Consolidation and Dehydration Effects of Mildly Degraded Wood from Luoyang Canal No. 1 Ancient Ship
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Consolidation Process
2.2.2. Dehydration and Air Conditioning
2.2.3. Mechanical Properties and Morphological Characteristics
2.2.4. Dimensional Stability
2.2.5. Surface Hydrophilicity
2.2.6. Chemical Properties Analysis Using FT-IR
3. Results and Discussion
3.1. Mechanical Properties and Morphological Characteristics
3.2. Evaluation of Dimensional Stability
3.3. Hygroscopicity of Treated Wood
3.4. Chemical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.P.; Kim, Y.S.; Chavan, R.R. Advances in Understanding Microbial Deterioration of Buried and Waterlogged Archaeological Woods: A Review. Forests 2022, 13, 394. [Google Scholar] [CrossRef]
- Welling, J.; Schwarz, T.; Bauch, J. Biological, Chemical and Technological Characteristics of Waterlogged Archaeological Piles (Quercus Petraea (Matt.)Liebl.) of a Medieval Bridge Foundation in Bavaria. Eur. J. Wood Prod. 2018, 76, 1173–1186. [Google Scholar] [CrossRef]
- Weimer, P.J. Degradation of Cellulose and Hemicellulose by Ruminal Microorganisms. Microorganisms 2022, 10, 2345. [Google Scholar] [CrossRef]
- Reese, E.T. Degradation of Polymeric Carbohydrates by Microbial Enzymes. In The Structure, Biosynthesis, and Degradation of Wood; Loewus, F.A., Runeckles, V.C., Eds.; Springer: Boston, MA, USA, 1977; pp. 311–367. [Google Scholar]
- Christensen, M.; Frosch, M.; Jensen, P.; Schnell, U.; Shashoua, Y.; Nielsen, O.F. Waterlogged Archaeological Wood—Chemical Changes by Conservation and Degradation. J. Raman Spectrosc. 2006, 37, 1171–1178. [Google Scholar] [CrossRef]
- Walsh-Korb, Z.; Avérous, L. Recent Developments in the Conservation of Materials Properties of Historical Wood. Prog. Mater. Sci. 2019, 102, 167–221. [Google Scholar] [CrossRef]
- Blanchette, R.A. A Review of Microbial Deterioration Found in Archaeological Wood from Different Environments. Int. Biodeterior. Biodegrad. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Braovac, S.; McQueen, C.M.A.; Sahlstedt, M.; Kutzke, H.; Lucejko, J.J.; Klokkernes, T. Navigating Conservation Strategies: Linking Material Research on Alum-Treated Wood from the Oseberg Collection to Conservation Decisions. Herit. Sci. 2018, 6, 77. [Google Scholar] [CrossRef]
- Zoia, L.; Tamburini, D.; Orlandi, M.; Lucejko, J.J.; Salanti, A.; Tolppa, E.-L.; Modugno, F.; Colombini, M.P. Chemical Characterisation of the Whole Plant Cell Wall of Archaeological Wood: An Integrated Approach. Anal. Bioanal. Chem. 2017, 409, 4233–4245. [Google Scholar] [CrossRef]
- Seborg, R.M.; Inverarity, R.B. Preservation of Old, Waterlogged Wood by Treatment with Polyethylene Glycol. Science 1962, 136, 649–650. [Google Scholar] [CrossRef]
- Hocker, E.; Almkvist, G.; Sahlstedt, M. The Vasa Experience with Polyethylene Glycol: A Conservator’s Perspective. J. Cult. Herit. 2012, 13, S175–S182. [Google Scholar] [CrossRef]
- Wagner, L.; Almkvist, G.; Bader, T.K.; Bjurhager, I.; Rautkari, L.; Gamstedt, E.K. The Influence of Chemical Degradation and Polyethylene Glycol on Moisture-Dependent Cell Wall Properties of Archeological Wooden Objects: A Case Study of the Vasa Shipwreck. Wood Sci. Technol. 2016, 50, 1103–1123. [Google Scholar] [CrossRef]
- Fors, Y.; Sandström, M. Sulfur and Iron in Shipwrecks Cause Conservation Concerns. Chem. Soc. Rev. 2006, 35, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, P.; Singh, A.; Kim, Y.S.; Wi, S.G.; Kim, I.-J.; Schmitt, U. The Bremen Cog of 1380—An Electron Microscopic Study of Its Degraded Wood before and after Stabilization with PEG. Holzforschung 2004, 58, 211–218. [Google Scholar] [CrossRef]
- Glastrup, J.; Shashoua, Y.; Egsgaard, H.; Mortensen, M.N. Degradation of PEG in the Warship Vasa. Macromol. Symp. 2006, 238, 22–29. [Google Scholar] [CrossRef]
- Broda, M.; Mazela, B.; Radka, K. Methyltrimethoxysilane as a Stabilising Agent for Archaeological Waterlogged Wood Differing in the Degree of Degradation. J. Cult. Herit. 2019, 35, 129–139. [Google Scholar] [CrossRef]
- Bugani, S.; Cloetens, P.; Colombini, M.; Giachi, G.; Janssens, K.; Modugno, F.; Morselli, L.; Van de Casteele, E. Evaluation of Conservation Treatments for Archaeological Waterlogged Wooden Artefacts. In Proceedings of the 9th International Conference on NDT of Art, Jerusalem, Israel, 25 May 2008; pp. 25–30. [Google Scholar]
- Jones, S.P.; Slater, N.K.; Jones, M.; Ward, K.; Smith, A.D. Investigating the Processes Necessary for Satisfactory Freeze-Drying of Waterlogged Archaeological Wood. J. Archaeol. Sci. 2009, 36, 2177–2183. [Google Scholar] [CrossRef]
- Giachi, G.; Capretti, C.; Macchioni, N.; Pizzo, B.; Donato, I.D. A Methodological Approach in the Evaluation of the Efficacy of Treatments for the Dimensional Stabilisation of Waterlogged Archaeological Wood. J. Cult. Herit. 2010, 11, 91–101. [Google Scholar] [CrossRef]
- Gallina, M.E.; Sassi, P.; Paolantoni, M.; Morresi, A.; Cataliotti, R.S. Vibrational Analysis of Molecular Interactions in Aqueous Glucose Solutions. Temperature and Concentration Effects. J. Phys. Chem. B 2006, 110, 8856–8864. [Google Scholar] [CrossRef] [PubMed]
- Tahira, A.; Howard, W.; Pennington, E.R.; Kennedy, A. Mechanical Strength Studies on Degraded Waterlogged Wood Treated with Sugars. Stud. Conserv. 2017, 62, 223–228. [Google Scholar] [CrossRef]
- Imazu, S.; Morgos, A. Conservation of Waterlogged Wood Using Sugar Alcohol and Comparison the Effectiveness of Lactitol, Sucrose and PEG 4000 Treatment. In Proceedings of the 6th ICOM Group on Wet Organic Archaeological Materials Conference, York, UK, 9–13 September 1997; pp. 235–254. [Google Scholar]
- Mai, C.; Militz, H. Modification of Wood with Silicon Compounds. Treatment Systems Based on Organic Silicon Compounds? A Review. Wood Sci. Technol. 2004, 37, 453–461. [Google Scholar] [CrossRef]
- Donath, S.; Militz, H.; Mai, C. Creating Water-Repellent Effects on Wood by Treatment with Silanes. Holzforschung 2006, 60, 40–46. [Google Scholar] [CrossRef]
- Giudice, C.A.; Alfieri, P.V.; Canosa, G. Decay Resistance and Dimensional Stability of Araucaria Angustifolia Using Siloxanes Synthesized by Sol–Gel Process. Int. Biodeterior. Biodegrad. 2013, 83, 166–170. [Google Scholar] [CrossRef]
- Broda, M.; Mazela, B. Application of Methyltrimethoxysilane to Increase Dimensional Stability of Waterlogged Wood. J. Cult. Herit. 2017, 25, 149–156. [Google Scholar] [CrossRef]
- Broda, M.; Curling, S.F.; Spear, M.J.; Hill, C.A.S. Effect of Methyltrimethoxysilane Impregnation on the Cell Wall Porosity and Water Vapour Sorption of Archaeological Waterlogged Oak. Wood Sci. Technol. 2019, 53, 703–726. [Google Scholar] [CrossRef]
- Broda, M.; Plaza, N.Z. Durability of Model Degraded Wood Treated with Organosilicon Compounds against Fungal Decay. Int. Biodeterior. Biodegrad. 2023, 178, 105562. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Sakakibara, K.; Imai, T.; Tsujii, Y.; Kohdzuma, Y.; Sugiyama, J. Shrinkage and swelling behavior of archaeological waterlogged wood preserved with slightly crosslinked sodium polyacrylate. J. Wood Sci. 2018, 64, 294–300. [Google Scholar] [CrossRef]
- Fejfer, M.; Majka, J.; Zborowska, M. Dimensional Stability of Waterlogged Scots Pine Wood Treated with PEG and Dried Using an Alternative Approach. Forests 2020, 11, 1254. [Google Scholar] [CrossRef]
- Liu, X.; Tu, X.; Ma, W.; Zhang, C.; Huang, H.; Varodi, A.M. Consolidation and Dehydration of Waterlogged Archaeological Wood from Site Huaguangjiao No. 1. Forests 2022, 13, 1919. [Google Scholar] [CrossRef]
- Blanchet, P.; Kaboorani, A.K.; Bustos, C. Understanding the Effects of Drying Methods on Wood Mechanical Properties at Ultra and Cellular Levels. Wood Fiber Sci. 2016, 48, 117–128. [Google Scholar]
- Yang, W.; Ma, W.; Liu, X. Evaluation of Deterioration Degree of Archaeological Wood from Luoyang Canal No. 1 Ancient Ship. Forests 2024, 15, 963. [Google Scholar] [CrossRef]
- Jong, J. Conservation Techniques for Old Archaeological Wood from Shipwrecks Found in The Netherlands. In Biodeterioration Investigation Techniques; Walters, A.H., Ed.; Applied Science: London, UK, 1977; pp. 295–338. [Google Scholar]
- Jensen, P.; Jensen, J.B. Dynamic Model for Vacuum Freeze-Drying of Waterlogged Archaeological Wooden Artefacts. J. Cult. Herit. 2006, 7, 156–165. [Google Scholar] [CrossRef]
- Liu, H.; Xie, J.; Zhang, J. Moisture transfer and drying stress of eucalyptus wood during supercritical CO2 (ScCO2) dewatering and ScCO2 combined oven drying. BioResources 2022, 17, 5116–5128. [Google Scholar] [CrossRef]
- Yang, L. Effect of Temperature and Pressure of Supercritical CO2 on Dewatering, Shrinkage and Stresses of Eucalyptus Wood. Appl. Sci. 2021, 11, 8730. [Google Scholar] [CrossRef]
- SO 13061–17:2017; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 17: Determination of Ultimate Stress in Compression Parallel to Grain. International Organization for Standardization: Geneva, Switzerland, 2017.
- Varivodina, I.; Kosichenko, N.; Varivodin, V.; Sedliačik, J. Interconnections Among the Rate of Growth, Porosity, and Wood Water Absorption. Wood Res. 2010, 55, 59–66. [Google Scholar]
- ISO 13061–16:2017; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 16: Determination of Volumetric Swelling. International Organization for Standardization: Geneva, Switzerland, 2017.
- Broda, M.; Spear, M.J.; Curling, S.F.; Ormondroyd, G.A. The Viscoelastic Behaviour of Waterlogged Archaeological Wood Treated with Methyltrimethoxysilane. Materials 2021, 14, 5150. [Google Scholar] [CrossRef] [PubMed]
- Broda, M.; Majka, J.; Olek, W.; Mazela, B. Dimensional Stability and Hygroscopic Properties of Waterlogged Archaeological Wood Treated with Alkoxysilanes. Int. Biodeterior. Biodegrad. 2018, 133, 34–41. [Google Scholar] [CrossRef]
- Broda, M.; Dąbek, I.; Dutkiewicz, A.; Dutkiewicz, M.; Popescu, C.-M.; Mazela, B.; Maciejewski, H. Organosilicons of Different Molecular Size and Chemical Structure as Consolidants for Waterlogged Archaeological Wood—A New Reversible and Retreatable Method. Sci. Rep. 2020, 10, 2188. [Google Scholar] [CrossRef] [PubMed]
- Morgós, A.; Imazu, S.; Ito, K. Sugar Conservation of Waterlogged Archaeological Finds in the Last 30 Years. In Proceedings of the 2015 Conservation and Digitalization Conference, Gdańsk, Poland, 19–22 May 2015; pp. 15–20. [Google Scholar]
- Kennedy, A.; Pennington, E.R. Conservation of Chemically Degraded Waterlogged Wood with Sugars. Stud. Conserv. 2014, 59, 194–201. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Kohdzuma, Y.; Endo, R.; Sugiyama, J. Evaluation of Chemical Treatments on Dimensional Stabilization of Archaeological Waterlogged Hardwoods Obtained from the Thang Long Imperial Citadel Site, Vietnam. J. Wood Sci. 2018, 64, 436–443. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Zhang, B.; Hu, Y. A Comparative Study of Reinforcement Materials for Waterlogged Wood Relics in Laboratory. J. Cult. Herit. 2019, 36, 94–102. [Google Scholar] [CrossRef]
- Eriksson, K.-E.L.; Blanchette, R.A.; Ander, P. Microbial and Enzymatic Degradation of Wood and Wood Components; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cao, H.; Gao, X.; Chen, J.; Xi, G.; Yin, Y.; Guo, J. Changes in Moisture Characteristics of Waterlogged Archaeological Wood Owing to Microbial Degradation. Forests 2022, 14, 9. [Google Scholar] [CrossRef]
- Babiński, L.; Fabisiak, E.; Zborowska, M.; Michalska, D.; Prądzyński, W. Changes in Oak Wood Buried in Waterlogged Peat: Shrinkage as a Complementary Indicator of the Wood Degradation Rate. Eur. J. Wood Prod. 2019, 77, 691–703. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Ke, D.; Wang, C.; Pan, H.; Chen, K.; Zhang, H. Modified Lignin Nanoparticles as Potential Conservation Materials for Waterlogged Archaeological Wood. ACS Appl. Nano Mater. 2023, 6, 12351–12363. [Google Scholar] [CrossRef]
- Endo, R.; Sugiyama, J. New Attempts with the Keratin-Metal/Magnesium Process for the Conservation of Archaeological Waterlogged Wood. J. Cult. Herit. 2022, 54, 53–58. [Google Scholar] [CrossRef]
- Giachi, G.; Capretti, C.; Donato, I.D.; Macchioni, N.; Pizzo, B. New Trials in the Consolidation of Waterlogged Archaeological Wood with Different Acetone-Carried Products. J. Archaeol. Sci. 2011, 38, 2957–2967. [Google Scholar] [CrossRef]
- Pecoraro, E.; Pizzo, B.; Salvini, A.; Macchioni, N. Dynamic Mechanical Analysis (DMA) at Room Temperature of Archaeological Wood Treated with Various Consolidants. Holzforschung 2019, 73, 757–772. [Google Scholar] [CrossRef]
- Skinner, T.P.W.C. Dimensional Stabilisation of Waterlogged Archaeological Wood: An Investigation of the Water Content of the Cell Wall of Waterlogged Archaeological Wood and Its Replacement with Water-Soluble Compounds; University of London, University College London: London, UK, 2001. [Google Scholar]
- Lindfors, E.-L.; Lindström, M.; Iversen, T. Polysaccharide Degradation in Waterlogged Oak Wood from the Ancient Warship Vasa. Holzforschung 2008, 62, 57–63. [Google Scholar] [CrossRef]
- Majka, J.; Babiński, L.; Olek, W. Sorption Isotherms of Waterlogged Subfossil Scots Pine Wood Impregnated with a Lactitol and Trehalose Mixture. Holzforschung 2017, 71, 813–819. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, K.; Hu, D. High Retreatability and Dimensional Stability of Polymer Grafted Waterlogged Archaeological Wood Achieved by ARGET ATRP. Sci. Rep. 2019, 9, 9879. [Google Scholar] [CrossRef]
- Barkai, H.; Soumya, E.; Sadiki, M.; Mounyr, B.; Ibnsouda, K.S. Impact of Enzymatic Treatment on Wood Surface Free Energy: Contact Angle Analysis. J. Adhes. Sci. Technol. 2017, 31, 726–734. [Google Scholar] [CrossRef]
- Broda, M.; Hill, C.A. Conservation of Waterlogged Wood—Past, Present and Future Perspectives. Forests 2021, 12, 1193. [Google Scholar] [CrossRef]
- Colombini, M.P.; Lucejko, J.J.; Modugno, F.; Orlandi, M.; Zoia, L. A multi-analytical study of degradation of lignin in archaeological waterlogged wood. Talanta 2010, 80, 61–70. [Google Scholar] [CrossRef]
- Popescu, M.C.; Froidevaux, J.; Navi, P.; Popescu, C.M. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. J. Mol. Struct. 2013, 1033, 176–186. [Google Scholar] [CrossRef]
- Al-Oweini, R.; El-Rassy, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si (OR) and R00 Si (OR0) 3 precursors. J. Mol. Struct. 2009, 919, 140–145. [Google Scholar] [CrossRef]
- Benmouhoub, C.; Gauthier-Manuel, B.; Zegadi, A.; Robert, L. A Quantitative Fourier Transform Infrared Study of the Grafting of Aminosilane Layers on Lithium Niobate Surface. Appl. Spectrosc. 2017, 71, 1568–1577. [Google Scholar] [CrossRef] [PubMed]
- Pasteur, G.A.; Schonhorn, H. Interaction of Silanes with Antimony Oxide to Facilitate Particulate Dispersion in Organic Media and to Enhance Flame Retardance. Appl. Spectrosc. 1975, 29, 512–517. [Google Scholar] [CrossRef]
- Kavale, M.S.; Mahadik, D.B.; Parale, V.G.; Wagh, P.B.; Gupta, S.C.; Rao, A.V.; Barshilia, H.C. Optically transparent, super hydrophobic methyltrimethoxysilane based silica coatings without silylating reagent. Appl. Surf. Sci. 2011, 258, 158–162. [Google Scholar] [CrossRef]
- Latthe, S.S.; Imai, H.; Ganesan, V.; Rao, A.V. Porous superhydrophobic silica films by sol–gel process. Microporous Mesoporous Mater. 2010, 130, 115–121. [Google Scholar] [CrossRef]
- Lin, J.; Chen, H.; Fei, T.; Zhang, J. Highly transparent superhydrophobic organic–inorganic nanocoating from the aggregation of silica nanoparticles. Colloids Surf. 2013, 421, 51–62. [Google Scholar] [CrossRef]
- Robles, E.; Csóka, L.; Labidi, J. Effect of reaction conditions on the surface modification of cellulose nanofibrils with aminopropyl triethoxysilane. Coatings 2018, 8, 139. [Google Scholar] [CrossRef]
- Popescu, C.M.; Popescu, M.C.; Vasile, C. Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy. Microchem. J. 2010, 95, 377–387. [Google Scholar] [CrossRef]
- Han, L.; Guo, J.; Tian, X.; Jiang, X.; Yin, Y. Evaluation of PEG and Sugars Consolidated Fragile Waterlogged Archaeological Wood Using Nanoindentation and ATR-FTIR Imaging. Int. Biodeterior. Biodegrad. 2022, 170, 105390. [Google Scholar] [CrossRef]
Consolidation Treatment | WPG (%) | Shrinkage (%) | |||
---|---|---|---|---|---|
Tangential | Radial | Longitudinal | Volume | ||
Control (untreated) | - | 6.61 | 5.18 | 1.46 | 13.8 |
Trehalose | 92.19 | 2.49 | 1.88 | 0.97 | 5.46 |
MTMS | 44.63 | 3.65 | 3.82 | 0.68 | 8.33 |
p-value | <0.001 | <0.001 | <0.001 | 0.012 | <0.001 |
Dehydration Method | WPG (%) | Shrinkage (%) | |||
---|---|---|---|---|---|
Tangential | Radial | Longitudinal | Volume | ||
LT-HH-D | 80.97 | 3.08 | 3.22 | 0.72 | 7.24 |
VF-D | 69.48 | 4.14 | 4.04 | 0.66 | 9.06 |
SC-D | 54.78 | 3.52 | 2.30 | 1.36 | 7.34 |
p-value | 0.042 | 0.496 | 0.005 | 0.004 | 0.088 |
Specimens | Swelling (%) | EMC at 65%RH (%) | Contact Angle (°) | |
---|---|---|---|---|
Control | Tangential | 4.99 | 12.68 ± 0.90 | θ = 36.4° |
Radial | 2.06 | |||
Longitudinal | 0.30 | |||
Volume | 7.21 | |||
Trehalose (Tre) | Tangential | 2.01 | 11.18 ± 0.57 | θ = 65.4° |
Radial | 1.82 | |||
Longitudinal | 0.31 | |||
Volume | 4.08 | |||
Trimethoxymethylsilane (MTMS) | Tangential | 2.75 | 8.01 ± 0.46 | θ = 101.9° |
Radial | 1.11 | |||
Longitudinal | 0.28 | |||
Volume | 4.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Ma, W.; Liu, X.; Wang, W. Consolidation and Dehydration Effects of Mildly Degraded Wood from Luoyang Canal No. 1 Ancient Ship. Forests 2024, 15, 1089. https://doi.org/10.3390/f15071089
Yang W, Ma W, Liu X, Wang W. Consolidation and Dehydration Effects of Mildly Degraded Wood from Luoyang Canal No. 1 Ancient Ship. Forests. 2024; 15(7):1089. https://doi.org/10.3390/f15071089
Chicago/Turabian StyleYang, Weiwei, Wanrong Ma, Xinyou Liu, and Wei Wang. 2024. "Consolidation and Dehydration Effects of Mildly Degraded Wood from Luoyang Canal No. 1 Ancient Ship" Forests 15, no. 7: 1089. https://doi.org/10.3390/f15071089
APA StyleYang, W., Ma, W., Liu, X., & Wang, W. (2024). Consolidation and Dehydration Effects of Mildly Degraded Wood from Luoyang Canal No. 1 Ancient Ship. Forests, 15(7), 1089. https://doi.org/10.3390/f15071089