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Abstract: To ensure the conservation of waterlogged archaeological wood, sustainable, safe, and
effective methods must be implemented, with consolidation and dehydration being crucial for long‑
term preservation to maintain dimensional stability and structural integrity. This study compares
the permeability of 45% methyltrimethoxysilane (MTMS) and 45% trehalose solutions to evaluate
the dimensional changes, hygroscopicity, and mechanical properties of treated wood. Since the
collected samples (from an ancient ship, Luoyang Canal No. 1) were mildly degraded, the drying
method had a slight impact on the properties of archaeological wood. Consolidated with trehalose
and MTMS agents, the longitudinal compressive strength of the waterlogged wood’s cell walls in‑
creased by 66.8% and 23.5%, respectively. Trehalose proved to bemore advantageous in filling pores
and reducing overall shrinkage, while MTMS significantly reduced the hygroscopicity and surface
hydrophilicity of the wood substance. Overall, the MTMS treatment has a smaller effect on the ap‑
pearance of samples, making it more suitable for the consolidation of mildly degraded waterlogged
archaeological wood.

Keywords: waterlogged archaeological wood; mechanical properties; chemical properties; dimen‑
sional stability; methyltrimethoxysilane; trehalose; morphological characteristics

1. Introduction
As a renewable natural polymer, wood has been extensively used in numerous hu‑

man activities throughout history owing to its superior properties, abundant availability,
and ease of processing. A significant portion of archaeological wood was waterlogged or
wet when excavated [1,2]. Microbial degradation weakens cell walls by decomposing cel‑
lulose and hemicellulose polymers [3–5]. Although this deterioration may not be visually
apparent, wood becomes highly susceptible to irreversible shrinkage and cracking upon
drying [6,7]. Consequently, consolidants that reinforce cell walls and prevent collapse by
filling pores and micropores are essential for long‑term preservation.

Early attempts to conserve waterlogged wood involved the use of oils, waxes, and
alum (KAl(SO4)2·12H2O), but these failed to provide adequate reinforcement [8,9]. Cur‑
rently, polyethylene glycol (PEG) is the most common consolidant, and it has been widely
used in the cases of the Vasa warship [10–12], Mary Rose [13], Bremen Cog [14], and other
waterlogged wooden artifacts due to its non‑toxicity, cost‑effectiveness, and ability to en‑
hance dimensional stability. However, PEG‑treated wood is more sensitive to heat, metal
ions, salts, and microbial degradation [9,15]. The decomposition products of PEG, such
as formic acid, can further chemically degrade the wood, posing a threat to its long‑term
preservation [16].
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The conservation of waterlogged archaeological wood (WAW) necessitates a safe and
sustainable approach, with the consolidation process being reversible and free from in‑
ducing subsequent degradation [17]. Non‑reducing sugars, such as trehalose, have shown
promise as consolidants forWAWdue to their stability and antioxidant capabilities [18–21]
and can markedly enhance the dimensional stability and bending performance of water‑
logged archeological wood. Trehalose, with its low molecular mass, offers advantages
over PEG in terms of its ability to improve mechanical properties and its conservation ef‑
fectiveness [22]. Therefore, investigating the application of trehalose as a consolidant for
WAWmay offer a promising alternative to conventional PEG treatments.

It has been proven bymany researchers that by using organosilicons, according to the
type of functional groupwithin the silane molecule, the consequent chemical modification
of waterloggedwood can enhance decay resistance as well as dimensional stability [23–25].
A study by Broada et al. [26] revealed that methyltrimethoxysilane (MTMS) can effectively
encrust and cover the microstructure of WAW. Recent studies have confirmed that MTMS
is also satisfactory in reducing the hygroscopicity of treated wood [27,28]. Since MTMS
molecules are able to penetrate and form a uniform coating on the cell wall surface, the
pore area of WAW can be filled effectively.

The dehydration process also plays a crucial role in stabilizing thewood and reducing
the risk of shrinkage and microbial degradation post‑excavation [29]. Compared to sound
wood, multiple deterioration factors weaken the structure of WAW, making the cell walls
more susceptible to collapse due to capillary forces and the high surface tension of evapo‑
rating water [30]. Specialized drying should therefore take place under strictly controlled
conditions. Vacuum freeze‑drying and long‑lasting air‑drying are the most common ap‑
proaches for waterlogged archaeological wood dehydration [31]. The application of these
methods varies depending on the anatomical characteristics of the wood, the degree of
degradation, and the size of the object to be treated. For instance, slow air‑drying requires
careful monitoring of the temperature and humidity to ensure gradual and uniform de‑
hydration without causing damage to the wood. Vacuum freeze‑drying is particularly
suitable for delicate or highly degraded wood that may be prone to collapse during tra‑
ditional drying methods [18]. This approach proved to be effective in removing moisture
from wood while minimizing the risks of structural destruction, shrinkage, and cracking,
but it is less applicable for large pieces [32]. Moreover, supercritical CO2 fluid dehydra‑
tion as a method of preservation has also been investigated, which utilizes CO2’s excellent
solubility and heat transfer properties to dissolve moisture fromWAW.

The purpose of this research was to determine the influences of trehalose and MTMS
consolidation on the mechanical properties, dimensional stability, and hygroscopicity of
WAW. Ulmus samples from the mildly degraded ancient ship of Luoyang Canal No. 1
were employed [33] using various drying methods. Statistical analyses were also involved
in evaluating the effectiveness of both the consolidation and dehydration processes. The
findings presented in this paper will serve as important references for future generations,
enabling such historical treasures to be properly preserved.

2. Materials and Methods
2.1. Materials

Waterlogged elm (Ulmus parvifolia Jacq.) wrecks from the Luoyang Canal No. 1 an‑
cient ship (Figure 1a) [33] were cut into 90 piecesmeasuring 30× 30× 10mm (longitudinal
direction × tangential direction × radial direction) for experiments. The objects were clas‑
sified as mildly degraded with an average maximummoisture content of 212.03 ± 28.33%
and a basic density of 0.396 ± 0.015 g/cm3 [34].
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[38]. The specimens were placed at the center of the spherical movable support of the 
testing machine, loaded at a uniform speed, and broken within 1.0 to 5.0 min. The mean 
forces of 5 samples were recorded, and compressive strength was calculated using the 
following equation: σ = P୫ୟ୶bt  (1)

where σ0 represents the longitudinal compressive strength of dried specimens (MPa), Pmax 
is the maximum destructive load (N), and b and t represent the width and thickness of the 
wood specimens (mm), respectively. 

Figure 1. Samples from the ancient ship “Luoyang Canal No. 1” (a) the excavated ship planks and
(b) samples submerged in consolidants. Note: The Chinese word “海藻糖” in the (b) means trehalose.

Methyltrimethoxysilane (MTMS) and trehalose were used as consolidation agents for
waterlogged wood treatment, which were provided by Macklin Ltd., Shanghai, China.

2.2. Methods
2.2.1. Consolidation Process

The specimens were initially immersed in a 70% ethanol solution for one week and
subsequently transferred to a 96% ethanol solution for another week. This process led to a
decrease in the moisture content ranging from 78% to 109%, as indicated by the alteration
in the ethanol concentration. Subsequently, the samples were randomly divided into three
groups: the first group remained untreated as a control group, the second was submerged
in a 45% solution of D‑trehalose consolidation for 14 days, and the third group was im‑
mersed in a 45% solution of MTMS for the same period of time (Figure 1b).

2.2.2. Dehydration and Air Conditioning
Eachgroupof theaforementionedsamplesweredehydratedunder the low‑temperature; high‑

humidity (LT‑HH); vacuum‑freezing (VF), and supercritical CO2(SC) drying methods, re‑
spectively. In LT‑HH air‑drying, the specimens were conditioned at 45 ◦C with 70% rela‑
tive humidity until theywere absolutely dry (themass difference between two consecutive
measurements was less than 0.2%). Vacuum freeze‑drying and supercritical CO2 fluid de‑
hydration processes were carried out following the methods established in previous stud‑
ies [35–37].

Toexamine thehygroscopicityof treated/untreatedwood, all specimenswere re‑conditioned
at 20 ◦C and 65%, fromwhich the hygroscopic equilibriummoisture content was determined.

2.2.3. Mechanical Properties and Morphological Characteristics
The destructive loading test was performed with a Shimadzu universal testing instru‑

ment, AGS‑X (Shimadzu Corporation, Kyoto, Japan), following ISO 13061‑17 (2017) [38].
The specimens were placed at the center of the spherical movable support of the test‑
ing machine, loaded at a uniform speed, and broken within 1.0 to 5.0 min. The mean
forces of 5 samples were recorded, and compressive strength was calculated using the
following equation:

σ0 =
Pmax
bt

(1)
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where σ0 represents the longitudinal compressive strength of dried specimens (MPa), Pmax
is the maximum destructive load (N), and b and t represent the width and thickness of the
wood specimens (mm), respectively.

To observe the morphology of wood cells, specimens were imaged in the Hitachi S‑
3400N II Scanning Electron Microscope (SEM) (Hitachi Ltd., Tokyo, Japan).

2.2.4. Dimensional Stability
Physical parameters, including the shrinkage/swelling rate and weight percent gain

(WPG), were measured. The effectiveness of the consolidation treatment was calculated as
theweight percent gain (WPG), whichwas determined by the differences in the dryweight
of the sample before (W0) and after impregnation (W1), using the following formula [39]:

WPG =
W0 −W1

W0
× 100% (2)

Linear wood shrinkage/swelling in tangential, radial, and longitudinal directions was
calculated using the following equation [16]:

β =
l0 − l1
l0

× 100% (3)

where β represents the linear wood shrinkage/swelling (%), and l0 and l1 represent the
initial and final lengths of waterlogged/dried wood samples (cm), respectively.

The volumetric shrinkage/swelling rate can be calculated as follows [40]:

γ =
V0 −V1

V0
× 100% (4)

where γ is the volumetric shrinkage/swelling (%), and V0 and V1 are the initial and final
volumes of waterlogged/dried wood samples (cm3), respectively.

The results of these physical characteristics were then examined by SAS (version 9.4,
SAS Institute, Cary, NC, USA) to investigate their statistical significance.

2.2.5. Surface Hydrophilicity
The hydrophilicity of WAW specimens before and after the treatments was evalu‑

ated using a Drop Shape Analyzer (Model: DSA100S, Kruss, Germany). Distilled water
droplets were used to record the state of the water droplet on the tangential section of the
dehydrated wood surfaces, and the contact angle (θ) was then calculated through a water
droplet image analysis.

2.2.6. Chemical Properties Analysis Using FT‑IR
To investigate the chemical changes in WAW after reinforcement, samples from the

control group and the consolidated group were ground, sieved through an 80‑mesh sieve,
and prepared as KBr pellets. The prepared samples were subjected to FT‑IR analysis using
a standard FTIR spectrometer (Tensor 27, Bruker, Germany), with 32 scans conducted at a
resolution of 4 cm−1 over the 700 to 4000 cm−1 wavenumber range.

3. Results and Discussion
3.1. Mechanical Properties and Morphological Characteristics

The compressive strength (MPa) results of different wood samples vary significantly
among the groups (Figure 2). The untreated archaeologicalwood (control) exhibited a com‑
pressive strength of 41.70MPa, while the recent soundwood displayed a higher strength of
60.46 MPa. The wood treated with trehalose (Tre) demonstrated the highest compressive
strength at 69.54MPa, indicating a significant enhancement in strength due to the trehalose
treatment. In contrast, the wood treated with Trimethoxymethylsilane (MTMS) showed a
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lower compressive strength of 51.49 MPa compared to the trehalose‑treated and healthy
wood samples [41].
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Figure 2. Compressive strength (MPa) of recent sound elm, untreated archaeological wood (control),
and samples treated with trehalose and MTMS.

Figure 3 illustrates the visual effects of the MTMS and trehalose treatments on the
waterlogged wood samples compared to the untreated samples. TheMTMS‑treated wood
shows a noticeable change in color, with the treated samples appearing significantly darker
and more uniform than the untreated ones. This suggests that MTMS treatment impacts
the surface coloration, likely due to the formation of a siloxane network within the wood
structure. In contrast, the trehalose‑treated wood exhibits a lighter and more even col‑
oration, indicating that trehalose treatment does not significantly darken the wood’s sur‑
face, possibly due to its different interaction with the wood structure, forming hydrogen
bonds rather than a siloxane network. Both treatments result in a more uniform surface
texture compared to the untreated samples, implying improved structural consolidation.
These visual differences underscore that while both MTMS and trehalose effectively con‑
solidate and stabilize waterlogged wood, they do so in ways that differently impact the
wood’s surface appearance and internal structure, aligning with previous findings about
their unique advantages in preserving archaeological wood.
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A SEM analysis of the treated and untreated samples (Figure 4) confirmed these me‑
chanical properties. Both the MTMS and trehalose solvents effectively penetrated the cell
walls to form a thick coating on their surfaces and filled the cell lumina. Comparative ob‑
servations of SEM images in the tangential section revealed that trehalose deposition filled
the cell wall pits more efficiently than MTMS.
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Figure 4. Scanning electron microscope (SEM) images of archaeological wood samples in the cross
section and tangential section.

3.2. Evaluation of Dimensional Stability
The results of the weight percent gain (WPG) and shrinkage rate of the untreated

and consolidated archaeological elm dried under various conditions are presented in
Tables 1 and 2.

Table 1. Average weight percent gain (WPG) and shrinkage of waterlogged archaeological wood
samples unmodified and modified with trehalose and MTMS, respectively.

Consolidation
Treatment WPG (%)

Shrinkage (%)

Tangential Radial Longitudinal Volume

Control
(untreated) ‑ 6.61 5.18 1.46 13.8

Trehalose 92.19 2.49 1.88 0.97 5.46
MTMS 44.63 3.65 3.82 0.68 8.33
p‑value <0.001 <0.001 <0.001 0.012 <0.001

Table 2. Average weight percent gain (WPG) and shrinkage of waterlogged archaeological wood
samples that were low‑temperature, high‑humidity dried (LT‑HH‑D), vacuum freeze‑dried (VF‑D),
and supercritical CO2 fluid‑dried (SC‑D), respectively.

Dehydration
Method WPG (%)

Shrinkage (%)

Tangential Radial Longitudinal Volume

LT‑HH‑D 80.97 3.08 3.22 0.72 7.24
VF‑D 69.48 4.14 4.04 0.66 9.06
SC‑D 54.78 3.52 2.30 1.36 7.34
p‑value 0.042 0.496 0.005 0.004 0.088

It is evident that the retention of both consolidants corresponds to wood shrink‑
age and weight change regardless of the drying method employed. This observation
agrees with the SEM images, which show that the vessels and wood fiber cells were
sufficiently filled. Compared with the untreated wood, the trehalose and MTMS inter‑
ventions reduced the shrinkage rate by approximately 50% or greater either in the three
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anatomical directions or in the total volume of specimens. Similar resultswere observed
by Broda et al. and Kennedy et al. [42–47], where physical measurements revealed that
the decreased porosity may contribute to less shrinkage and swelling in archaeological
wood [27].

The reduced porosity in waterlogged wood helps preserve the structural integrity
of the wood cell walls, which, in turn, reduces volume loss and directly minimizes
overall dimensional changes [48–50]. This effect was particularly evident in the case
of the trehalose‑treated samples (Table 1), where the agent most substantially limited
wood shrinkage and caused the highest WPG.

The relatively higher density of trehalose (378.3 g/mol) may contribute to theWPG
value being twice as much as that observed with the MTMS treatment (136.22 g/mol).
Different chemical interactions between the two consolidants and thewood also have an
impact. Trehalose can form hydrogen bonds with the hydroxyl groups in the cellulose
of the wood, leading to more effective penetration into the wood material. MTMS, on
the other hand, primarily forms a siloxane network on the surface, whichmight not con‑
tribute as significantly to weight gain [42,43]. For comparison, with severely degraded
wood, the WPG values could reach approximately 200% after consolidation [46–52],
whereas this rate is obviously lower in Table 1, primarily because the specimens used
were only mildly degraded [33].

Moreover, p‑values less than 0.001 based on the SAS analysis indicate that the con‑
solidation process has a significant effect on theWPG and shrinkage rate. It is noticeable
that the drying conditions do not present strong relevancewith the dimensional stability
of the archaeological wood samples in this study.

3.3. Hygroscopicity of Treated Wood
To estimate the effects of the treatments with respect to moisture absorption, the

archeological wood samples were conditioned at 20 ◦C with 65%RH until reaching
EMC [53,54].

Table 3 presents the hygroscopicity of the WAW samples. Due to the decay of
cellulosic fraction [55,56], the most pronounced swelling was observed in the unrein‑
forced group, where the volumetric swelling reached up to 7.21%, while 4.99% and
2.06% swelling were measured in the tangential and radial directions, respectively.

Table 3. The average swelling rate (%), absorption equilibrium moisture content (%), and surface
contact angle (◦) of the treated and untreated WAW specimens.

Specimens Swelling (%) EMC at 65%RH
(%)

Contact Angle
(◦)

Control

Tangential 4.99

12.68 ± 0.90
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MTMS and trehalose proved to be efficient in decreasing moisture absorption. The
swelling rate demonstrated in Table 3 suggests that there is no significant difference
between consolidated specimens, whereas the hydrophilicity of wood is variable after
air humidity conditioning. Despite the fact that the hygroscopicity of wood was perma‑
nently reduced at a higher relative humidity after the initial desorption, the trehalose‑
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treated samples presented an equilibrium moisture content of 11.18%, indicating that
trehalose is less capable of reducing the hygroscopicity of consolidated wood. For com‑
parison, this value presented a 4.6% decrease after MTMS reinforcement, which implies
that the absorption behavior was diminished. The results are in linewith the desorption
and adsorption isotherms depicted with the GAB model, as Tahira et al. [21] and Majka
et al. [57] reported in their previous studies.

The surface hydrophobicity of the untreated samples (control) and those treated
with MTMS and trehalose is reflected by the contact angle values (Table 3). It is clearly
revealed that the modification of the initial wetting behavior occurred on waterlogged
elm surfaces after reinforcement. The mean water contact angle on the untreated sam‑
ple surface is 36.4◦, which is typical of hydrophilic wood (<65◦). The largest contact
angle θ was observed in the MTMS‑treated samples, suggesting that MTMS conserva‑
tion improved the hydrophobicity of waterlogged archaeological wood [58,59].

3.4. Chemical Properties
To confirm the presence of disaccharides and organosilicons inside the treated

wood samples, FT‑IR analyses were performed, as shown in Figure 5.
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Compared to the untreated spectrum, the spectra of the samples treated with MTMS
and trehalose appear to decrease in intensity during the band from 3600 to 3100 cm−1,
indicating that the hydroxyl groups assigned to this region are less available due to
their reaction with consolidants. The reduction in the accessible hydroxyl groups was
also evidenced by the aforementioned hydroscopicity experiments, revealing that the
wood treatment caused reductions in the equilibrium moisture content and sorption
hysteresis in comparison with the untreated wood [27,42]. The wood samples treated
withMTMS show the presence of a strong absorption band at 2970 cm−1 assigned to the
symmetric stretching vibration of the C‑H bonds in CH3 groups in wood and silanes.
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Greater differences can be observed in the fingerprint region (Figure 5a). In order
to identify the interactions between the consolidate solvent and the wood substrate,
derivatives were plotted to record the slope variation in the FT‑IR spectra (Figure 5b).
The MTMS and trehalose spectra present lower intensities for the bands between 1595
and 1505 cm−1 (1), suggesting the alteration in C=C stretching assigned to lignin [60,61].
For the MTMS‑treated spectrum, the distinguishable strong absorption at 1268 cm−1

(6) may be attributed to the Si‑C stretching vibration in Si‑CH3. The same behaviors
show bands from 1140, 1027, 850 (8), and 773 (9) cm−1 in the silane spectrum, which
demonstrate the symmetric and asymmetric stretching vibrations of Si‑C, Si‑O‑C, Si‑O‑
Si, and C‑O, as well as the ‑Si‑C rocking in ‑SiCH3 [62–70].

It is thought that the main difference in mechanism between organosilicons and
sugar treatment lies in their modes of interaction with the wood structure [43]. Owing
to the reaction with hydroxyl groups, MTMS is able to form siloxy bands (Si‑O‑C) and
potentially create a spatial network that binds wood polymers together, which would
explain the appearance of the bands near 850 (8) and 715 (10) cm−1 in the derivative
spectrum (Figure 5b). The analyzed spectrum of the samples treated with trehalose at
890 (3) and 835 (2) cm−1 clearly indicate their presence in the wood. Han et al. inter‑
preted the band at 995 cm−1 as a characteristic absorption of trehalose due to unique
molecular vibrations involving their structural groups [71]. The feature is also shown
in Figure 5b, as arrow 3 points out.

4. Discussion
The results indicate that trehalose treatment significantly enhances the compres‑

sive strength of archaeological wood, surpassing the strengths of both untreated and
MTMS‑treatedwood. The SEManalysis supports these findings, showing that trehalose
more effectively fills cell wall pits compared to MTMS, thereby contributing to the
higher compressive strength. This suggests that trehalose is a more effective consoli‑
dant for improving the mechanical properties of degraded wood. The weight percent
gain and shrinkage data highlight the effectiveness of trehalose and MTMS in stabiliz‑
ing archaeological wood. The substantial reduction in shrinkage rates and the signif‑
icant weight gains, particularly with trehalose, indicate a strong interaction between
the consolidants and the wood structure. Trehalose’s higher molecular weight and
its ability to form hydrogen bonds with cellulose hydroxyl groups likely contribute
to its superior performance in limiting shrinkage and enhancing dimensional stabil‑
ity compared to MTMS. The hygroscopicity results show that both the trehalose and
MTMS treatments reduce moisture absorption in archaeological wood, with MTMS be‑
ing slightly more effective in reducing the equilibrium moisture content. However,
the trehalose‑treated samples still exhibit considerable improvements in hygroscopic‑
ity and surface hydrophobicity, as evidenced by the contact angle measurements. This
indicates that while MTMS might offer better moisture resistance, trehalose also signif‑
icantly enhances wood’s resistance to moisture absorption. The FT‑IR analysis reveals
that both the trehalose and MTMS treatments result in a decrease in the availability of
hydroxyl groups, supporting the observed reduction in hygroscopicity. The specific
absorption bands in the MTMS‑treated wood spectrum suggest the formation of a silox‑
ane network, while the trehalose‑treated wood spectrum indicates the presence of tre‑
halose molecules. These chemical interactions highlight the different mechanisms by
which trehalose andMTMS consolidate and stabilize thewood structure, with trehalose
forming hydrogen bonds and MTMS creating a siloxane network. Overall, the find‑
ings demonstrate that trehalose is highly effective in improving the mechanical prop‑
erties, dimensional stability, and moisture resistance of archaeological wood, making
it a superior consolidant compared to MTMS for the preservation of mildly‑degraded
waterlogged wood.
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5. Conclusions
Trehalose andMTMS treatments significantly enhanced the mechanical properties

of waterlogged wood cell walls, with MTMS increasing the strength by 1.23 times and
trehalose increasing the strength by 1.67 times. These treatments also improved the di‑
mensional stability of the specimens, with MTMS achieving a 39.6% improvement and
trehalose achieving an even more impressive 60.4% enhancement. MTMS proved to
be a versatile stabilizing agent, particularly effective in reducing the hygroscopicity of
the waterlogged Ulmus samples. Despite causing a slightly darker surface coloration,
trehalose can also be considered satisfactory in strengthening the mechanical proper‑
ties and dimensional stability of archaeological wood. The FT‑IR and derivative spectra
analyses provided further evidence that both treatments contribute to the consolidation
of the wood structure by bulking the cell walls or filling the lumina. These chemical
interactions underscore the efficacy of both trehalose and MTMS in preserving and sta‑
bilizing waterlogged archaeological wood, each offering unique advantages.
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