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Abstract: Individual Tree Detection and Segmentation (ITDS) is a key step in accurately extracting
forest structural parameters from LiDAR (Light Detection and Ranging) data. However, most ITDS
algorithms face challenges with over-segmentation, under-segmentation, and the omission of small
trees in high-density forests. In this study, we developed a bottom–up framework for ITDS based
on seed points. The proposed method is based on density-based spatial clustering of applications
with noise (DBSCAN) to initially detect the trunks and filter the clusters by a set threshold. Then,
the K-Nearest Neighbor (KNN) algorithm is used to reclassify the non-core clustered point cloud
after threshold filtering. Furthermore, the Random Sample Consensus (RANSAC) cylinder fitting
algorithm is used to correct the trunk detection results. Finally, we calculate the centroid of the
trunk point clouds as seed points to achieve individual tree segmentation (ITS). In this paper, we
use terrestrial laser scanning (TLS) data from natural forests in Germany and mobile laser scanning
(MLS) data from planted forests in China to explore the effects of seed points on the accuracy of
ITS methods; we then evaluate the efficiency of the method from three aspects: trunk detection,
overall segmentation and small tree segmentation. We show the following: (1) the proposed method
addresses the issues of missing segmentation and misrecognition of DBSCAN in trunk detection.
Compared to using DBSCAN directly, recall (r), precision (p), and F-score (F) increased by 6.0%, 6.5%,
and 0.07, respectively; (2) seed points significantly improved the accuracy of ITS methods; (3) the
proposed ITDS framework achieved overall r, p, and F of 95.2%, 97.4%, and 0.96, respectively. This
work demonstrates excellent accuracy in high-density forests and is able to accurately segment small
trees under tall trees.

Keywords: individual tree detection and segmentation; trunk detection; point clouds; seed points;
seeds-based segmentation

1. Introduction

Forests are an important part of the global ecosystem, with a variety of irreplaceable
ecological functions, such as reducing the impact of wind and fixing sand, conserving water,
and regulating the climate. However, traditional forest inventory methods often require a
large investment of human and material resources, limiting their scalability and efficiency.
Over the past two decades, LiDAR technology has played an increasingly important role
in forestry resource surveys with its active remote sensing characteristics [1–3]. In contrast
to traditional optical remote sensing algorithms, LiDAR-acquired point cloud data can
obtain accurate tree structural parameters, such as tree height, diameter at breast height,
crown diameter, volume, etc. [4,5], which are useful for calculating forest biomass [6]
and extracting quantitative structural models (QSM) [7]. Accurate extraction of structural
parameters of forest trees relies on accurate ITDS, which has become a core direction of
forest LiDAR point cloud research in recent years [8,9]. Small-footprint LiDAR can be
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classified into three types based on the platform where the scanner is mounted: airborne
LiDAR, terrestrial LiDAR (TLS), and mobile LiDAR (MLS). Airborne LiDAR has a relatively
low point density and is limited in the amount of point data it can acquire from a single
tree. Furthermore, the top–down data acquiring mode cannot easily capture detailed
information on trunks, branches, and understory vegetation, which somewhat constrains
its potential to be applied to single-tree studies [10,11]. In contrast, TLS and MLS use side-
view scanning mode to collect data, which has a higher density of point cloud data per unit
area and can obtain rich tree-side information. This is extremely useful for detailed studies
at the level of a single tree and provides important technical support for high-precision tree
observation and analysis [12–14].

ITDS methods for airborne LiDAR data can be broadly categorized into CHM-based
(Canopy Height Model) and point-cloud-based methods [15,16]. The CHM-based method
identifies the exact location of the tree by setting up a search window to locate the highest
point in the canopy, and then a segmentation algorithm is used to delineate the contours of
individual canopies [17,18]. In contrast, point cloud-based methods directly manipulate and
analyze a large number of points in 3D space, such as using clustering algorithms to classify the
point cloud based on distance for accurate tree identification and segmentation [19,20]. Both
CHM-based and point-cloud-based methods are effective methods for LiDAR ITDS [21–23],
though the accuracy of these two types of methods tends to drop significantly when
dealing with complex forests with irregular canopies, overlapping crowns, or multi-stem
characteristics [24–28].

Many methods exist for the ITDS of TLS and MLS data. Lu et al. [29] proposed a
new method to extract tree trunks based on the intensity information of LiDAR point
clouds and segmented trees based on the relative spacing of each point. However, the
need for LiDAR intensity information and the shading conditions of the trees limit the
further application of the approach. Tao et al. [30] proposed a tree crown segmentation
method based on ecological theory. The method first applies the DBSCAN algorithm to
identify the trunk by means of density-dependent spatial clustering and then divides the
canopy based on the shortest path algorithm, and this method achieves high segmentation
accuracy in different test data. Lee et al. [31] proposed an adaptive clustering method
similar to the Watershed Algorithm for single-timber segmentation in LiDAR point clouds
of pine forests. However, it relies on sufficient training datasets for supervised learning
and the segmentation performance for structurally complex forest environments has not
been fully validated. Xia et al. [32] proposed a new method to automatically detect tree
trunks in dense forests using single-scan TLS data, which achieved high trunk detection
accuracy. Zhong et al. [13] proposed a hierarchical segmentation technique for top–down
processing of TLS and MLS point clouds. The method first splits a large point cloud
region into smaller localized point clusters by spatial clustering method, and then these
localized point clusters are further segmented to distinguish between the core region of
the trees and the overlapping region of the edges. Comesana-cebral et al. [33] proposed
a cylindrical volume cluster analysis method based on the iterative DBSCAN algorithm
for segmenting single trees. However, a considerable number of misidentifications and
missed segmentations still exist. Trochta et al. [34] proposed an algorithm that segments
individual trees from bottom to top by clustering points in ground-parallel slices. The
algorithm identifies tree bases as low clusters and merges adjacent clusters with stems to
form complete tree structures. Burt et al. [35] proposed a segmentation technique called
treeseg. Once tree stems were detected, they employed proportional relationships between
stem diameter, tree height, and crown size to isolate tree crowns. Wu et al. [36] proposed a
voxel-based labeled neighborhood search method that combines seed point selection and
region growth algorithms for identifying street trees and obtaining their morphological
features. This method achieves up to 98% tree detection accuracy in a test area where trees
rarely overlap. Xing et al. [37] proposed a voxel-based layer-by-layer clustering method
for segmenting single trees in TLS point cloud data. The method is based on sequential
analysis of the z-values of the point cloud data in the vertical direction and layer-by-layer
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clustering using a fuzzy C-means algorithm to determine the specific location of each
tree. This method utilizes the three-dimensional information of the point cloud data and
achieves tree segmentation by layer-by-layer clustering. It is clear from these studies that
the ITS method starting from the trunk portion of the tree is more appropriate for TLS
and MLS point cloud data. In these ITDS methods, accurately recognizing the trunk and
preventing the problems of missegmentation and misrecognition are critical to the accuracy
of the final segmentation results.

In this study, we proposed a new framework for ITDS in TLS and MLS point clouds,
aiming to improve overall accuracy and reduce the tendency to miss small trees in high-
density forests. Our specific objectives are as follows: we aim (1) to solve the common
problems of missegmentation and misrecognition when using DBSCAN to detect tree
trunks, and to improve the accuracy of tree trunk detection; (2) to explore the best ITS
strategy based on the seed points, and study the effect of seed points on the accuracy
of ITS methods; and (3) to evaluate the effectiveness of the proposed methods in terms
of trunk detection, overall segmentation, and small tree segmentation. We also analyze
segmentation accuracy in high-density forests. The data used for this purpose are (1) MLS
data for planted forests in China and (2) TLS data for natural forests in Germany.

2. Datasets
2.1. Planted Forest of MLS Point Clouds in China

As shown in Figure 1, the study area is located in a coal mine in the northwestern
region of Shenmu City, Shaanxi Province, China. The primary landform types in this area
include wind-sand plains, river-valley terraces, and loess hills and gullies. This is a planted
forest with an area of about 8 ha, and the average tree density is 391 ha−1. The main tree
species in this forest are poplars. We selected three plots from the area as experimental data.
For detailed information on these plots, please refer to Plot 1, Plot 2, and Plot 3 in Table 1.
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Table 1. Detailed information on the six experimental plots.

Forest Type Plot ID Tree Number Area (m2)
Stem Density

(Plants/ha)

Tree Height (m)

Max Min Mean

Planted forest Plot 1 49 1238.06 396 9.65 8.50 9.15
Plot 2 40 1002.72 399 9.25 8.46 9.12
Plot 3 50 1308.06 382 9.70 8.42 9.13

Natural forest BR01 63 387.58 1625 19.78 7.36 17.92
BR03 40 782.20 511 27.28 8.86 23.86
BR05 74 1461.49 506 34.35 6.42 29.89

The MLS data were collected on 13 November 2019 using the RIEGL miniVUX-1UAV
acquisition device. The data were collected on a clear day with minor cloud cover over
higher elevations. To ensure the accuracy of MLS data collection, the collection routes were
meticulously planned to minimize the effects of sharp turns and major obstacles in the data
collection process. Given the sloping terrain of the study area, an eight-shaped path was
chosen for data acquisition. Starting from the center of the experimental sample plots, the
data collection proceeded along the eight-shaped route at a consistent pace, concluding at
the center of the forest. The parameters of MLS data acquisition are detailed in Table 2.

Table 2. The parameters of MLS data acquisition.

Related Parameters The Parameters Settings

Starting angle (◦) 15
Straight angle (◦) 345

Scanning frequency (kHz) 100
Density (pts/m2) 564

2.2. Natural Forests of TLS Point Clouds in Germany

To effectively highlight the strengths of the proposed methods in small tree detec-
tion and high-density forest segmentation, as well as to assess the performance of ITS
methods across various types of plots, we also used the TLS point cloud data provided
by Weiser et al. [38]. The data are located in the mixed Central European forest lands of
Bretten and Karlsruhe near Baden-Württemberg, Germany. The TLS point cloud data were
collected by mounting a RIEGL VZ-400 unit on a tripod, which scanned selected tree areas
using the multi-scan approach with five to eight scanning positions. The device offers a
measurement accuracy of 5 mm and a point cloud density of 7000 points per cubic meter at
a scanning range of 100 m. The sensor operates with a pulse repetition frequency of 300 kHz
and an angular step width of 0.017 degrees in both vertical and horizontal directions. At
some positions, an additional scan was performed using a tilt mount to capture the top of
the trees at proximity. Figure 2a shows the TLS point cloud data of Plot BR01 collected on 3
July 2019. Figure 2b shows the TLS point cloud data of Plot BR03 collected on 4 June 2019.
Figure 2c shows the TLS point cloud data of Plot BR05 collected on 17 July 2019. Detailed
information on the three experimental plots is presented in Table 1.
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height-to-live crown).

3. Methodology

Figure 3 shows the flowchart of the proposed framework. It contains three main
steps: data preprocessing, trunk detection, and ITS. First, the raw point cloud data were
preprocessed to generate a normalized non-ground point cloud, and the spatial elevation
section method was used to obtain the specific height layer slices of the trunk. Then, the
KNN algorithm was used to solve the missing segmentation and misrecognition problems
that occur when using DBSCAN to detect tree trunks, and the RANSAC cylinder fitting
algorithm was utilized to correct the results of trunk detection. Finally, we computed the
centroid of the detected trunk point cloud as the seed point. Three seed-based ITS methods
(Seeds + Dalponte-2016, Seeds + Li-2012, Seeds + Tao-2015) were compared with the direct
application of these three ITS methods [30,39,40]. These are described in more detail below.
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3.1. Data Preprocessing

To enhance the accuracy and efficiency of the ITDS method, this study applied a
series of preprocessing operations to the raw point cloud data. First, the random sampling
algorithm was employed to downsample the data, reducing the number of point clouds
to decrease the complexity of the segmentation algorithm. The algorithm maintains the
initial spatial distribution of the point cloud and ensures each point has an equal proba-
bility of being sampled within a set threshold range. This achieves a uniform reduction
in the data volume. Then, the point cloud was denoised using the statistical outlier re-
moval (SOR) filter algorithm to remove noise. Next, the cloth simulation filtering (CSF)
algorithm [41] was employed to segment ground and non-ground point clouds. The CSF
method leverages the intrinsic properties of the textile material to enhance the point cloud
filtering process by adjusting the simulated physical properties associated with the fabric.
Finally, height normalization was performed on the point cloud data. The simulated fabric
generated by the CSF algorithm was employed as the Digital Terrain Model (DTM), and
the normalized point cloud height was derived by subtracting the DTM height from the
original point cloud height (Figure 4). This transformation process ensures that the height
values of the point cloud accurately reflect changes in height relative to the ground. It
also maintains a consistent spatial distribution of trees and their branches, preserving
their precise positional relationships within the point cloud data. The preprocessing of the
aforementioned point cloud was conducted using the open-source software CloudCompare
(https://www.cloudcompare.org/, accessed on 5 October 2022). In this process, random
sampling was configured to retain either one-half of the original number of points. The
SOR filtering parameters, including the mean distance estimation points and the standard
deviation multiplier threshold, were set to their default values. For CSF filtering, the fabric
resolution was specified as 0.4, with the maximum number of iterations set to 800.
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3.2. Trunk Detection

There are three main steps for trunk detection: (1) initial trunk detection based on
DBSCAN and filtering of correctly clustered trunks with set thresholds; (2) the KNN
algorithm is used to reclassify the non-core clustered point cloud after threshold filtering;
and (3) the RANSAC cylinder fitting algorithm is applied to correct the trunk detection
results by identifying and removing outliers or incorrect matches, thus improving the
accuracy of the detection.

3.2.1. Initial Trunk Detection Based on DBSCAN

DBSCAN is a classic density-based spatial clustering algorithm that determines the
clustering results based on the tightness of sample distribution [42]. The algorithm operates
by initially selecting a random core point and then recursively grouping points that meet the
density criterion into the same cluster, eventually forming a maximal region encompassing

https://www.cloudcompare.org/
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both core and boundary points. DBSCAN recognizes arbitrarily shaped classes, allows
clustering of different sizes for each class, and does not require the number of clusters to be
defined. Neighborhood radius (Eps) and the minimum number of points (MinPts) are the
criteria used by the DBSCAN algorithm to describe density. Eps determines the extent of
the neighborhood of sample points, while MinPts sets the minimum number of samples
needed within that neighborhood, and these are used to determine whether a point is a
core point. DBSCAN determines the type of sample points based on their density, and
when the number of sample points within a sample point’s neighborhood radius Eps is
greater than or equal to MinPts, these points are classified as core points. The points that do
not satisfy the core point condition but are in the neighborhood of a core point are classified
as boundary points. The points that are neither core nor boundary points are considered as
noise points.

Due to the potential for over-segmentation in DBSCAN during the detection of tree
trunks, a single tree trunk may be erroneously identified as multiple distinct clusters. In
addition, factors such as lower vegetation, leaves, and branches interfere and can easily
be misidentified as trunks during trunk detection, leading to inaccurate clustering results.
Therefore, we computed three features of the trunks—the number of points in a cluster (N),
the height of the clusters (H), and the angle between the main direction of the clusters and
the vertical direction (T)—to evaluate the right cluster for the individual trunk. Feature
H is the difference between the maximum and minimum values of a single cluster height.
Feature T describes the relationship of data variation in different dimensions by calculating
the covariance matrix of each cluster. Then, eigenvalue decomposition is performed to
obtain the eigenvalues and eigenvectors of the covariance matrix. The eigenvector with the
largest eigenvalue is selected as the main direction of the trunk. Finally, the angle between
the trunk direction and the vertical direction is calculated. We set the condition that the
core cluster would be selected as the right trunk from the DBSCAN clusters (Equation (1)).
These constraints effectively eliminate interference from lower-level vegetation, leaves, and
branches, and filter out incorrectly clustered trunks, thereby improving the accuracy of
trunk detection.

Trunk =


Ni > 0.001 N

Hi > 2
Ti < 40

(1)

where Trunk is each core clustering in DBSCAN detection of trunks, Ni is the number of
points of cluster i, Hi is the height of cluster i in meters, Ti represents the angle between
the main direction of a single cluster and the vertical direction in degrees, N is the total
number of points in all trunk point clouds.

3.2.2. Reclassification of Non-Core Cluster Point Clouds Using KNN Algorithm

The KNN algorithm, as a classical supervised learning algorithm, has demonstrated
its simplicity, effectiveness, and intuition in classification tasks and has been widely used
in several fields [43,44]. The core idea of the algorithm is to classify the training samples
based on the k training samples with the closest distance to the sample to be tested by
comparing the features in the training set and their corresponding labels. Ultimately, based
on the labels of these neighbors, the principle of majority voting is used to determine the
category affiliation of the object to be classified.

Due to the shading effect of understory shadows and the obstruction of lower-level
vegetation, the point cloud data of small tree trunks typically exhibit low-density character-
istics. At the same time, the point cloud of the trunk far from the center of the scanning
device may be relatively sparse, and there may even be discontinuities in the point cloud
of the trunk surface. Moreover, the clustering outcomes of DBSCAN are significantly influ-
enced by the compactness of the sample distribution, posing a challenge in the selection
of Eps and MinPts parameters. Especially in complex forest environments, determining
the optimal parameters becomes more difficult, and inappropriate parameter settings can
greatly reduce the accuracy of trunk detection. In Figure 5a, the small tree labeled as α′
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was over-segmented into multiple stem segments due to insufficient point cloud density
and was subsequently eliminated during the point-cluster filtering stage. The small tree
labeled as β′ was over-segmented due to the low density of the top trunk point cloud. For
certain tree trunks whose surface point clouds may exhibit discontinuities due to under-
story shading and occlusion, DBSCAN may erroneously segment them into multiple stem
segments, leading to their removal during the point-cluster filtering stage and consequently
resulting in the omission of these trunks (γ′). On the other hand, if these clusters of points
segmented into multiple stem segments are not filtered out during the threshold screening
stage, then this in turn increases the over-segmentation error when detecting trunks.
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To solve the above mentioned problem, the KNN algorithm is used to reclassify the
non-core clustered point cloud after threshold filtering. In this process, the core trunk point
clouds identified from the DBSCAN clustering results, which were filtered using the thresh-
old defined by Equation (1), are used as training data. Subsequently, a distance-weighted
method is employed to reclassify the non-core trunk point clouds, thereby optimizing the
classification results. The results of KNN algorithm reclassification are shown in Figure 5b,
it can be seen that the small tree (α′) that was missed in Figure 5a has been reclaimed
and correctly identified into the core clusters (α′′). Meanwhile, in the clustering filter-
ing stage, the point cloud at the top of the trunk (β′), which was originally mistakenly
excluded due to over-segmentation, is correctly reattributed to that trunk (β′′). For the
trunks in Figure 5a where the point cloud is discontinuous and removed in the point
cluster filtering stage (γ′), the KNN algorithm reclassifies the whole trunks into the core
clusters (γ′′). Using this method, the issue of small and edge trunks being easily missed
and over-segmented is effectively resolved, resulting in a significant improvement in the
accuracy of trunk detection.

For edge trunks located far from the scanning center, when only half of the trunk
point cloud is captured during scanning (with the point cloud on the other side of the
trunk having a lower density), this can directly result in some of the trunk points being
incorrectly identified as noise by DBSCAN (Figure 6a). The KNN algorithm can effectively
reclassify the trunk points that were incorrectly recognized as noise to their correct trunks,
with the results after reclassification shown in Figure 6b. This step not only enhances the
completeness of trunk detection but also establishes a more comprehensive and accurate
data foundation for subsequent RANSAC cylinder fitting. The accuracy of RANSAC
cylinder fitting is highly dependent on the completeness and precision of the input data,
and the processing by the KNN algorithm can effectively prevent the issue of difficulty in
fitting RANSAC cylinders and the degradation of accuracy due to insufficient trunk points.
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3.2.3. Correcting Trunk Detection Results Based on RANSAC Cylinder Fitting

Due to the presence of low-lying vegetation in the understory and numerous noise
points around the tree trunks, this study utilized the RANSAC cylinder fitting algorithm
to refine trunk detection outcomes, excluding non-trunk point clouds [45]. The RANSAC
algorithm is an iterative algorithm that is primarily used to estimate geometric models in
a dataset. The basic principle of the algorithm is to randomly select a set of points from
the dataset and calculate the parameters of the geometric model based on this set of points.
The algorithm then repeats this process several times, with the goal of finding the best
model with the largest number of interior points. In each iteration, the RANSAC algorithm
uses the selected point set to compute a score indicating how many points in the entire
dataset match this point set. Points that match the selected point set are considered interior
points. To determine whether each point is an interior point, the algorithm calculates the
distance from each point to the model and compares it to a preset threshold. The RANSAC
algorithm chooses the point set with the most supported interior points as the most likely
model, and the final estimate is obtained based on a least-squares adjustment using all
these interior points. The algorithm exhibits strong robustness in estimating geometric
models, obtaining good results even in the presence of noise and outliers. Its iterative
nature allows for multiple attempts, which enhances its resistance to outliers in the data.

3.3. ITS Methods

To demonstrate the advantages of ITS based on seed points obtained through the
proposed method, we explore the effects of different seed point selection techniques on
the accuracy of ITS methods and evaluate the performance of commonly used ITS al-
gorithms in different forest environments. In this study, the three seed-point-based ITS
methods (i.e., the seed-point-based Dalponte-2016 method: Seeds + Dalponte-2016, the
seed-point-based Li-2012 method: Seeds + Li-2012, and the seed-point-based Tao-2015
method: Seeds + Tao-2015) are utilized for segmenting trees. The Tao-2015 and Li-2012
methods were implemented using LiDAR360 software (https://www.lidar360.com/, ac-
cessed on 13 February 2022). The Dalponte-2016 method was implemented using the
lidR and lidRplugins packages in R software (https://cran.r-project.org/, accessed on 31
October 2023) [46].

The Dalponte-2016 method is a top–bottom segmentation strategy, which is based
on the Canopy Height Model (CHM) and applies a region-growth algorithm for accurate
tree segmentation [39]. Specifically, the method first searches for local maxima in the
rasterized CHM, which represent the locations of the tree tops. Subsequently, from each of
the identified local maxima, a complete canopy structure grows around these local maxima.

https://www.lidar360.com/
https://cran.r-project.org/
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The Li-2012 method is a regional growth method, combined with the threshold judg-
ment, based on point cloud data rather than CHM raster [40]. The core idea of the method
is to identify the highest point in the point cloud as the tree top, and then use the interval
threshold rule to determine whether the points below the tree top belong to the tree starting
from the tree top. After completing the classification of all points below the top of the
tree, the algorithm removes the segmented tree and searches for a new highest point in the
remaining point cloud, continuing the iterative segmentation until all trees are successfully
recognized. The key to this algorithm is the selection of the interval threshold, which
directly affects the accuracy of the segmentation. In sparse forests, larger thresholds can be
used to separate trees; while in dense forests, smaller thresholds need to be chosen to avoid
under-segmentation.

The Tao-2015 method is the comparative shortest path (CSP) algorithm developed by
Tao et al. [30]. The method is based on the 3D spatial structure of the point cloud data and
builds a continuous topology starting from the bottom of the tree point cloud data upwards
until reaching the top of the tree. First, this method uses DBSCAN to automatically identify
tree trunks within the sample plot. Next, it selects a 10 cm thick trunk point cloud slice,
extracted from the vertical ground level at 1.25 m to 1.35 m from the tree base, to measure
the diameter at breast height, which serves as the seed point for the tree. Finally, the CSP
algorithm, based on tree seed points and metabolic ecology theory, is applied to identify the
dendritic portion of the tree and complete the segmentation of the canopy point cloud data.

3.4. Accuracy Assessment

To evaluate the performance and sensitivity of the proposed ITDS strategy in this
study, the ITDS results were analyzed in comparison with real trees, with an emphasis on
counting the number of true positives (TP), false negatives (FN), and false positives (FP).
The accuracy of the ITDS method is evaluated using recall (r), precision (p), and F-score (F)
indices on the basis of the TP, FN, and FP. The calculation formula is as follows:

r =
TP

TP + FN
(2)

p =
TP

TP + FP
(3)

F = 2 × r × p
r + p

(4)

where TP is the number of trees that were correctly segmented, FN is the number of
neighboring trees that were assigned incorrect segmentation, and FP is the trees that were
segmented but did not actually exist. “r” represents the proportion of ground reference
trees that were successfully detected, reflecting the recall of the results. “p” indicates
the proportion of detected trees that accurately correspond to ground reference trees,
representing the precision of the results. The F, serving as an index of overall accuracy, is
derived from the values of r and p.

4. Results and Analysis
4.1. Trunk Detection Results

Figure 7 demonstrates the results of trunk detection and its accuracy for the six plots
of the proposed method. TP indicates that trunks were correctly detected; FN indicates that
multiple trunks were actually present, but only one was identified; FP indicates that they
were not actually present, but incorrectly identified as trunks. “r” is the trunk detection
rate, which is the ratio of detected to real trunks; “p” is the correct rate of detected trunks;
and F is the weighted mean calculated by combining r and p. In the trunk detection across
six plots, r ranged from 94.6% to 98.0%, with a total r of 95.9%; p ranged from 95.0% to
100%, with a total p of 97.4%; and F ranged from 0.95 to 0.99, with a total F of 0.97. The
r, p, and F values for the three plots selected from Chinese planted forests (Plot1, Plot2,
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and Plot3) were higher than those for the three sample plots selected from German natural
forests (BR01, BR03, and BR05), indicating that planted forests have better r, p, and F values
than natural forests. Among the six plots, the total FN for the three sample plots selected
from the German natural forest (BR01, BR03, and BR05) was nine, while the total FN for the
three sample plots selected from the Chinese planted forests (Plot1, Plot2, and Plot3) was
three. In addition, it is noteworthy that the total number of FP is lower than the number
of FN.
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Figure 7. Trunk detection results and accuracy in six plots.

To better demonstrate the advantages of the trunk detection method presented in this
paper, a comparison was made with the direct use of DBSCAN for trunk detection (Table 3).
When directly using DBSCAN for trunk detection, the total TP was 280, indicating that
280 out of 316 trunks were correctly detected. The r, p, and F were 89.9%, 90.9%, and 0.90,
respectively. The trunk detection method proposed in this paper correctly identified a
total of 303 trunks, with an overall r, p, and F of 95.9%, 97.4%, and 0.97, respectively. The
proposed trunk detection method improved the total r, p, and F by 6.0%, 6.5%, and 0.07,
respectively, compared to the direct use of DBSCAN for trunk detection.

Table 3. Comparison with DBSCAN in trunk detection results and accuracy.

Plot Actual
Number

DBSCAN Proposed

TP r p F TP r p F

BR01 63 56 88.9% 90.3% 0.90 60 95.2% 96.8% 0.96
BR03 40 34 89.5% 87.2% 0.88 38 95.0% 95.0% 0.95
BR05 74 64 88.9% 90.1% 0.89 70 94.6% 97.2% 0.96

Total natural forest 177 154 89.0% 89.2% 0.89 168 94.9% 96.6% 0.96
Plot1 49 45 91.8% 91.8% 0.92 47 95.9% 97.9% 0.97
Plot2 40 36 90.0% 92.3% 0.91 39 97.5% 97.5% 0.98
Plot3 50 45 90.0% 93.8% 0.92 49 98.0% 100% 0.99

Total planted forest 139 126 90.6% 92.6% 0.92 135 97.1% 98.5% 0.98
Total 316 280 89.9% 90.9% 0.90 303 95.9% 97.4% 0.97

4.2. ITS Results

The overall segmentation accuracy of the three seed-point-based ITS methods (Seeds +
Dalponte-2016, Seeds + Li-2012, Seeds + Tao-2015) was significantly better than that of
directly using these three methods (Figure 8 and Table 4). All three seed-point-based ITS
methods had stable F scores on the six plots (Figure 8), with the highest segmentation
accuracy being achieved by the method of Seeds + Tao-2015, which correctly segmented
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298 out of 316 trees, with total r, p, and F of 95.2%, 97.4% and 0.96, respectively (Table 4). In
contrast, the three ITDS methods without seed points had lower overall accuracy (Figure 8
and Table 4). Compared to Dalponte-2016 and Li-2012, the Tao-2015 method performed
slightly better, correctly segmenting 261 out of 316 trees, with an overall r, p, and F of 86.7%,
78.8%, and 0.83, respectively (Table 4).
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Figure 8. The accuracy tested by F score for all six individual tree segmentation (ITS) methods [30,39,40].

Table 4. The summarized accuracy for all six individual tree segmentation (ITS) methods.

Methods Actual
Number

Segmentation
Number TP FN FP r p F

Dalponte2016 [39] 316 335 243 62 57 79.7% 81.0% 0.80
Li2012 [40] 316 350 249 52 63 82.7% 79.8% 0.81

Tao2015 [30] 316 364 261 40 70 86.7% 78.8% 0.83
Seeds + Dalponte2016 316 303 278 28 25 90.8% 91.7% 0.91

Seeds + Li2012 316 303 282 25 22 91.9% 92.8% 0.92
Seeds + Tao2015 316 303 298 15 8 95.2% 97.4% 0.96

4.3. Small Tree Detection Results

We define small trees as those that cannot be detected from the top-view point cloud
data due to shading from the canopy layer. Small trees are usually in the lower vertical
layers of the forest structure and are covered by the upper canopy layer. Among the
total of 316 trees in the six plots, there are 46 small trees. The methods Seeds + Dalponte-
2016, Seeds + Li-2012, and Seeds + Tao-2015 correctly identified and segmented 37, 39,
and 42 small trees, respectively, with the correct segmentation rates for small trees being
0.80, 0.85, and 0.91. However, the methods Dalponte-2016, Li-2012, and Tao-2015 correctly
recognized and segmented 28, 33, and 36 small trees, respectively, with correct small tree
segmentation rates of 0.61, 0.72, and 0.78, respectively. Among the six ITDS methods, the
Seeds + Tao-2015 method achieved the highest correct segmentation rate for small trees,
reaching 0.91, while the Dalponte-2016 method had the lowest correct segmentation rate for
small trees, at 0.61. Figure 9 shows the results of segmentation using the Seeds + Tao-2015
method for 23 trees in the BR05 plot, with the green small trees detected within the red box.
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5. Discussion
5.1. Parameter Sensitivity Analysis

It is known that the performance of the DBSCAN clustering process is affected by the
selection of appropriate input parameters (i.e., Eps and MinPts). However, the framework
proposed in this paper greatly reduces the sensitivity to parameters when using DBSCAN
to detect tree trunks. When Eps is set too small or Minpts is set too large, it can easily
lead to over-segmentation of the trunk. However, the over-segmented trunk point cloud
can be reclassified to the trunk by the KNN classification algorithm, which reduces the
over-segmentation error of the trunk. When Eps is set too large or Minpts is set too small,
it can easily lead to under-segmentation of the trunk. For under-segmented trunks, the
RANSAC cylinder fitting algorithm can further segment the trunks, thus reducing the
under-segmentation error. In order to improve the ability of the proposed framework
to detect tree trunks, multiple experiments were conducted on different plots, and the
appropriate range of values for Eps was determined to be between 0.1 and 0.7. Considering
the segmentation accuracy of tree trunks in different plots, the value of Eps was chosen to
be 0.2. Although other values can also satisfy the detection of tree trunks, it is generally
recommended to choose a smaller coefficient, because even if part of the tree trunk is over-
segmented, KNN can reclassify it onto that tree trunk. Larger coefficients may reduce the
initial detection rate of tree trunks, thereby increasing the probability of under-segmentation
errors. When KNN is used to reclassify the non-core clusters after threshold screening, k
values chosen from 1 to 300 can achieve good results, but when k values are obtained too
large, the possibility of misclassification is increased. We observed that when the k value is
small (less than 20), the value of k seems to have little effect on the final classification results.
Therefore, for consistency and practicality, the default value of k was chosen to be 5.

5.2. ITS Methods with or without Seed Points

Among the three direct ITS methods (Dalponte-2016, Li-2012, Tao-2015), Dalponte-
2016 has the lowest accuracy. This is mainly because this method searches for local maxima
in the rasterized CHM as tree tops, and then grows complete crown structures from the
tree tops. However, accurately identifying tree tops in dense forests is quite difficult, and
it is also challenging to segment small trees. Moreover, the spatial resolution of the CHM
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and the degree of smoothing of the CHM affect the tree apex extraction and ITS results [47].
Li-2012 directly takes the highest point in the point cloud as the tree top and combines an
interval threshold rule to complete ITS. Although the accuracy of ITS with this method is
not affected by the CHM as much as the Dalponte-2016 method, the accuracy of identifying
tree tops as the starting point for segmentation in dense forests is very low. The method
sets too large an interval threshold that may lead to under-segmentation errors, while too
low a threshold tends to trigger over-segmentation errors; moreover, the method tends to
have difficulty in recognizing small trees underneath tall trees. Tao-2015 uses the DBSCAN
algorithm to automatically identify tree trunks in sample plots and selects 10 cm-thick
slices of the trunk point cloud to extract the tree diameter at breast height, which serves
as the seed point of the trees. However, the accuracy of selecting seed points significantly
decreases due to interference from understory vegetation, lower branches, and leaves,
making the method prone to over-segmentation errors.

Among the three seed-point-based ITDS methods, Seeds + Tao-2015 has the highest
accuracy. The error mainly comes from the accuracy of obtaining seed points according
to the proposed method. Therefore, the ITS accuracy of Seeds + Tao-2015 will be further
improved when there are new methods for individual tree detection with higher accu-
racy than the proposed method. Seeds + Dalpnote-2016 may have errors during CHM
interpolation and may have inaccurate crown edge segmentation. Although the Seeds + Li-
2012 method found more accurate seed points using the proposed approach, due to its
top–down strategy and classification of point cloud data through interval thresholds, in
high-canopy-density forest environments, small trees and the edges of tree crowns may be
erroneously segmented into other trees.

Compared to directly using these three ITS methods, the segmentation accuracy of the
three ITS methods based on seed points detected by the proposed methods was significantly
improved (Figure 8, Table 4). As the number of selected seed points is equal to the number
of ITS results when the number of seed points selected is greater than the actual number of
trees, it is easy to cause over-segmentation errors; when the number of seed points selected
is less than the actual number of trees, it is likely to lead to under-segmentation errors.
The proposed method achieves high accuracy in obtaining seed points through trunk
detection, significantly reduces the over-segmentation and under-segmentation errors of
ITDS methods, and improves the overall segmentation accuracy.

5.3. Analysis of Small Tree Detection Results

In the detection of a total of 46 small trees in six plots, the correct segmentation rates
of the Dalponte-2016, Li-2012, and Tao-2015 methods for small trees were 0.61, 0.72, and
0.78, respectively. However, after combining the seed points obtained by the proposed
methods, the correct segmentation rate of small trees was improved to 0.80, 0.85, and
0.91 for Seeds + Dalponte-2016, Seeds + Li-2012, and Seeds + Tao-2015, respectively. It is
clear that the three seed-point-based ITDS methods are significantly better than the direct
use of these three ITS methods in terms of the correct segmentation rate of small trees.
Dalponte-2016 and Li-2012 identify the tree top as the starting point. However, due to
the high density of the tree crown, these methods often have difficulty capturing the tops
of small trees, making them particularly prone to missing small trees. Tao-2015 uses the
DBSCAN algorithm to automatically identify a 10-centimeter-thick trunk point cloud slice
to extract seed points. However, due to the interference of understory vegetation and
non-trunk point clouds, this method is prone to missing or over-segmenting small trees.
The proposed trunk detection method effectively recognizes the trunks of small trees and
accurately finds the seed points of small trees. Therefore, the proposed seed-point-based
ITS method greatly improves the detection accuracy of small trees under tall trees.

5.4. Analysis of ITS Results in High-Canopy-Density Forests

Figure 10 illustrates the ITS results using the Seeds + Tao-2015 method in the BR03 plot.
In the BR03 plot, the F-scores of ITS using the Dalponte-2016, Li-2012, and Tao-2015 methods
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were 0.77, 0.79, and 0.79, respectively, while the F-scores using the Seeds + Dalponte-2016,
Seeds + Li-2012, and Seeds + Tao-2015 methods were 0.89, 0.90, and 0.94, respectively
(Figure 8). This indicates that in high-canopy-density forest environments, the perfor-
mance of the three direct ITS methods is suboptimal, with numerous instances of over-
segmentation and under-segmentation errors, while the ITS methods based on seed points
obtained by the proposed method exhibit superior segmentation accuracy. The seed-point-
based ITS method has a great potential for development in high-canopy-density forests.
Since the number of segmentation results is equal to the number of seed points, when
the accuracy of seed points is high enough, the accuracy of single-wood segmentation
will be increased accordingly, which will significantly reduce the over-segmentation and
under-segmentation errors that often occur in high-density forests. Therefore, exploring
methods to obtain high-precision seed points in complex forest environments to achieve
ITS will become an important direction for future research.
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Figure 10. Individual tree segmentation (ITS) results in high-canopy-density forests. (a) The Original
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6. Conclusions

This study proposed a new framework for bottom–up ITDS based on seed points.
The proposed framework used the KNN algorithm to solve the missing segmentation and
misrecognition problems that occur when using DBSCAN to detect tree trunks, and the
RANSAC cylinder fitting algorithm was utilized to correct the results of trunk detection.
It improves the accuracy of trunk detection and consequently the accuracy of seed points.
We used Chinese planted forest data and German natural forest data to investigate the
effect of seed points on the accuracy of ITS methods and to evaluate the effectiveness of the
proposed method. The results showed the following.

(1) This study addressed the issues of missing segmentation and misrecognition
encountered when using DBSCAN for trunk detection, reducing the sensitivity of DBSCAN
parameters and enhancing the accuracy of trunk detection. Compared to the direct use
of DBSCAN, the r, p, and F for trunk detection were improved by 6.0%, 6.5%, and 0.07,
respectively. (2) Compared to the direct application of these three ITS methods (Dalponte-
2016: F = 0.80, Li-2012: F = 0.81, Tao-2015: F = 0.83), the three ITS methods based on the seed
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points obtained from the proposed method (Seeds + Dalponte-2016: F = 0.91, Seeds + Li-
2012: F = 0.92, Seeds + Tao-2015: F = 0.96) showed more stable segmentation results and
better performance in all plots. (3) Among the six ITS methods, Seeds + Tao-2015 achieved
the highest overall segmentation accuracy. This method can be considered as the preferred
option for ITDS from TLS and MLS data, with excellent segmentation performance in both
artifical and mixed forest experimental plots. (4) In terms of segmentation in high-canopy-
density forests and detection of small trees, the ITS methods based on the seed points
obtained from this study significantly outperformed other ITS algorithms.

The proposed method achieves high precision in seed point detection, significantly
reducing issues such as under-segmentation, over-segmentation, and the omission of
small trees that are common in high-canopy-density forests. This lays a solid foundation
for precise calculation of tree structural parameters, offering robust datasets for biomass
estimation and forest inventory.
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