europas und Klein Asiens; Ecomed Verlagsgesellschaft: Landsberg am Lech, Germany, 1994; pp. 1–132. [Google Scholar]
- Pretzsch, H.; Hilmers, T.; Biber, P.; Avdagić, A.; Binder, F.; Boncina, A.; Bošeľa, M.; Dobor, L.; Forrester, D.; Lévesque, M.; et al. Evidence of elevation-specific growth changes of spruce, fir, and beech in European mixed-mountain forests during the last three centuries. Can. J. For. Res. 2020, 50, 689–703. [Google Scholar] [CrossRef]
- Průša, E. Pěstování lesů na Typologických Základech; Lesnická Práce, s.r.o.: Kostelec nad Černými lesy, Czech Republic, 2001; p. 593. [Google Scholar]
- Korpeľ, Š. Pralesy Slovenska; Veda: Bratislava, Slovakia, 1989; p. 328. [Google Scholar]
- Tingey, D.T.; Phillips, D.L.; Johnson, M.G.; Rygiewicz, P.T.; Beedlow, P.A.; Hogsett, W.A. Estimates of douglas-fir fine root production and mortality from minirhizotrons. For. Ecol. Manag. 2005, 204, 359–370. [Google Scholar] [CrossRef]
- Weintraub, M.N.; Scott-Denton, L.E.; Schmidt, S.K.; Monson, R.K. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 2007, 154, 327–338. [Google Scholar] [CrossRef]
- Röhrig, E.; Bartsch, N. Waldbau auf Ökologischer Grundlage, 6th ed.; Parey: Hamburg, Germany; Berlin, Germany, 1992. [Google Scholar]
- Whelan, M.J.; Sanger, L.J.; Baker, M.; Anderson, J.M. Spatial patterns of throughfall and mineral ion deposition in a lowland Norway spruce (Picea abies) plantation at the plot scale. Atmos. Environ. 1998, 20, 3493–3501. [Google Scholar] [CrossRef]
- Bartsch, N.; Bauhus, J.; Vor, T. Effects of group selection and liming on nutrient cycling in European beech forest on acidic soils. In Forest Development. Succession, Environmental Stress and Forest Management. Case Studies; Dohrenbush, A., Bartsch, N., Eds.; Springer: Berlin, Germany, 2002; pp. 109–166. [Google Scholar]
- Penne, C.; Ahrends, B.; Deurer, M.; Böttcher, J. The impact of the canopy structure on the spatial variability in forest floor carbon stocks. Geoderma 2010, 158, 282–297. [Google Scholar] [CrossRef]
- Morris, D.M.; Gordon, A.G.; Gordon, A.M. Patterns of canopy interception and throughfall along a topographic sequence for black spruce dominated forest ecosystems in northwestern Ontario. Can. J. For. Res. 2003, 33, 1046–1060. [Google Scholar] [CrossRef]
- Staelens, J.; De Schrijver, A.; Verheyen, K.; Verhoest, N.E.C. Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover. J. Hydrol. 2006, 330, 651–662. [Google Scholar] [CrossRef]
- Paluch, J.; Gruba, P. Inter-crown versus under-crown area: Contribution of local configuration of trees to variation in topsoil morphology, pH and moisture in Abies alba Mill. forests. Eur. J. For. Res. 2012, 131, 857–870. [Google Scholar] [CrossRef]
- Zhang, Q.; Zak, J.C. Effects of gap size on litter decomposition and microbial activity in a subtropical forest. Ecology 1995, 76, 2196–2204. [Google Scholar] [CrossRef]
- Collins, B.S.; Battaglia, L.L. Microenvironmental heterogeneity and Quercus michauxii regeneration in experimental gaps. For. Ecol. Manag. 2002, 155, 279–290. [Google Scholar] [CrossRef]
- Bauhus, J. C and N mineralization in an acid forest soil along a gap-stand gradient. Soil Biol. Biochem. 1996, 28, 923–932. [Google Scholar] [CrossRef]
- Carvalheiro, K.O.; Nepstad, D.C. Deep soil heterogeneity and fine root distribution in forests and pastures of eastern Amazonia. Plant Soil 1996, 182, 279–285. [Google Scholar] [CrossRef]
- Pärtel, M.; Wilson, S.D. Root dynamics and spatial pattern in prairie and forest. Ecology 2002, 83, 1199–1203. [Google Scholar] [CrossRef]
- Vacek, S.; Nosková, I.; Bílek, L.; Vacek, Z.; Schwarz, O. Regeneration of forest stands on permanent research plots in the Krkonoše Mts. J. For. Sci. 2010, 56, 541–554. [Google Scholar] [CrossRef]
- Simard, M.-J.; Bergeron, Y.; Sirois, L. Conifer seedling recruitment in a southeastern Canadian boreal forest: The importance of substrate. J. Veg. Sci. 1998, 9, 575–582. [Google Scholar] [CrossRef]
- Augusto, L.; Ranger, J.; Binkley, D.; Rothe, A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002, 59, 233–253. [Google Scholar] [CrossRef]
- Třeštík, M.; Podrázský, V. Soil improving role of the silver fir (Abies alba Mill.): A case study. Rep. For. Res. 2017, 62, 182–188. [Google Scholar]
- Podrázský, V.; Vacek, Z.; Kupka, I.; Vacek, S.; Třeštík, M.; Cukor, J. Effects of silver fir (Abies alba Mill.) on the humus forms in Norway spruce (Picea abies (L.) H. Karst.) stands. J. For. Sci. 2018, 64, 245–250. [Google Scholar] [CrossRef]
- Čihák, T.; Vejpustková, M. Comparison of nutrient and carbon stocks in the aboveground biomass of mature silver fir (Abies alba Mill.) and Norway spruce (Picea abies L. Karst) stands. J. For. Sci. 2023, 69, 334–347. [Google Scholar] [CrossRef]
- Viewegh, J.; Kusbach, A.; Mikeska, M. Czech forest ecosystem classification. J. For. Sci. 2003, 49, 74–94. [Google Scholar] [CrossRef]
- Ellenberg, H. Vegetation Ecology of Central Europe; Cambridge University Press: Cambridge, MA, USA, 1988; p. 731. [Google Scholar]
- Senn, J.; Suter, W. Ungulate browsing on silver fir (Abies alba) in the Swiss Alps: Beliefs in search of supporting data. For. Ecol. Manag. 2003, 181, 151–164. [Google Scholar] [CrossRef]
- Klopčič, M.; Simončič, T.; Bončina, A. Comparison of regeneration and recruitment of shade-tolerant and light-demanding tree species in mixed uneven-aged forests: Experiences from the Dinaric region. Forestry 2015, 88, 552–563. [Google Scholar] [CrossRef]
- Schütz, J.-P. Silvicultural tools to develop irregular and diverse forest structures. Forestry 2002, 75, 329–337. [Google Scholar] [CrossRef]
- Korpeľ, Š.; Vinš, B. Pestovanie Jedle; Slovenské Vydavaťelstvo Pódohospodárskej Literatury: Bratislava, Slovakia, 1966; p. 342. [Google Scholar]
- Míchal, I. Obnova Ekologické Stability Lesů; Academia: Praha, Czech Republic, 1992; p. 169. [Google Scholar]
- Vacek, Z. Structure and dynamics of spruce-beech-fir forests in Nature Reserves of the Orlické hory Mts. in relation to ungulate game. Cent. Eur. For. J. 2017, 63, 23–34. [Google Scholar] [CrossRef]
- Korpeľ, Š. Die Urwälder der Westkarpaten; Gustav Fischer Verlag: Stuttgart, Germany; Jena, Germany; New York, NY, USA, 1995. [Google Scholar]
- Vacek, S.; Bílek, L.; Schwarz, O.; Hejcmanová, P.; Mikeska, M. Effect of air pollution on the health status of spruce stands. Mt. Res. Dev. 2013, 33, 40–50. [Google Scholar] [CrossRef]
- Hladík, M.; Korpeľ, Š.; Lukáč, T.; Tesař, V. Hospodárenie v Lesoch Horských Oblastí; VŠZ—Lesnická Fakulta Praha a Matice Lesnická Písek: Praha, Czech Republic; Písek, Czech Republic, 1993; p. 123. [Google Scholar]
- Vacek, Z.; Prokůpková, A.; Vacek, S.; Bulušek, D.; Šimůnek, V.; Hájek, V.; Králíček, I. Effect of Norway spruce and European beech mixing in relation to climate change: Structural and growth perspectives of mountain forests in Central Europe. For. Ecol. Manag. 2021, 488, 119019. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Cukor, J. European forests under global climate change: Review of tree growth processes, crises and management strategies. J. Environ. Manag. 2023, 332, 117353. [Google Scholar] [CrossRef]
- Dobrowolska, D. Growth and development of silver fir (Abies alba Mill.) regeneration and restoration of the species in the Karkonosze Mountains. J. For. Sci. 2008, 54, 398–408. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2002; p. 690. [Google Scholar]
- Chmelař, J. Přirozená obnova jedle (Abies alba Mill.) v pralesové rezervaci „Mionší“ v Moravskoslezských Beskydech. Lesnictví 1959, 5, 225–238. [Google Scholar]
- Meyer, H. Beitrag zur Frage der Rückgängigkeitserscheinungen der Weisstanne (Abies alba Mill.) am Nordrand ihres Naturareals. Arch. Forstw. 1957, 6, 719–787. [Google Scholar]
- Podrázský, V.; Vacek, S.; Vacek, Z.; Raj, A.; Mikeska, M.; Boček, M.; Schwarz, O.; Hošek, J.; Šach, F.; Černohous, V.; et al. Půdy Lesů a Ekosystémů nad Horní Hranicí Lesa v Národních Parcích Krkonoš; Lesnická Práce, s. r. o.: Kostelec nad Černými lesy, Czech Republic, 2010; p. 304. [Google Scholar]
- Ellenberg, H. Vegetation Mitteleuropas mit den Alpen; Verlag Eugen Ulmer: Stuttgart, Germany, 1996; Volume 6, p. 1095. [Google Scholar]
- Tinner, W.; Lotter, A. Holocene expansion of Fagus sylvatica and Abies alba in Central Europe: Where are we after eight decades of debate? Quat. Sci. Rev. 2006, 25, 526–549. [Google Scholar] [CrossRef]
- Kadlus, Z. Struktura a vývoj zmlazení smrku, jedle a buku v Orlických horách. Lesnictví 1969, 15, 381–399. [Google Scholar]
- Lieffers, V.J.; Macmillan, R.B.; MacPherson, D.; Branter, K.; Stewart, J.D. Semi-natural and intensive silvicultural systems for the boreal mixedwood forest. For. Chron. 1996, 72, 286–292. [Google Scholar] [CrossRef]
- Stancioiu, P.T.; O’Hara, K.L. Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur. J. For. Res. 2006, 125, 151–162. [Google Scholar] [CrossRef]
- Paluch, J. Spatial distribution of regeneration in West-Carpathian uneven-aged silver fir forests. Eur. J. For. Res. 2005, 124, 47–54. [Google Scholar] [CrossRef]
- Ligot, G.; Ameztegui, A.; Courbaud, B.; Coll, L.; Kneeshaw, D. Tree light capture and spatial variability of understory light increase with species mixing and tree size heterogeneity. Can. J. For. Res. 2016, 46, 968–977. [Google Scholar] [CrossRef]
- Košulič, M. Cesta k Přírodě Blízkému Hospodářskému Lesu; FSC ČR: Brno, Czech Republic, 2010; p. 449. [Google Scholar]
- Forrester, D.I.; Albrecht, A.T. Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. For. Ecol. Manag. 2014, 328, 94–102. [Google Scholar] [CrossRef]
- Grassi, G.; Bagnaresi, U. Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural light gradient. Tree Physiol. 2001, 21, 959–967. [Google Scholar] [CrossRef]
- Hynek, V. Opatření k záchraně a reprodukci genofondu jedle bělokoré v ČSR. Práce VÚLHM 1987, 71, 39–66. [Google Scholar]
- Heuze, P.; Schnitzler, A.; Klein, F. Consequences of increased deer browsing winter on silver fir and spruce regeneration in the Southern Vosges mountains: Implications for forest management. Ann. For. Sci. 2005, 62, 175–181. [Google Scholar] [CrossRef]
- Forrester, D.I.; Bauhus, J.; Cowie, A.L.; Vanclay, J.K. Mixed-species plantations of Eucalyptus with nitrogen fixing trees: A review. For. Ecol. Manag. 2006, 233, 211–230. [Google Scholar] [CrossRef]
- Forrester, D.I. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For. Ecol. Manag. 2014, 312, 282–292. [Google Scholar] [CrossRef]
- Pretzsch, H.; Steckel, M.; Heym, M.; Biber, P.; Ammer, C.; Ehbrecht, M.; Bielak, K.; Bravo, F.; Ordóñez, C.; Collet, C.; et al. Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 2020, 139, 349–367. [Google Scholar] [CrossRef]
- Del Río, M.; Pretzsch, H.; Ruiz-Peinado, R.; Jactel, H.; Coll, L.; Löf, M.; Aldea, J.; Ammer, C.; Avdagić, A.; Barbeito, I.; et al. Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect. J. Appl. Ecol. 2022, 59, 2730–2741. [Google Scholar] [CrossRef]
- Pretzsch, H.; Block, J.; Dieler, J.; Dong, P.; Kohnle, U.; Nagel, J.; Spellmann, H.; Zingg, A. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann. For. Sci. 2010, 67, 712. [Google Scholar] [CrossRef]
- Coates, K.D.; Lilles, E.B.; Astrup, R. Competitive interactions across a soil fertility gradient in a multispecies forest. J. Ecol. 2013, 101, 806–818. [Google Scholar] [CrossRef]
- Forrester, D.I.; Kohnle, U.; Albrecht, A.T.; Bauhus, J. Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For. Ecol. Manag. 2013, 304, 233–242. [Google Scholar] [CrossRef]
- Vrška, T.; Hort, L.; Odehnalová, P.; Adam, D.; Horal, D. Prales Mionší—Historický vývoj a současný stav. J. For. Sci. 2000, 46, 411–424. [Google Scholar]
- Vrška, T.; Hort, L.; Odehnalová, P.; Adam, D.; Horal, D. Dynamika Vývoje Pralesovitých Rezervací v České Republice. Sv. 1—Českomoravská Vrchovina—Polom, Žákova hora, 1st ed.; Academia: Praha, Czech Republic, 2002; p. 213. [Google Scholar]
- Jaworski, A.; Kołodziej, Z.; Porada, K. Structure and dynamics of stands of primeval character in selected areas of the Bieszczady National Park. J. For. Sci. 2002, 48, 185–201. [Google Scholar] [CrossRef]
- Štefančík, I. Growth and development of fir (Abies alba Mill.) in mixed spruce, fir and beech stands. Ekológia 2004, 23, 144–151. [Google Scholar]
- Štefančík, I. Changes in tree species composition, stand structure, qualitative and quantitative production of mixed spruce, fir and beech stand on Stará Píla research plot. J. For. Sci. 2006, 52, 74–91. [Google Scholar] [CrossRef]
- Jaworski, A.; Podlaski, R. Processes of loss, recruitment, and increment in stands of a primeval character in selected areas of the Pieniny National Park (southern Poland). J. For. Sci. 2007, 53, 278–289. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Schütze, G.; Uhl, E.; Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 2014, 5, 4967. [Google Scholar] [CrossRef] [PubMed]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dauber, E. Long-term stand dynamics of managed spruce-fir-beech mountain forests in Central Europe: Structure, productivity and regeneration success. Forestry 2015, 88, 407–428. [Google Scholar] [CrossRef]
- Kupferschmid, A.; Wasem, U.; Bugmann, H. Light availability and ungulate browsing determine growth, height and mortality of Abies alba saplings. For. Ecol. Manag. 2014, 318, 359–369. [Google Scholar] [CrossRef]
- Cramer, H.H. On the predisposition to disorders of MiddleEuropean forests. Pflanzenschutz-Nachrichten Bayer 1984, 37, 97–207. [Google Scholar]
- Larsen, J.B. Das Tannensterben: Eine neue Hypothese zur Klärung des Hintergrundes dieser rätselhaften Komplexkrankheit der Weißtanne (Abies alba Mill.). Forstw. Cbl. 1986, 105, 381–396. [Google Scholar] [CrossRef]
- Krehan, H. Das Tannensterben in Europa: Eine Literaturstudie Mitkritischer Stellungnahme; FBVA-Berichte 39, Forstliche Bundesversuchsanstalt in Wien, Österreichischer Agrarverlag: Wien, Germany, 1989. [Google Scholar]
- Kramer, W. Die Weißtanne (Abies alba Mill.) in Ost- und Südosteuropa; Gustav Fischer Verlag: Stuttgart, Germany; Jena, Germany; New York, NY, USA, 1992. [Google Scholar]
- Levanic, T. Growth depression of silver fir (Abies alba Mill.) in the Dinaric phytogeographic region between 1960–1995. Zbornik Gozdarstva Lesar. 1997, 52, 137–164. [Google Scholar]
- Svenning, J.-C.; Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 2004, 7, 565–573. [Google Scholar] [CrossRef]
- Hockenjos, W. Tannenbäume: Eine Zukunft für Abies alba; DRW-Verlag Weinbrenner GmbH & Co., KG: Leinfelden-Echterdingen, Germany, 2008; p. 232. [Google Scholar]
- Allen, J.R.M.; Huntley, B. Last interglacial palaeovegetation, palaeoenvironments and chronology: A new record from Lago Grande di Monticchio, southern Italy. Quat. Sci. Rev. 2009, 28, 1521–1538. [Google Scholar] [CrossRef]
- Opravil, E. Jedle bělokorá (Abies alba Mill.) v československém kvartéru. Časopis Slez. Muz. 1976, 25, 45–67. [Google Scholar]
- Tinner, W.; Hubschmid, P.; Wehrli, M.; Ammann, B.; Conedera, M. Long-term forest fire ecology and dynamics in southern Switzerland. J. Ecol. 1999, 87, 273–289. [Google Scholar] [CrossRef]
- Dannecker, K. Aus der Hohen Schule Weisstannenwaldes; J.D. Sauerländer: Frankfurt, Germany, 1955; p. 206. [Google Scholar]
- Manion, P.; Lachance, D. Forest Decline Concepts; APS Press: St. Paul, MN, USA; University of Minnesota: Minneapolis, MN, USA, 1992; p. 249. [Google Scholar]
- Wentzel, K.F. Weissitanne = immissionsempfindlichste einheimische Baumart. Allg. Forstztg. 1980, 35, 373–374. [Google Scholar]
- Ulrich, B. Eine ökosystemare Hypothese über die Ursachen des Tannensterbens (Abies alba Mill.). Forstwiss. Cbl. 1981, 100, 228–236. [Google Scholar] [CrossRef]
- Longauer, R. Genetic variation of European silver fir (Abies alba Mill.) in the Western Carpathians. J. For. Sci. 2001, 47, 429–438. [Google Scholar]
- Ficko, A.; Boncina, A. Silver fir (Abies alba Mill.) distribution in Slovenian forests. Zb. Gozdarstva Lesar. 2006, 79, 19–35. [Google Scholar]
- Elling, W.; Dittmar, C.; Pfaffelmoser, K.; Rötzer, T. Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. For. Ecol. Manag. 2009, 257, 1175–1187. [Google Scholar] [CrossRef]
- Diaci, J. Silver fir decline in mixed old-growth forests in Slovenia: An interaction of air pollution, changingforest matrix and climate. In AirPollution—New Developments; Moldoveanu, A., Ed.; InTech: London, UK, 2011; pp. 263–274. [Google Scholar]
- Frank, G.; Mayer, H. Waldschadensinventur im Fichten-Tannen-Buchen-Urwaldrest Neuwald; Cbl. f. d. ges. Forstw: Wien, Germany, 1988; pp. 104–123. [Google Scholar]
- Berge, E.; Bartnicki, J.; Olendrzynski, K.; Tsyro, S.G. Long-termtrends in emissions and transboundary transport of acidifying airpollution in Europe. J. Environ. Manag. 1999, 57, 31–50. [Google Scholar] [CrossRef]
- Stern, D.I. Global sulfur emissions from 1850 to 2000. Chemosphere 2005, 58, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Čavlović, J.; Bončina, A.; Božić, M.; Goršić, E.; Simončič, T.; Teslak, K. Depression and growth recovery of silver fir in uneven-aged Dinaric forests in Croatia from 1901 to 2001. For. Int. J. For. Res. 2015, 88, 586–589. [Google Scholar] [CrossRef]
- Balcar, V.; Vacek, S.; Henžlík, V. Poškození a úhyn lesních porostů v Sudetských horách. In Protection of Forest Ecosystems, Selected Problems of Forestry in Sudety Mts.; Paschalis, P., Zajaczkowski, S., Eds.; Biuro GEF: Warszawa, Poland, 1997; pp. 29–57. [Google Scholar]
- Hernández, L.; Camarero, J.J.; Gil-Pelegrín, E.; Sánchez, M.A.S.; Cañellas, I.; Montes, F. Biotic factors and increasing aridity shape the altitudinal shifts of marginal Pyrenean silver fir populations in Europe. For. Ecol. Manag. 2019, 432, 558–567. [Google Scholar] [CrossRef]
- Diaci, J.; Roženbergar, D.; Anic, I.; Mikac, S.; Saniga, M.; Kucbel, S.; Višnjić, Ć.; Ballian, D. Structural dynamics and synchronous silver fir decline in mixed old-growth mountain forests in Eastern and Southeastern Europe. Forestry 2011, 84, 479–491. [Google Scholar] [CrossRef]
- Ficko, A.; Poljanec, A.; Boncina, A. Do changes in spatial distribution, structure and abundance of silver fir (Abies alba Mill.) indicate its decline? For. Ecol. Manag. 2011, 261, 844–854. [Google Scholar] [CrossRef]
- Brinar, M. Življenjska kriza jelke na slovenskem ozemlju v zvezi s klimatičnimi fluktuacijami. Gozdarski vestnik 1964, 22, 97–144. [Google Scholar]
- Schütt, P. Die gegenwärtige Epidemic des Tannensterbens. Eur. J. Plant Pathol. 1978, 7, 187–190. [Google Scholar]
- Wick, L.; Möehl, A. The mid-Holocene extinction of silver fir (Abies alba) in the Southern Alps: A consequence of forest fires? Palaeobotanical records and forest simulations. Veg. Hist. Archaeobot. 2006, 15, 435–444. [Google Scholar] [CrossRef]
- Anic, I.; Vukelic, J.; Mikac, S.; Baksic, D.; Ugarkovic, D. Utjecaj globalnih klimatskih promjena na ekološku nišu obične jele (Abies alba Mill.) u Hrvatskoj. Šumarski List 2009, 133, 135–144. [Google Scholar]
- Cailleret, M.; Nourtier, M.; Amm, A.; Durand-Gillmann, M.; Davi, H. Drought-induced decline and mortality of silver fir differ among three sites in Southern France. Ann. For. Sci. 2014, 71, 643–657. [Google Scholar] [CrossRef]
- Linares, J.C. Biogeography and evolution of Abies (Pinaceae) in the Mediterranean Basin: The roles of long-term climatic change and glacial refugia. J. Biogeogr. 2011, 38, 619–630. [Google Scholar] [CrossRef]
- Bošeľa, M.; Ionel, P.; Gömöry, D.; Longauer, R.; Tobin, B.; Kyncl, J.; Kyncl, T.; Nechita, C.; Petráš, R.; Sidor, C.; et al. Effects of postglacial phylogeny and genetic diversity on the growth variability and climate sensitivity of European silver fir. J. Ecol. 2016, 104, 716–724. [Google Scholar] [CrossRef]
- Leonarduzzi, C.; Piotti, A.; Spanu, I.; Giovanni Giuseppe, V. Effective gene flow in a historically fragmented area at the southern edge of silver fir (Abies alba Mill.) distribution. Tree Genet. Genomes 2016, 12, 95. [Google Scholar] [CrossRef]
- Ondrejčík, R.; Krajmerová, D.; Longauer, R. Genetické riziká v cykle produkcie lesného reprodukčného materiálu na príklade uznaného porastu a sadeníc jedle bielej. In Adaptívny Manažment Pestovania Lesov v Procese Klimatickej Zmeny a Globálneho Otepľovania: Adaptive Management of Silviculture in the Process of Climate Change ang Global Warming; Jaloviar, P., Saniga, M., Eds.; Proceedings of Central European Silviculture; Technická univerzita vo Zvolene: Zvolen, Slovakia, 2017; pp. 87–94. [Google Scholar]
- Csilléry, K.; Buchmann, N.; Fady, B. Adaptation to drought is coupled with slow growth, but independent from phenology in marginal silver fir (Abies alba Mill.) populations. Evol. Appl. 2020, 13, 2357–2376. [Google Scholar] [CrossRef] [PubMed]
- Csilléry, K.; Ovaskainen, O.; Sperisen, C.; Buchmann, N.; Widmer, A.; Gugerli, F. Adaptation to local climate in multi-trait space: Evidence from silver fir (Abies alba Mill.) populations across a heterogeneous environment. Heredity 2020, 124, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Mihai, G.; Alexandru, A.M.; Stoica, E.; Birsan, M.V. Intraspecific growth response to drought of Abies alba in the Southeastern Carpathians. Forests 2021, 12, 387. [Google Scholar] [CrossRef]
- Durand-Gillmann, M.; Cailleret, M.; Boivin, T.; Nageleisen, L.-M.; Davi, H. Individual vulnerability factors of silver fir (Abies alba Mill.) to parasitism by two contrasting biotic agents: Mistletoe (Viscum album L. ssp. Abietis) and bark beetles (Coleoptera: Curculionidae: Scolytinae) during a decline process. Ann. For. Sci. 2012, 71, 659–673. [Google Scholar]
- Lebourgeois, F.; Eberlé, P.; Mérian, P.; Seynave, I. Social status-mediated tree-ring responses to climate of Abies alba and Fagus sylvatica shift in importance with increasing stand basal area. For. Ecol. Manag. 2014, 328, 209–218. [Google Scholar] [CrossRef]
- Mrkva, R. Korovnice kavkazska (Dreyfusia nordmannianae Eckstein), obrana proti ní a její podíl na ústupu jedle. Lesnictvi—Forestry 1994, 40, 361–370. [Google Scholar]
- Zubrík, M. Kôrovnica kaukazská—Významný škodca jedle. Les 1994, 50, 21–22. [Google Scholar]
- Ujházy, K.; Križová, E.; Vančo, M.; Freňáková, E.; Ondruš, M. Herblayer dynamics of primeval fir–beech forests in central Slovakia. In Natural Forests in the Temperate Zone of Europe—Values and Utilisation; Commarmot, B., Hamor, F.D., Eds.; Federal Research Institute WSL, Birmensdorf & Carpathian Biosphere Reserve: Rakhiv, Ukraine; Birmensdorf, Switzerland, 2005. [Google Scholar]
- Ficko, A.; Roessiger, J.; Boncina, A. Can the use of continuous cover forestry alone maintain silver fir (Abies alba Mill.) in central European mountain forests? Forestry 2016, 89, 412–421. [Google Scholar] [CrossRef]
- Motta, R. Impact of wild ungulates on forest regeneration and tree composition of mountain forests in the Western Italian Alps. For. Ecol. Manag. 1996, 88, 93–98. [Google Scholar] [CrossRef]
- Klopčič, M.; Jerina, K.; Bončina, A. Long-term changes of structure and tree species composition in Dinaric uneven-aged forests: Are red deer an important factor? Eur. J. For. Res. 2010, 129, 277–288. [Google Scholar] [CrossRef]
- Čermák, P.; Grundmann, P. Effects of browsing on the condition and development of regeneration of trees in the region of Rýchory (KRNAP). Acta Univ. Agric. Silvic. Mendel. Brun. 2006, 54, 7–14. [Google Scholar] [CrossRef]
- Homolka, M.; Heroldová, M. Impact of large herbivores on mountain forest stands in the Beskydy Mountains. For. Ecol. Manag. 2003, 181, 119–129. [Google Scholar] [CrossRef]
- Slanař, J.; Vacek, Z.; Vacek, S.; Bulušek, D.; Cukor, J.; Štefančík, I.; Bílek, L.; Král, J. Long-term transformation of submontane spruce-beech forests in the Jizerské hory Mts.: Dynamics of natural regeneration. Cent. Eur. For. J. 2017, 63, 212–224. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Slanař, J.; Bílek, L.; Bulušek, D.; Štefančík, I.; Králíček, I.; Vančura, K. Adaption of Norway spruce and European beech forests under climate change: From resistance to close-to-nature silviculture. Cent. Eur. For. J. 2019, 65, 129–144. [Google Scholar] [CrossRef]
- Schwegmann, S.; Mörsdorf, M.; Bhardwaj, M.; Storch, I. Effects of understory characteristics on browsing patterns of roe deer in central European mountain forests. Ecol. Evol. 2023, 13, e10431. [Google Scholar] [CrossRef] [PubMed]
- Motta, R. Wild ungulate browsing, natural regeneration and silviculture in the Italian Alps. J. Sustain. For. 1998, 8, 35–53. [Google Scholar] [CrossRef]
- Caudullo, G.; de Battisti, R.; Colpi, C.; Vazzola, C.; da Ronch, F. Ungulate damage and silviculture in the Cansiglio Forest (Veneto Prealps, NE Italy). J. Nat. Conserv. 2003, 10, 233–241. [Google Scholar] [CrossRef]
- Borowski, Z.; Gil, W.; Bartoń, K.; Zajączkowski, G.; Łukaszewicz, J.; Tittenbrun, A.; Radliński, B. Density-related effect of red deer browsing on palatable and unpalatable tree species and forest regeneration dynamics. For. Ecol. Manag. 2021, 496, 119442. [Google Scholar] [CrossRef]
- Szwagrzyk, J.; Gazda, A.; Muter, E.; Pielech, R.; Szewczyk, J.; Zięba, A.; Zwijacz-Kozica, T.; Wiertelorz, A.; Pachowicz, T.; Bodziarczyk, J. Effects of species and environmental factors on browsing frequency of young trees in mountain forests affected by natural disturbances. For. Ecol. Manag. 2020, 474, 118364. [Google Scholar] [CrossRef]
- Kupferschmid, A.D.; Greilsamer, R.; Brang, P.; Bugmann, H. Assessment of the impact of ungulate browsing on tree regeneration. Schweiz. Z. Forstwes. 2022, 170, 125–134. [Google Scholar] [CrossRef]
- Vasiliauskas, R. Damage to trees due to forestry operations and its pathological significance in temperate forests: A literature review. Forestry 2001, 74, 319–336. [Google Scholar] [CrossRef]
- Čermák, P.; Mrkva, R.; Horsák, P.; Špiřík, M.; Beranová, P.; Orálková, J.; Kadlec, M.; Zárybnický, O.; Svatoš, M. Impact of ungulate browsing on forest dynamics. Folia For. Bohem. 2011, 20, 80. [Google Scholar]
- Vlad, R.; Sidor, C.G. Research for the estimate of rotten stem wood volume in Norway spruce stands damaged by deer species. Rev. Pădurilor 2013, 128, 27–32. [Google Scholar]
- Cukor, J.; Vacek, Z.; Linda, R.; Sharma, R.P.; Vacek, S. Afforested farmland vs. forestland: Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PLoS ONE 2019, 14, e0221082. [Google Scholar] [CrossRef]
- Cukor, J.; Zeidler, A.; Vacek, Z.; Vacek, S.; Šimůnek, V.; Gallo, J. Comparison of growth and wood quality of Norway spruce and European larch: Effect of previous land use. Eur. J. For. Res. 2020, 139, 459–472. [Google Scholar] [CrossRef]
- Bazzigher, G.; Schmid, P. Sturmschäden und Fäule. Schweiz. Z. Forstwes. 1969, 10, 521–535. [Google Scholar]
- Kohnle, U.; Kändler, G. Is Silver fir (Abies alba) less vulnerable to extraction damage than Norway spruce (Picea abies)? Eur. J. For. Res. 2007, 126, 121–129. [Google Scholar] [CrossRef]
- Metzler, B.; Hecht, U.; Nill, M.; Brüchert, F.; Fink, S.; Kohnle, U. Comparing Norway spruce and silver fir regarding impact of bark wounds. For. Ecol. Manag. 2012, 274, 99–107. [Google Scholar] [CrossRef]
- Oven, P.; Torelli, N. Wound response of the bark in healthy and declining silver firs (Abies alba). IAWA J. 1994, 15, 407–415. [Google Scholar] [CrossRef]
- Oven, P.; Torelli, N. Response of the cambial zone in conifers to wounding. Phyton Ann. Rei Bot. 1999, 39, 133–137. [Google Scholar]
- Pach, M. Spałowanie jodły na terenie Leśnego Zakładu Doświadczalnego w Krynicy (Beskid Sądecki) oraz jego wpływ na wybrane cechy morfologiczne koron. Acta Agr. Silv. Ser. Silv. 2002, 40, 31–47. [Google Scholar]
- Pach, M. Wpływ spałowania powodowanego przez jelenie na szerokość słojów rocznych pni jodeł. Acta Agr. Silv. Ser. Silv. 2003, 41, 75–82. [Google Scholar]
- Pach, M. Wpływ spałowania powodowanego przez jelenie na przyrost wysokości i miąższości jodeł (Abies alba Mill.). Acta Agr. Silv. Ser. Silv. 2004, 42, 35–48. [Google Scholar]
- Pach, M. Zasięg i dynamika rozprzestrzeniania się zgnilizny wewnątrz pni jodeł w wyniku ich spałowania przez jeleniowate. Extent and dynamics of wood decay spreading inward fir stems as a result of bark stripping by ungulates. Sylwan 2005, 149, 23–35. [Google Scholar]
- Pach, M. Tempo zarastania spał na jodle oraz niektóre czynniki na nie wpływające. The rate of bark-stripping wound closure in fir and some factors affecting it. Sylwan 2008, 152, 46–57. [Google Scholar]
- Isomäki, A.; Kallio, T. Consequences of injury caused by timber harvesting machines on the growth and decay of spruce (Picea abies (L.) Karst.). Acta For. Fenn. 1974, 136, 1–25. [Google Scholar] [CrossRef]
- Gregory, S.C. The development of stain in wounded Sitka spruce stems. Forestry 1986, 59, 199–208. [Google Scholar] [CrossRef]
- Barszcz, P.; Jamrozy, G. Deprecjacja drewna jodeł i jesionów spałowanych przez jelenie w lasach Beskidu Sądeckiego. Sylwan 2001, 145, 47–57. [Google Scholar]
- Vacek, Z.; Cukor, J.; Linda, R.; Vacek, S.; Šimůnek, V.; Brichta, J.; Gallo, J.; Prokůpková, A. Bark stripping, the crucial factor affecting stem rot development and timber production of Norway spruce forests in Central Europe. For. Ecol. Manag. 2020, 474, 118360. [Google Scholar] [CrossRef]
- Pietrzykowski, E.; McArthur, C.; Fitzgerald, H.; Goodwin, A.N. Influence of patch characteristics on browsing of tree seedlings by mammalian herbivores. J. Appl. Ecol. 2003, 40, 458–469. [Google Scholar] [CrossRef]
- Marada, P.; Cukor, J.; Linda, R.; Vacek, Z.; Vacek, S.; Havránek, F. Extensive orchards in the agricultural landscape: Effective protection against fraying damage caused by roe deer. Sustainability 2019, 11, 3738. [Google Scholar] [CrossRef]
- Stutz, R.; Croak, B.; Leimar, O.; Bergvall, U. Borrowed plant defences: Deterring browsers using a forestry by-product. For. Ecol. Manag. 2017, 390, 1–7. [Google Scholar] [CrossRef]
- Spake, R.; Bellamy, C.; Graham, L.; Watts, K.; Wilson, T.; Norton, L.; Wood, C.; Schmucki, R.; Bullock, J.; Eigenbrod, F. An analytical framework for spatially targeted management of natural capital. Nat. Sustain. 2019, 2, 90–97. [Google Scholar] [CrossRef]
- Carpio, A.J.; Apollonio, M.; Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mammal Rev. 2021, 51, 95–108. [Google Scholar] [CrossRef]
- Valente, A.M.; Acevedo, P.; Figueiredo, A.M.; Fonseca, C.; Torres, R.T. Overabundant wild ungulate populations in Europe: Management with consideration of socio-ecological consequences. Mammal Rev. 2020, 50, 353–366. [Google Scholar] [CrossRef]
- Ruprecht, J.S.; Koons, D.N.; Hersey, K.R.; Hobbs, N.T.; MacNulty, D.R. The effect of climate on population growth in a cold-adapted ungulate at its equatorial range limit. Ecosphere 2020, 11, e03058. [Google Scholar] [CrossRef]
- Peláez, M.; San Miguel, A.; Rodríguez-Vigal, C.; Moreno-Gómez, Á.; del Rincón Garoz, A.G.; García-Calvo, R.P. Using retrospective life tables to assess the effect of extreme climatic conditions on ungulate demography. Ecol. Evol. 2022, 12, e8218. [Google Scholar] [CrossRef]
- Capretti, P.; Korhonen, K.; Mugnai, L.; Romagnoli, C. An Intersterility group of Heterobasidion annosum specialized to Abies alba. Eur. J. Plant Pathol. 1990, 20, 231–240. [Google Scholar] [CrossRef]
- Korhonen, K.; Capretti, P.; Karjaleinen, R.; Stenlid, J. Distribution of Heterobasidion annosum intersterility groups in Europe. In Heterobasidion Annosum: Biology, Ecology, Impact and Control; Woodward, S.J., Stenlid, J., Karjalainen, R., Hüttermann, A., Eds.; CAB International: Wallingford, UK, 1998; pp. 93–104. [Google Scholar]
- Oliva, J.; Colinas, C. Epidemiology of Heterobasidion abietinum and Viscum album on silver fir (Abies alba) stands of the Pyrenees. For. Pathol. 2010, 40, 19–32. [Google Scholar] [CrossRef]
- Korhonen, K.; Holdenrieder, O. Neue Erkenntnisse über den Wurzelschwamm (Heterobasidion annosum s. l.)—Eine Literaturübersicht. Forst Holz 2005, 60, 206–211. [Google Scholar]
- Holdenrieder, O. Krankheiten der Tanne Abies spp. Schweiz. Beitr. Dendrol. 1994, 43, 11–21. [Google Scholar]
- Krieglsteiner, G.J.; Kaiser, A. Die Großpilze Baden-Württembergs. Allgemeiner Teil: Ständerpilze: Gallert-, Rinden-, Stachel- und Porenpilze; Die Großpilze Baden-Württemberg, 1, Verlag Eugen Ulmer: Stuttgart, Germany, 2000. [Google Scholar]
- Kulbanska, I.M.; Plikhtyak, P.P.; Shvets, M.V.; Soroka, M.I.; Goychuk, A.F. Lelliottia nimipressuralis (Carter 1945) Brady et al. 2013 as the causative agent of bacterial wetwood disease of common silver fir (Abies alba mill.). Folia For. Pol. 2022, 64, 173–183. [Google Scholar] [CrossRef]
- Pusz, W.; Baturo-Ciesniewska, A.; Kaczmarek-Pieńczewska, A.; Zwijacz-Kozica, T.; Patejuk, K. The mycobiota of needles and shoots of silver fir (Abies alba Mill.) with symptoms of Herpotrichia needle browning in the Tatra Mts. (Poland). Ann. For. Res. 2020, 63, 45–56. [Google Scholar] [CrossRef]
- Janssen, T.; Wulf, A. Zur Bedeutung von Misteln im Forstschutz; Biologische Bundesanstalt für Land und Forstschutz: Berlin, Germany, 1999; p. 129. [Google Scholar]
- Procházka, F. A centre of occurrence of Viscum album subsp. album in eastern Bohemia and an overview of the diversity of its host plants in the Czech Republic. Preslia 2004, 76, 349–359. [Google Scholar]
- Iszkulo, G.; Armatys, L.; Dering, M.; Ksepko, M.; Tomaszewski, D.; Wazna, A.; Giertych, M.J. Mistletoe as a threat to the health state of coniferous forest. Sylwan 2020, 164, 226–236. [Google Scholar]
- Tubeuf, K. Monographie der Mistel; München & Berlin: Oldenbourg, Germany, 1923. [Google Scholar]
- Knuchel, H. Die Holzfehler; Classen: Zürich, Switzerland, 1947. [Google Scholar]
- König, E. Fehler des Holzes; Holz-Zentralblatt Verlag: Stuttgart, Germany, 1957; 256p. [Google Scholar]
- Noetzli, K.P.; Müller, B.; Sieber, T.N. Impact of population dynamics of white mistletoe (Viscum album ssp. abietis) on European silver fir (Abies alba). Ann. For. Sci. 2003, 60, 773–779. [Google Scholar]
- Brang, P.; Spathelf, P.; Larsen, J.; Bauhus, J.; Boncina, A.; Chauvin, C.; Drössler, L.; García-Güemes, C.; Heiri, C.; Kerr, G.; et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 2014, 87, 492–503. [Google Scholar] [CrossRef]
- Nagel, T.A.; Mikac, S.; Dolinar, M.; Klopčič, M.; Keren, S.; Svoboda, M.; Diaci, J.; Bončina, A.; Paulic, V. The natural disturbance regime in forests of the Dinaric Mountains: A synthesis of evidence. For. Ecol. Manag. 2017, 388, 29–42. [Google Scholar] [CrossRef]
- Maringer, J.; Stelzer, A.S.; Paul, C.; Albrecht, A.T. Ninety-five years of observed disturbance-based tree mortality modeled with climate-sensitive accelerated failure time models. Eur. J. For. Res. 2021, 140, 255–272. [Google Scholar] [CrossRef]
- Vejpustková, M.; Čihák, T.; Fišer, P. The increasing drought sensitivity of silver fir (Abies alba Mill.) is evident in the last two decades. J. For. Sci. 2023, 69, 67–79. [Google Scholar] [CrossRef]
- Koffi, B.; Koffi, E. Heat waves across Europe by the end of the 21st century: Multiregional climate simulations. Clim. Res. 2008, 36, 153–168. [Google Scholar] [CrossRef]
- Kyselý, J.; Gaál, L.; Beranová, R.; Plavcová, E. Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models. Theor. Appl. Climatol. 2011, 104, 529–542. [Google Scholar] [CrossRef]
- Bauhus, J.; Forrester, D.I.; Gardiner, B.; Jactel, H.; Vallejo, R.; Pretzsch, H. Ecological stability of mixed-species forests. In Mixed-Species Forests; Pretzsch, H., Forrester, D.I., Bauhus, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 337–382. [Google Scholar]
- Steckel, M.; Rio, M.; Heym, M.; Aldea, J.; Bielak, K.; Brazaitis, G.; Černý, J.; Coll, L.; Collet, C.; Ehbrecht, M.; et al. Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.)—Site water supply and fertility modify the mixing effect. For. Ecol. Manag. 2020, 461, 117908. [Google Scholar] [CrossRef]
- Forrester, D.; Bauhus, J. A review of processes behind diversity—Productivity relationships in forests. Curr. For. Rep. 2016, 2, 45–61. [Google Scholar] [CrossRef]
- Jactel, H.; Bauhus, J.; Boberg, J.; Bonal, D.; Castagneyrol, B.; Gardiner, B.; Olabarria, J.; Koricheva, J.; Meurisse, N.; Brockerhoff, E. Tree diversity drives forest stand resistance to natural disturbances. Curr. For. Rep. 2017, 3, 223–243. [Google Scholar] [CrossRef]
- Vitali, V.; Büntgen, U.; Bauhus, J. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob. Chang. Biol. 2017, 23, 5108–5119. [Google Scholar] [CrossRef]
- Ciceu, A.; Bronisz, K.; García-Duro, J.; Badea, O. Age-independent diameter increment models for mixed mountain forests. Eur. J. For. Res. 2022, 141, 781–800. [Google Scholar] [CrossRef]
- Zang, C.; Hartl-Meier, C.; Dittmar, C.; Rothe, A.; Menzel, A. Patterns of drought tolerance in major European temperate forest trees: Climatic drivers and levels of variability. Glob. Chang. Biol. 2014, 20, 3767–3779. [Google Scholar] [CrossRef] [PubMed]
- Zang, C.; Rothe, A.; Weis, W.; Pretzsch, H. Zur Baumarteneignung bei Klimawandel: Ableitung der Trockenstress-Anfälligkeit wichtiger Waldbaumarten aus Jahrringbreiten. Allg. Forst Jagdztg. 2011, 182, 98–112. [Google Scholar]
- Pretzsch, H.; Schütze, G.; Uhl, E. Resistance of European tree species to drought stress in mixed versus pure forests: Evidence of stress release by inter-specific facilitation. Plant Biol. 2013, 15, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Koch, O.; de Avila, A.L.; Heinen, H.; Albrecht, A.T. Retreat of major European tree species distribution under climate change—Minor natives to the rescue? Sustainability 2022, 14, 5213. [Google Scholar] [CrossRef]
- Šindelář, J.; Frýdl, J. Perspektivy jedle bělokoré (Abies alba Mill.) v lesním hospodářství České republiky. In Jedle bělokorá—2005. Proceedings of the Jedle Bělokorá—2005, Srní, Czech Republic, 31 October–1 November 2005; Neuhöferová, P., Ed.; ČZU FLE v Praze, Katedra Pěstování Lesů a Správa Národního Parku a Chráněné krajinné Oblasti Šumava: Praha, Czech Republic, 2005. [Google Scholar]
- Spittlehouse, D.L.; Stewart, R.B. Adaptation to climate change in forest management. J. Ecosyst. Manag. 2003, 4, 1–11. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef] [PubMed]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.-J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Hiltunen, M.; Strandman, H.; Kilpeläinen, A. Optimizing forest management for climate impact and economic profitability under alternative initial stand age structures. Biomass Bioenergy 2021, 147, 106027. [Google Scholar] [CrossRef]
- Sterck, F.; Vos, M.; Hannula, S.; de Goede, S.; de Vries, W.; Ouden, J.; Nabuurs, G.-J.; var der Putten, W.; Veen, C. Optimizing stand density for climate-smart forestry: A way forward towards resilient forests with enhanced carbon storage under extreme climate events. Soil Biol. Biochem. 2021, 162, 108396. [Google Scholar] [CrossRef]
- Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl. 2008, 1, 95–111. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Barnard, P.; Moomaw, W.R. World scientists’ warning of a climate emergency. BioScience 2020, 70, 8–12. [Google Scholar] [CrossRef]
- Woodall, C.W.; Oswalt, C.M.; Westfall, J.A.; Perry, C.H.; Nelson, M.D.; Finley, A.O. An indicator of tree migration in forests of the eastern United States. For. Ecol. Manag. 2009, 257, 1434–1444. [Google Scholar] [CrossRef]
- Gömöry, D.; Krajmerova, D.; Hrivnák, M.; Longauer, R. Assisted migration vs. close-to-nature forestry: What are the prospects for tree populations under climate change? Cent. Eur. For. J. 2020, 66, 63–70. [Google Scholar] [CrossRef]
- Feurdean, A.; Tămaş, T.; Tanţău, I.; Farcas, S. Elevational variation in regional vegetation responses to late-glacial climate changes in the Carpathians. J. Biogeogr. 2011, 39, 258–271. [Google Scholar] [CrossRef]
- Feurdean, A.; Bhagwat, S.; Willis, K.; Birks, H.; Lischke, H.; Hickler, T. Tree migration-rates: Narrowing the gap between inferred post-glacial rates and projected rates. PLoS ONE 2013, 8, e71797. [Google Scholar] [CrossRef] [PubMed]
- Mátyás, C. What do feld trials tell about the future use of forest reproductive material? In Climate Change and Forest Genetic Diversity: Implications for Sustainable Forest Management in Europe; Koskela, J., Buck, A., Teissier du Cros, E., Eds.; Bioversity International: Rome, Italy, 2007; pp. 53–69. [Google Scholar]
- Iverson, L.; McKenzie, D. Tree-species range shifts in a changing climate: Detecting, modeling, assisting. Landsc. Ecol. 2013, 28, 879–889. [Google Scholar] [CrossRef]
- Iverson, L.; Schwartz, M.; Prasad, A. How fast and far might tree species migrate in the eastern United States due to climate change? Glob. Ecol. Biogeogr. 2004, 13, 209–219. [Google Scholar] [CrossRef]
- Hacket-Pain, A.; Bogdziewicz, M. Climate change and plant reproduction: Trends and drivers of mast seeding change. Philos. Trans. R. Soc. B 2021, 376, 20200379. [Google Scholar] [CrossRef] [PubMed]
- Chroust, L. Pěstování Lesa. Doplňkový Učební Text; Ústav Pěstování Lesa LDF MZLU: Brno, Czech Republic, 2001; Available online: https://rumex.mendelu.cz/uzpl/pestovani_v_heslech/pestov/pest_pojmy.html (accessed on 18 April 2024).
- Feurdean, A.; Willis, K.J. Long-term variability of Abies alba in NW Romania: Implications for its conservation management. Divers. Distrib. 2008, 14, 1004–1017. [Google Scholar] [CrossRef]
- Hlavová, Z. Technologie skladování a předosevní příprava pro jedli bělokorou a buk lesní používané v lesnickém závodě Týniště nad Orlicí. In Pěstování Sadebního Materiálu z Dlouhodobě Skladovaného Osiva Buku a Jedle. Proceedings of the Pěstování Sadebního Materiálu z Dlouhodobě Skladovaného Osiva Buku a Jedle, Hradec Králové, Czech Republic, 17 June 1999; AVE Centrum: Opava, Czech Republic, 1999; pp. 18–20. [Google Scholar]
- Chválová, K. Skúsenosti so spracováním, skladováním a predsejbovou prípravou buka a jedle na Slovensku. In Pěstování Sadebního Materiálu z Dlouhodobě Skladovaného Osiva Buku a Jedle. Proceedings of the Pěstování Sadebního Materiálu z Dlouhodobě Skladovaného Osiva Buku a Jedle, Hradec Králové, Czech Republic, 17 June 1999; AVE Centrum: Opava, Czech Republic, 1999; pp. 27–31. [Google Scholar]
- Teodosiu, M.; Botezatu, A.; Ciocîrlan, E.; Mihai, G. Variation of cones production in a silver fir (Abies alba Mill.) clonal seed orchard. Forests 2023, 14, 17. [Google Scholar] [CrossRef]
- de Andrés, E.G.; Camarero, J.J.; Martinéz, I.; Coll, L. Uncoupled spatiotemporal patterns of seed dispersal and regeneration in Pyrenean silver fir populations. For. Ecol. Manag. 2014, 319, 18–28. [Google Scholar] [CrossRef]
- Ruiz de la Torre, J. Flora Mayor; ICONA-OAPN: Madrid, Spain, 2006. [Google Scholar]
- Gradi, A. La conoscenza del contenuto d acqua degli strobili a dei semi faktore determinante per una razionale preparazione delle sementi di confere a per la loro conservazione. Monti Bosch 1963, 14, 195–208. [Google Scholar]
- Walter, V. Rozmnožování Okrasných Stromů a Keřů (Propagation of the Ornamental Trees and Shrubs); Brázda: Praha, Czech Republic, 1978; 312p. [Google Scholar]
- Leadem, C.L. Quick Tests for Tree Seed Viability; Land Management Report No. 18; BC Ministry of Forests, Research Branch: Victoria, BC, Canada, 1984; p. 45. [Google Scholar]
- Palátová, E. Zakládání Lesa I. Lesní Semenářství; MZLU: Brno, Czech Republic, 2008; p. 119. [Google Scholar]
- Řezníčková, J.; Bezděčková, L.; Procházková, Z. Cone collection and processing, storing, pre-sowing treatment and quality of European silver fir (Abies alba) seeds: A literature review. Rep. For. Res. 2010, 55, 180–186. [Google Scholar]
- Messer, H.; Hanau, W. Der Wassergehalt des Forstsaatgutes als Grundlage der Ernte-, Veredelungs- und Aufbewahrungs- massnahmen. Forst Holz. 1959, 9, 226–229. [Google Scholar]
- Musil, I.; Hamerník, J. Lesnická Dendrologie 1: Jehličnaté Dřeviny: Přehled Nahosemenných (i Výtrusných) Dřevin; Česká Zemědělská Univerzita: Praha, Czech Republic, 2002; pp. 79–98, 177. [Google Scholar]
- Kantor, P.E.A. Zakládání Lesů; Státní Zemědělské Nakladatelství: Praha, Czech Republic, 1965; p. 490. [Google Scholar]
- Dušek, V.; Kotyza, F. Moderní Lesní Školkařství; Státní Zemědělské Nakladatelství: Praha, Czech Republic, 1970; p. 480. [Google Scholar]
- Kupka, I. Reaction of Silver fir (Abies alba Mill.) plantation to fertilization. J. For. Sci. 2005, 51, 95–100. [Google Scholar] [CrossRef]
- Pesendorfer, M.B.; Bogdziewicz, M.; Borowski, Z.; Kantorowicz, W.; Espelta, J.M.; Fernández-Martínez, M. Investigating the relationship between climate, stand age, and temporal trends in masting behavior of European forest trees. Glob. Chang. Biol. 2020, 26, 1654–1667. [Google Scholar] [CrossRef] [PubMed]
- Stejskalová, J.; Kupka, I. Forest vegetation zones influence on seed quality of silver fir (Abies alba Mill.). In Proceedigs of Central European Silviculture—12th International Conference. Proceedings of Central European Silviculture 2011, Opočno, Czech Republic, 28–29 June 2011; Kacálek, D., Jurásek, A., Novák, J., Slodičák, M., Eds.; Forestry and Game Management Research Institute, Strnady—Opocno Research Station: Opočno, Czech Republic, 2011; pp. 235–242. [Google Scholar]
- Bezděčkova, L.; Řezníčková, J. Effect of pre-sowing treatment on the germination and emergence of silver fir seeds. Rep. For. Res. 2012, 57, 249–256. [Google Scholar]
- Skořepa, H. Jedle bělokorá v našich lesích. Živa 2006, 3, 105–110. [Google Scholar]
- Boncaldo, E.; Bruno, G.; Tommasi, F.; Mastropasqua, L. Germinability and fungal occurrence in seeds of Abies alba Mill. populations in southern Italy. Plant Biosyst. 2010, 144, 740–745. [Google Scholar] [CrossRef]
- Gradečki-Poštenjak, M.; Ćelepirović, N. The influence of crown defoliation on the variability of some physiological and morphological properties of silver fir (Abies alba) seeds in the seed zone of Dinaric beech-fir forests in Croatia. Period. Biol. 2016, 117, 479–492. [Google Scholar] [CrossRef]
- Kerr, G.; Stokes, V.; Peace, A.; Jinks, R. Effects of provenance on the survival, growth and stem form of European silver fir (Abies alba Mill.) in Britain. Eur. J. For. Res. 2015, 134, 349–363. [Google Scholar] [CrossRef]
- Gunia, S.; Łukaszewicz, J.; Szeligowski, H. The first Polish provenance experiments with silver fir Abies alba Mill. For. Res. Pap. 2019, 80, 201–212. [Google Scholar] [CrossRef]
- Stępniewska, H.; Rębisz, P. Mycorrhizae of fir (Abies alba Mill.) seedlings growing on sawdust-peat substrates of different periods of utilization. Sylwan 2004, 8, 34–42. [Google Scholar]
- Jaworski, A. Charakterystyka Hodowlana Drzew Leśnych; Gutenberg: Kraków, Poland, 1995; p. 237. [Google Scholar]
- Čater, M.; Diaci, J. Scientific support for close-to-nature forestry. In Forests and Forestry in Slovenia; Čater, M., Železnik, P., Eds.; Studia Forestalia Slovenica: Ljubljana, Slovenia, 2021; pp. 55–58. [Google Scholar]
- Čater, M.; Adamič, P.; Dařenová, E. Response of beech and fir to different light intensities along the Carpathian and Dinaric Mountains. Front. Plant Sci. 2024, 15, 1380275. [Google Scholar] [CrossRef] [PubMed]
- Čater, M.; Levanič, T. Beech and silver fir’s response along the Balkan’s latitudinal gradient. Sci. Rep. 2019, 9, 16269. [Google Scholar] [CrossRef] [PubMed]
- Adamič, P.C.; Levanic, T.; Hanzu, M.; Čater, M. Growth response of European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) to climate factors along the Carpathian massive. Forests 2023, 14, 1318. [Google Scholar] [CrossRef]
- Szymura, T.H. Silver fir sapling bank in seminatural stand: Individuals architecture and vitality. For. Ecol. Manag. 2005, 212, 101–108. [Google Scholar] [CrossRef]
- Kantor, P. Obnova jedle bělokoré. In Pěstování a Umělá Obnova Jedle Bělokoré. Proceedings of the Pěstování a Umělá Obnova Jedle Bělokoré, Chudobín u Litovele, Czech Republic, 28 August 2001; Kotrla, K., Kyslík, P., Eds.; Česká lesnická společnost: Praha, Czech Republic, 2001; pp. 5–13. [Google Scholar]
- Čater, M. Response and mortality of beech, fir, spruce and sycamore to rapid light exposure after large-scale disturbance. For. Ecol. Manag. 2021, 498, 119554. [Google Scholar] [CrossRef]
- Backman, G. Wachstum und Organische Zeit; J. A. Barth: Leipzig, Germany, 1943. [Google Scholar]
- Bezačinský, H. Problém Odumierania Jedle na Slovensku z Pestovateľského Hľadiska; VŠLD: Zvolen, Slovakia, 1962; pp. 87–102. [Google Scholar]
- Vinš, B. Příspěvek k výzkumu proměnlivosti jedle (Abies alba Mill.). Rozpravy Čs. Akademie věd řada mat. a přír. věd 1966, 76, 1–82. [Google Scholar]
- Zakopal, V. Studie u nás vytvořených tvarů výběrného lesa. Lesnictví 1959, 5, 995–1012. [Google Scholar]
- Robakowski, P.; Bielinis, E. Needle age dependence of photosynthesis along a light gradient within an Abies alba crown. Acta Physiol. Plant. 2017, 39, 83. [Google Scholar] [CrossRef]
- Jarzyna, K. Climatic hazards for native tree species in Poland with special regards to silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.). Theor. Appl. Climatol. 2021, 144, 581–591. [Google Scholar] [CrossRef]
- Piedallu, C.; Dallery, D.; Bresson, C.; Legay, M.; Gégout, J.C.; Pierrat, R. Spatial vulnerability assessment of silver fir and Norway spruce dieback driven by climate warming. Landsc. Ecol. 2023, 38, 341–361. [Google Scholar] [CrossRef]
- Zakopal, V. Struktura porostů jako základní příčina hynutí jedle bělokoré (Abies alba Mill.) v našich lesích. Lesnictví 1978, 24, 731–754. [Google Scholar]
- Sokol, A. Jedľové porasty. In Pěstění lesů III; Polanský, D., Jurča, J., Zachar, D., Bezačinský, H., Korpel, Š., Zlatník, A., Pelíšek, J., Sokol, A., Čížek, J., Eds.; SZN: Praha, Czech Republic, 1956; pp. 439–446. [Google Scholar]
- Kadlus, Z. Obnova jedle v hospodářských porostech smrku a borovice na stanovištích jedlových doubrav. Práce VÚLHM 1970, 39, 79–102. [Google Scholar]
- Průša, E. Die Böhmischen und Mährischen Urwälder, Ihre Struktur und Ökologie; Academia: Praha, Czech Republic, 1985; p. 578. [Google Scholar]
- Vrška, T.; Adam, D.; Hort, L.; Kolář, T.; Janík, D. European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians—A developmental cycle or a linear trend induced by man? For. Ecol. Manag. 2009, 258, 347–356. [Google Scholar] [CrossRef]
- Klopčič, M.; Bončina, A. A century long dynamics of silver fir population in mixed silver fir-European beech forests. Zb. Gozdarstva Lesar. 2012, 97, 43–54. [Google Scholar]
- Polách, R.; Špulák, O. Prosperity of Silver fir planted under preparatory stands of pioneer broadleaves of different śtocking and age. Rep. For. Res. 2022, 64, 269–277. [Google Scholar]
- Bončina, A. History, current status and future prospects of uneven-aged forest management in the Dinaric region: An overview. Forestry 2011, 84, 467–478. [Google Scholar] [CrossRef]
- Kerr, G. The management of silver fir forests: De Liocourt (1898) revisited. Forestry 2014, 87, 29–38. [Google Scholar] [CrossRef]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.-J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 2010, 260, 1623–1639. [Google Scholar] [CrossRef]
Study | Country | Altitude (m a.s.l.) | Age (y) | DBH (cm) | Height (m) | Basal Area (m2 ha−1) | Stock Volume (m3 ha−1) | Density (Trees ha−1) | Climate Classification |
---|---|---|---|---|---|---|---|---|---|
[69] | Bosnia and Herzegovina | up to 1078 | max. 165 | 28.7–45.7 | 274–590 | 588–732 | Dfb | ||
[9] | Croatia | 876–978 | 73–76 | 28.4–32.2 | 19.4–22.6 | 227–361 | Cfa | ||
[8] | Czechia | 660–710 | 56–146 | 28.9–40.7 | 18.0–26.0 | 43.4–53.3 | 486–594 | 336–816 | Dfb |
[70] | Czechia | 940–1100 | 158–189 | 23.0–27.0 | 13.0–15.0 | 450–560 | Dfb | ||
[71] | Czechia | 640–800 | 68 | 29.0–34.0 | 333 | Dfb | |||
[9] | Czechia | 660–790 | 63–76 | 25.8–31.8 | 21.2–23.6 | 346–398 | Dfb | ||
[72] | Czechia | 330 | 45 | 18.0–22.0 | 17.0–19.0 | 164–372 | 714–1042 | Cfb | |
[7] | Czechia | 670–730 | 108–126 | 15.4–34.9 | 22.8–37.6 | 20.6–43.5 | 237–598 | 456–1624 | Dfb |
[73] | France | 1350–1500 | 109-141 | 20.3–20.8 | 27.1–42.2 | 558–748 | Dfb | ||
[74] | Italy | 1200 | max. 130 | 35.0–45.9 | 336–356 | 1175–1215 | Cfb/Csb | ||
[9] | Italy | 944–1324 | 66–75 | 23.0–28.1 | 18.7–25.4 | 220–289 | Csb | ||
[75] | Poland | 337–889 | 40–115 | 15.9–46.5 | 14.1–31.5 | 35.5–43.8 | 322–657 | 211–1852 | Cfb/Dfb |
[76] | Poland | 550–600 | 68–78 | 24.6–30.0 | 24.9–25.5 | 27.6–37.9 | 362–533 | 569–752 | Dfb |
[77] | Poland | 300–725 | 40–150 | 21.0–39.0 | 27.3–31.0 | 34.0–70.0 | 382–715 | Cfb/Dfb | |
[78] | Poland | 194 | 60 | 33.1 | 22.2 | 301 | 378 | Cfb | |
[7] | Poland | 520 | 124 | 34.5 | 35.2 | 43.3 | 591 | 464 | Dfb |
[79] | Romania | 700–950 | 100–130 | 7.6–45.0 | 5.8–31.6 | 35.0–45.0 | 299 | Dfb | |
[80] | Slovakia | 400–970 | 98–127 | 22.2–44.1 | 19.9–34.4 | 46.6-53.8 | Cfb/Dfb | ||
[81] | Slovenia | 850 | 108–132 | 33.4 | 207 | Dfb | |||
[82] | Ukraine | 750–1045 | 94–132 | 36.0–48.0 | 28.0–30.0 | 324–550 | Dfb |
Study | Country | Climate Classification | Altitude | Fir | Beech | Spruce | Rowan | Maple | Ash | Pine |
---|---|---|---|---|---|---|---|---|---|---|
[203] | Czechia | Dfb | 450–1033 | 41 | 16 | 14 | 31 | 22 | 42 | 0 |
[204] | Czechia | Dfb | 1000–1257 | 8 | 44 | 0 | 35 | 64 | ||
[205] | Czechia | Dfb | 725–765 | 36 | 12 | 3 | 57 | 100 | ||
[70] | Czechia | Dfb | 940–1100 | 100 | 78 | 48 | 76 | 91 | ||
[7] | Czechia | Dfb | 520–730 | 88 | 30 | 9 | ||||
[118] | Czechia | Dfb | 740–920 | 100 | 56 | 18 | 94 | |||
[32] | Czechia | Dfb | 420–440 | 53 | 23 | 25 | 50 | 34 | 23 | |
[206] | Czechia | Dfb | 640–810 | 68 | 6 | 2 | 82 | 100 | ||
[207] | Germany | Dfb | 443–1334 | 50 | 47 | 33 | 28 | 39 | ||
[201] | Italy | Dfc/Dfb | 900–2300 | 42 | 14 | 2 | ||||
[208] | Italy | Dfc/Dfb | 800–2500 | 41 | 15 | 13 | 46 | 46 | 39 | 14 |
[209] | Italy | Dfb | 900–1694 | 96 | 13 | 62 | ||||
[210] | Poland | Dfb | 223–364 | 19 | 15 | 48 | ||||
[211] | Poland | Dfb | 800–1600 | 33 | 1 | 1 | 40 | 39 | ||
[212] | Switzerland | Dfc/Dfb | 380–3000 | 6 | 3 | 1 | 62 | 29 | 19 | |
Mean | 52 | 26 | 17 | 55 | 56 | 31 | 5 |
Year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Production (thous. kg) | 42.1 | 59.0 | 30.5 | 95.3 | 7.7 | 48.6 | 19.5 | 15.2 | 79.0 | 5.9 | 115.7 | 42.7 | 134.5 |
Seed amount (thous. kg) | 4.2 | 5.9 | 3.1 | 9.5 | 0.8 | 4.9 | 1.9 | 1.5 | 7.9 | 0.6 | 11.6 | 4.3 | 13.4 |
Seedling numbers (mil. pcs) | 12.6 | 17.7 | 9.2 | 28.6 | 2.3 | 14.6 | 5.8 | 4.6 | 23.7 | 1.8 | 34.7 | 12.8 | 40.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bledý, M.; Vacek, S.; Brabec, P.; Vacek, Z.; Cukor, J.; Černý, J.; Ševčík, R.; Brynychová, K. Silver Fir (Abies alba Mill.): Review of Ecological Insights, Forest Management Strategies, and Climate Change’s Impact on European Forests. Forests 2024, 15, 998. https://doi.org/10.3390/f15060998
Bledý M, Vacek S, Brabec P, Vacek Z, Cukor J, Černý J, Ševčík R, Brynychová K. Silver Fir (Abies alba Mill.): Review of Ecological Insights, Forest Management Strategies, and Climate Change’s Impact on European Forests. Forests. 2024; 15(6):998. https://doi.org/10.3390/f15060998
Chicago/Turabian StyleBledý, Michal, Stanislav Vacek, Pavel Brabec, Zdeněk Vacek, Jan Cukor, Jakub Černý, Richard Ševčík, and Kateřina Brynychová. 2024. "Silver Fir (Abies alba Mill.): Review of Ecological Insights, Forest Management Strategies, and Climate Change’s Impact on European Forests" Forests 15, no. 6: 998. https://doi.org/10.3390/f15060998
APA StyleBledý, M., Vacek, S., Brabec, P., Vacek, Z., Cukor, J., Černý, J., Ševčík, R., & Brynychová, K. (2024). Silver Fir (Abies alba Mill.): Review of Ecological Insights, Forest Management Strategies, and Climate Change’s Impact on European Forests. Forests, 15(6), 998. https://doi.org/10.3390/f15060998