The Effects of Soil Compaction on the Growth and Architecture of the Seedlings of Species Commonly Used for Afforestation in Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Strength Experiment
2.2. Seedling Growth Measurements
2.3. Statistical Analysis
3. Results
3.1. Compaction Level
3.2. Species and Growth Variables
3.3. Soil Penetration Resistance and Growth Variables
3.4. Interaction Effect between Species and Soil Compaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Latterini, F.; Dyderski, M.K.; Horodecki, P.; Picchio, R.; Venanzi, R.; Lapin, K.; Jagodziński, A.M. The Effects of Forest Operations and Silvicultural Treatments on Litter Decomposition Rate: A Meta-Analysis. Curr. For. Rep. 2023, 9, 276–290. [Google Scholar] [CrossRef]
- Labelle, E.R.; Hansson, L.; Högbom, L.; Jourgholami, M.; Laschi, A. Strategies to Mitigate the Effects of Soil Physical Disturbances Caused by Forest Machinery: A Comprehensive Review. Curr. For. Rep. 2022, 8, 20–37. [Google Scholar] [CrossRef]
- Nazari, M.; Arthur, E.; Lamandé, M.; Keller, T.; Bilyera, N.; Bickel, S. A Meta-Analysis of Soil Susceptibility to Machinery-Induced Compaction in Forest Ecosystems Across Global Climatic Zones. Curr. For. Rep. 2023, 9, 370–381. [Google Scholar] [CrossRef]
- Ambrosio, E.; Pietras, M.; Feest, A. Biotic and Abiotic Factors Influencing Macrofungal Diversity and Biomass in Mediterranean Forests with a Focus on the Porcini Group. Dendrobiology 2024, 91, 16–31. [Google Scholar] [CrossRef]
- Çiçekler, M.; Tutus, A.; Üzüm, V. The Use of Eucalyptus Grandis Bark and Root as Raw Material in Pulp and Paper Production. Drewno 2023, 66, 1–11. [Google Scholar] [CrossRef]
- Tsioras, P.A.; Żak, J.; Karaszewski, Z. RFID Implementations in the Wood Supply Chains: State of the Art and the Way to the Future. Drewno. Pr. Nauk. Doniesienia Komun.=Wood. Res. Pap. Rep. Announc. 2022, 65, 209. [Google Scholar] [CrossRef]
- Łukawski, D.; Hochmańska-Kaniewska, P.; Janiszewska-Latterini, D.; Lekawa-Raus, A. Functional Materials Based on Wood, Carbon Nanotubes, and Graphene: Manufacturing, Applications, and Green Perspectives. Wood Sci. Technol. 2023, 57, 989–1037. [Google Scholar] [CrossRef]
- Grünberg, J.; Ghaffariyan, M.R.; Jourgholami, M.; Labelle, E.R.; Kaakkurivaara, N.; Robert, R.C.G.; Kühmaier, M. Criteria for Assessing the Sustainability of Logging Operations—A Systematic Review. Curr. For. Rep. 2023, 9, 350–369. [Google Scholar] [CrossRef]
- Latterini, F.; Dyderski, M.K.; Horodecki, P.; Rawlik, M.; Stefanoni, W.; Högbom, L.; Venanzi, R.; Picchio, R.; Jagodziński, A.M. A Meta—Analysis of the Effects of Ground—Based Extraction Technologies on Fine Roots in Forest Soils. Land Degrad. Dev. 2024, 35, 9–21. [Google Scholar] [CrossRef]
- Nazari, M.; Lamandé, M.; Weber, P.L.; Sharififar, A.; Iversen, B.V.; Arthur, E. Impact of Spruce Deadwood Logs on Physical Properties of a Loamy Sand Podzol in a Steep Temperate Forest. Land Degrad. Dev. 2024, 35, 2137–2144. [Google Scholar] [CrossRef]
- Labelle, E.R.; Jaeger, D. Quantifying the Use of Brush Mats in Reducing Forwarder Peak Loads and Surface Contact Pressures. Croat. J. For. Eng. 2012, 33, 249–274. [Google Scholar]
- Labelle, E.R.; Jaeger, D. Soil Compaction Caused by Cut-to-Length Forest Operations and Possible Short-Term Natural Rehabilitation of Soil Density. Soil Sci. Soc. Am. J. 2011, 75, 2314–2329. [Google Scholar] [CrossRef]
- Labelle, E.R.; Jaeger, D. Effects of Steel Flexible Tracks on Forwarder Peak Load Distribution: Results from a Prototype Load Test Platform. Croat. J. For. Eng. 2019, 40, 1–23. [Google Scholar]
- Pousse, N.; Bonnaud, P.; Legout, A.; Darboux, F.; Ranger, J. Forest Soil Penetration Resistance Following Heavy Traffic: A 10-Year Field Study. Soil Use Manag. 2022, 38, 815–835. [Google Scholar] [CrossRef]
- Campbell, D.M.H.; White, B.; Arp, P.A. Modeling and Mapping Soil Resistance to Penetration and Rutting Using LiDAR-Derived Digital Elevation Data. J. Soil Water Conserv. 2013, 68, 460–473. [Google Scholar] [CrossRef]
- Mohieddinne, H.; Brasseur, B.; Spicher, F.; Gallet-Moron, E.; Buridant, J.; Kobaissi, A.; Horen, H. Physical Recovery of Forest Soil after Compaction by Heavy Machines, Revealed by Penetration Resistance over Multiple Decades. For. Ecol. Manag. 2019, 449, 117472. [Google Scholar] [CrossRef]
- Grigal, D.F. Effects of Extensive Forest Management on Soil Productivity. For. Ecol. Manag. 2000, 138, 167–185. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Soil Compaction and Growth of Woody Plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Ampoorter, E.; Goris, R.; Cornelis, W.M.; Verheyen, K. Impact of Mechanized Logging on Compaction Status of Sandy Forest Soils. For. Ecol. Manag. 2007, 241, 162–174. [Google Scholar] [CrossRef]
- Hansson, L.J.; Koestel, J.; Ring, E.; Gärdenäs, A.I. Impacts of Off-Road Traffic on Soil Physical Properties of Forest Clear-Cuts: X-Ray and Laboratory Analysis. Scand. J. For. Res. 2018, 33, 166–177. [Google Scholar] [CrossRef]
- Hansson, L.; Šimůnek, J.; Ring, E.; Bishop, K.; Gärdenäs, A.I. Soil Compaction Effects on Root—Zone Hydrology and Vegetation in Boreal Forest Clearcuts. Soil Sci. Soc. Am. J. 2019, 83, S105–S115. [Google Scholar] [CrossRef]
- Hansson, L.J.; Ring, E.; Franko, M.A.; Gärdenäs, A.I. Soil Temperature and Water Content Dynamics after Disc Trenching a Sub-Xeric Scots Pine Clearcut in Central Sweden. Geoderma 2018, 327, 85–96. [Google Scholar] [CrossRef]
- Kormanek, M.; Banach, J.; Sowa, P. Effect of Soil Bulk Density on Forest Tree Seedlings. Int. Agrophys 2015, 29, 67–74. [Google Scholar] [CrossRef]
- Alameda, D.; Villar, R. Moderate Soil Compaction: Implications on Growth and Architecture in Seedlings of 17 Woody Plant Species. Soil Tillage Res. 2009, 103, 325–331. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Villar, R.; Murillo, A.M.; Quero, J.L. Effects of Soil Compaction and Light on Growth of Quercus pyrenaica Willd.(Fagaceae) Seedlings. Soil Tillage Res. 2010, 110, 108–114. [Google Scholar] [CrossRef]
- Siegel-Issem, C.M.; Burger, J.A.; Powers, R.F.; Ponder, F.; Patterson, S.C. Seedling Root Growth as a Function of Soil Density and Water Content. Soil Sci. Soc. Am. J. 2005, 69, 215–226. [Google Scholar] [CrossRef]
- Bassett, I.E.; Simcock, R.C.; Mitchell, N.D. Consequences of Soil Compaction for Seedling Establishment: Implications for Natural Regeneration and Restoration. Austral Ecol. 2005, 30, 827–833. [Google Scholar] [CrossRef]
- Tirado-Corbalá, R.; Slater, B.K. Soil Compaction Effects on the Establishment of Three Tropical Tree Species. Arboric. Urban. For. 2010, 36, 164–170. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khoramizadeh, A.; Zenner, E.K. Effects of Soil Compaction on Seedling Morphology, Growth, and Architecture of Chestnut-Leaved Oak (Quercus castaneifolia). Iforest-Biogeosci. For. 2016, 10, 145. [Google Scholar] [CrossRef]
- Jordan, D.; Ponder, F., Jr.; Hubbard, V.C. Effects of Soil Compaction, Forest Leaf Litter and Nitrogen Fertilizer on Two Oak Species and Microbial Activity. Appl. Soil Ecol. 2003, 23, 33–41. [Google Scholar] [CrossRef]
- Bulmer, C.E.; Simpson, D.G. Soil Compaction and Water Content as Factors Affecting the Growth of Lodgepole Pine Seedlings on Sandy Clay Loam Soil. Can. J. Soil Sci. 2005, 85, 667–679. [Google Scholar] [CrossRef]
- Alameda, D.; Villar, R. Linking Root Traits to Plant Physiology and Growth in Fraxinus angustifolia Vahl. Seedlings under Soil Compaction Conditions. Environ. Exp. Bot. 2012, 79, 49–57. [Google Scholar] [CrossRef]
- Tracy, S.R.; Black, C.R.; Roberts, J.A.; Sturrock, C.; Mairhofer, S.; Craigon, J.; Mooney, S.J. Quantifying the Impact of Soil Compaction on Root System Architecture in Tomato (Solanum lycopersicum) by X-ray Micro-Computed Tomography. Ann. Bot. 2012, 110, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Blouin, V.M.; Schmidt, M.G.; Bulmer, C.E.; Krzic, M. Effects of Compaction and Water Content on Lodgepole Pine Seedling Growth. For. Ecol. Manag. 2008, 255, 2444–2452. [Google Scholar] [CrossRef]
- Tavankar, F.; Nikooy, M.; Ezzati, S.; Jourgholami, M.; Latterini, F.; Venanzi, R.; Picchio, R. Long-Term Assessment of Soil Physicochemical Properties and Seedlings Establishment after Skidding Operations in Mountainous Mixed Hardwoods. Eur. J. For. Res. 2022, 141, 571–585. [Google Scholar] [CrossRef]
- Misra, R.K.; Gibbons, A.K. Growth and Morphology of Eucalypt Seedling-Roots, in Relation to Soil Strength Arising from Compaction. Plant Soil 1996, 182, 1–11. [Google Scholar] [CrossRef]
- Day, S.; Bassuk, N. A Review of the Effects of Soil Compaction and Amelioration Treatments on Landscape Trees. Arboric. Urban. For. 1994, 20, 9–17. [Google Scholar] [CrossRef]
- Skinner, A.K.; Lunt, I.D.; Spooner, P.; Mcintyre, S. The Effect of Soil Compaction on Germination and Early Growth of Eucalyptus albens and an Exotic Annual Grass. Austral Ecol. 2009, 34, 698–704. [Google Scholar] [CrossRef]
- Goushehgir, Z.; Feghhi, J.; Innes, J.L. Challenges Facing the Improvement of Forest Management in the Hyrcanian Forests of Iran. Forests 2022, 13, 2180. [Google Scholar] [CrossRef]
- Ezzati, S.; Najafi, A.; Durston, T. Impact of Animal Logging on Soil Physical Properties in Mule Trail in Hyrcanian Forests. Transp. Res. D Transp. Environ. 2011, 16, 316–320. [Google Scholar] [CrossRef]
- Solgi, A.; Naghdi, R.; Marchi, E.; Laschi, A.; Keivan Behjou, F.; Hemmati, V.; Masumian, A. Impact Assessment of Skidding Extraction: Effects on Physical and Chemical Properties of Forest Soils and on Maple Seedling Growing along the Skid Trail. Forests 2019, 10, 134. [Google Scholar] [CrossRef]
- Solgi, A.; Naghdi, R.; Tsioras, P.A.; Ilstedt, U.; Salehi, A.; Nikooy, M. Combined Effects of Skidding Direction, Skid Trail Slope and Traffic Frequency on Soil Disturbance in North Mountainous Forest of Iran. Croat. J. For. Eng. 2017, 38, 97–106. [Google Scholar]
- Naghdi, R.; Solgi, A.; Zenner, E.K.; Tsioras, P.A.; Nikooy, M. Soil Disturbance Caused by Ground-Based Skidding at Different Soil Moisture Conditions in Northern Iran. Int. J. For. Eng. 2016, 27, 169–178. [Google Scholar] [CrossRef]
- Mósena, M.; Dillenburg, L.R. Early Growth of Brazilian Pine (Araucaria angustifolia [Bertol.] Kuntze) in Response to Soil Compaction and Drought. Plant Soil 2004, 258, 293–306. [Google Scholar] [CrossRef]
- Jourgholami, M.; Fathi, K.; Labelle, E.R. Effects of Litter and Straw Mulch Amendments on Compacted Soil Properties and Caucasian Alder (Alnus subcordata) Growth. New For. 2020, 51, 349–365. [Google Scholar] [CrossRef]
- Zou, C.; Penfold, C.; Sands, R.; Misra, R.K.; Hudson, I. Effects of Soil Air-Filled Porosity, Soil Matric Potential and Soil Strength on Primary Root Growth of Radiata Pine Seedlings. Plant Soil 2001, 236, 105–115. [Google Scholar] [CrossRef]
- Alameda, D.; Anten, N.P.R.; Villar, R. Soil Compaction Effects on Growth and Root Traits of Tobacco Depend on Light, Water Regime and Mechanical Stress. Soil Tillage Res. 2012, 120, 121–129. [Google Scholar] [CrossRef]
- Latterini, F.; Spinelli, R.; Venanzi, R.; Picchio, R. Acorn Review: Focus on Ground-Based Extraction Systems: Is Skidding Really More Impactful than Forwarding? For. Ecol. Manag. 2024, 551, 121514. [Google Scholar] [CrossRef]
- Ilintsev, A.S.; Nakvasina, E.N.; Högbom, L. Methods of Protection Forest Soils during Logging Operations (Review). Lesn. Zhurnal (For. J.) 2021, 5, 92–116. [Google Scholar] [CrossRef]
- Ring, E.; Andersson, M.; Hansson, L.; Jansson, G.; Högbom, L. Logging Mats and Logging Residue as Ground Protection during Forwarder Traffic along till Hillslopes. Croat. J. For. Eng. 2021, 42, 445–462. [Google Scholar] [CrossRef]
- Iwasa, Y.; Roughgarden, J. Shoot/Root Balance of Plants: Optimal Growth of a System with Many Vegetative Organs. Theor. Popul. Biol. 1984, 25, 78–105. [Google Scholar] [CrossRef]
- Freschet, G.T.; Pagès, L.; Iversen, C.M.; Comas, L.H.; Rewald, B.; Roumet, C.; Klimešová, J.; Zadworny, M.; Poorter, H.; Postma, J.A.; et al. A Starting Guide to Root Ecology: Strengthening Ecological Concepts and Standardising Root Classification, Sampling, Processing and Trait Measurements. New Phytol. 2021, 232, 973–1122. [Google Scholar] [CrossRef] [PubMed]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass Allocation to Leaves, Stems and Roots: Meta—Analyses of Interspecific Variation and Environmental Control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Oravec, A.; Ferus, P.; Košútová, D.; Konôpková, J. Screening for Drought Resistance among Ornamental Maples (Acer Sp.). A Field Experiment in Juvenile Plants. Dendrobiology 2023, 89, 35–45. [Google Scholar] [CrossRef]
- DeArmond, D.; Ferraz, J.B.S.; Lima, A.J.N.; Higuchi, N. Surface soil recovery occurs within 25 years for skid trails in the Brazilian Amazon. Catena 2024, 234, 107568. [Google Scholar] [CrossRef]
- DeArmond, D.; Emmert, F.; Pinto, A.C.M.; Lima, A.J.N.; Higuchi, N. A Systematic Review of Logging Impacts in the Amazon Biome. Forests 2023, 14, 81. [Google Scholar] [CrossRef]
- Aroca-Fernández, M.J.; Bravo-Fernández, J.A.; García-Viñas, J.I.; Serrada, R. Soil Compaction and Productivity Evolution in a Harvested and Grazed Mediterranean Scots Pine (Pinus sylvestris L.). Forest. For. 2024, 15, 451. [Google Scholar] [CrossRef]
- Mariotti, B.; Hoshika, Y.; Cambi, M.; Marra, E.; Feng, Z.; Paoletti, E.; Marchi, E. Vehicle-Induced Compaction of Forest Soil Affects Plant Morphological and Physiological Attributes: A Meta-Analysis. For. Ecol. Manag. 2020, 462, 118004. [Google Scholar] [CrossRef]
- Ampoorter, E.; De Frenne, P.; Hermy, M.; Verheyen, K. Effects of Soil Compaction on Growth and Survival of Tree Saplings: A Meta-Analysis. Basic Appl. Ecol. 2011, 12, 394–402. [Google Scholar] [CrossRef]
- Cambi, M.; Hoshika, Y.; Mariotti, B.; Paoletti, E.; Picchio, R.; Venanzi, R.; Marchi, E. Compaction by a Forest Machine Affects Soil Quality and Quercus robur L. Seedling Performance in an Experimental Field. For. Ecol. Manag. 2017, 384, 406–414. [Google Scholar] [CrossRef]
- Sugai, T.; Yokoyama, S.; Tamai, Y.; Mori, H.; Marchi, E.; Watanabe, T.; Satoh, F.; Koike, T. Evaluating Soil–Root Interaction of Hybrid Larch Seedlings Planted under Soil Compaction and Nitrogen Loading. Forests 2020, 11, 947. [Google Scholar] [CrossRef]
Compaction Treatment | Penetration Resistance (MPa) | Bulk Density (g cm−3) | Total Porosity (%) |
---|---|---|---|
1 (C, control) | 0.38 ± 0.03 | 1.08 ± 0.03 | 54.04 ± 1.28 |
2 (VL, very low) | 0.65 ± 0.10 | 1.14 ± 0.02 | 51.35 ± 0.89 |
3 (L, low) | 0.95 ± 0.11 | 1.21 ± 0.03 | 48.37 ± 1.07 |
4 (M, moderate) | 1.27 ± 0.08 | 1.26 ± 0.06 | 46.38 ± 2.66 |
5 (H, high) | 1.51 ± 0.14 | 1.34 ± 0.04 | 43.12 ± 1.61 |
6 (VH, very high) | 1.93 ± 0.13 | 1.38 ± 0.03 | 41.36 ± 1.15 |
Species | Compaction Intensity | Seedling Morphology (Size) | Seedling Growth (Dry Biomass) | Seedling Architecture (Allocation Ratios) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stem Length (cm) | Stem Diameter (mm) | Main Root Length (cm) | Main Root Diameter (mm) | Lateral Root Length (cm) | Total (g) | Shoot (g) | Stem (g) | Leaf (g) | Main Root (g) | Lateral Root (g) | Total Root (g) | Lateral/Main Root Length | Lateral/Main Root Dry Biomass | SSL (cmg−1) | SRL (cmg−1) | SMR | LMR | RMR | R/S | ||
Acer velutinum | control | 38.67 a | 26.93 a | 28.5 ab | 18.7 ab | 46.6 a | 64.79 a | 30.43 a | 17.81 a | 12.63 a | 16.5 ab | 17.17 a | 34.36 a | 1.64 a | 1.08 a | 2.17 a | 2.61 a | 0.27 a | 0.19 a | 0.53 a | 1.13 a |
very low | 44.1 a | 28.07 a | 31.2 a | 19.4 ab | 46.7 a | 65.86 a | 29.89 a | 17.58 a | 12.31 a | 18.01 a | 14.71 a | 35.97 a | 1.52 a | 1.0 a | 2.53 a | 2.61 a | 0.27 a | 0.19 a | 0.55 a | 1.21 a | |
low | 41.73 a | 27.07 a | 31.6 a | 20.6 a | 43.5 ab | 67.54 a | 32.02 a | 19.44 a | 12.58 a | 16.6 ab | 12.04 a | 35.52 a | 1.39 a | 1.16 a | 2.15 a | 2.29 a | 0.29 a | 0.19 a | 0.53 a | 1.11 a | |
medium | 44.1 ab | 24.5 ab | 27.0 ab | 20.9 a | 43.6 ab | 64.87 a | 29.38 a | 16.6 a | 12.78 a | 16.87 a | 10.78 a | 35.49 a | 1.61 a | 1.12 a | 2.67 a | 2.35 a | 0.26 a | 0.2 a | 0.55 a | 1.21 a | |
high | 29.6 bc | 21.3 ab | 22.8 bc | 15.7 bc | 37.8 ab | 50.98 b | 22.62 b | 12.27 b | 10.36 a | 13.21 b | 8.62 b | 28.36 b | 1.67 a | 1.15 a | 2.57 a | 2.55 a | 0.24 a | 0.21 a | 0.56 a | 1.25 a | |
very high | 26.27 c | 18.03 b | 18.1 c | 12.2 c | 33.2 b | 36.22 c | 18.12 b | 10.39 b | 7.73 b | 9.08 c | 5.88 c | 18.1 c | 1.92 a | 1.0 a | 2.48 a | 3.65 b | 0.29 a | 0.21 a | 0.5 a | 1.01 a | |
Alnus subcordata | control | 29.13 a | 18.9 ab | 15 a | 13.3 ab | 30.4 a | 46.76 a | 24.31 a | 14.81 a | 9.49 a | 13.46 a | 17.86 a | 22.46 a | 2.05 a | 0.68 a | 1.96 a | 3.39 a | 0.32 a | 0.2 a | 0.48 a | 0.94 a |
very low | 29.03 a | 19.33 ab | 13.4 ab | 14.5 a | 34.5 ab | 49.21 a | 24.89 a | 15.14 a | 9.75 a | 13.92 a | 17.96 a | 24.32 a | 2.61 a | 0.75 a | 1.98 a | 3.33 a | 0.31 a | 0.2 a | 0.49 a | 0.97 a | |
low | 27.1 a | 21.33 a | 15.4 a | 15.1 a | 33.3 a | 50.92 a | 26.98 a | 16.7 a | 10.28 a | 14.49 a | 18.95 a | 23.94 a | 2.2 a | 0.65 a | 1.62 a | 3.55 a | 0.33 a | 0.2 a | 0.47 a | 0.88 a | |
medium | 28.4 a | 19.43 ab | 13.1 ab | 13.1 ab | 30.4 ab | 48.0 a | 24.31 a | 15.02 a | 9.3 a | 13.81 a | 18.62 a | 23.68 a | 2.37 a | 0.74 a | 1.91 a | 3.18 a | 0.31 a | 0.19 a | 0.49 a | 0.98 a | |
high | 23.0 ab | 17.0 ab | 12.9 ab | 10.1 ab | 27.5 ab | 45.37 a | 23.3 a | 14.96 a | 8.34 ab | 12.9 a | 15.15 a | 22.07 a | 2.22 a | 0.71 a | 1.54 a | 3.11 a | 0.33 a | 0.19 a | 0.48 a | 0.95 a | |
very high | 17.27 b | 13.4 b | 10.2 b | 8.3 b | 19.2 b | 29.37 b | 15.11 b | 8.76 b | 6.35 b | 8.17 b | 9.02 b | 14.26 b | 1.93 a | 0.76 a | 1.96 a | 3.25 a | 0.3 a | 0.22 a | 0.48 a | 0.94 a |
Species | Compaction Intensity | Seedling Morphology (Size) | Seedling Growth (Dry Biomass) | Seedling Architecture (Allocation Ratios) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stem Length (cm) | Stem Diameter (mm) | Main Root Length (cm) | Main Root Diameter (mm) | Lateral Root Length (cm) | Total (g) | Shoot (g) | Stem (g) | Leaf (g) | Main Root (g) | Lateral Root (g) | Total Root (g) | Lateral/Main Root Length | Lateral/Main Root Dry Biomass | SSL (cmg−1) | SRL (cmg−1) | SMR | LMR | RMR | R/S | ||
Pinus eldarica | control | 12.67 a | 5.24 a | 13.6 a | 3.9 a | 45.4 a | 7.18 a | 3.9 a | 1.37 a | 2.53 a | 1.74 a | 9.0 a | 3.28 a | 3.35 a | 0.91 ab | 9.65 a | 30.0 a | 0.19 a | 0.35 a | 0.46 a | 0.86 a |
very low | 12.06 a | 4.55 ab | 15.0 a | 3.4 ab | 48.3 a | 6.16 ab | 3.66 ab | 1.1 ab | 2.56 a | 1.37 ab | 10.4 ab | 2.5 abc | 3.26 a | 0.85 ab | 12.1 a | 44.2 a | 0.18 a | 0.41 a | 0.42 a | 0.77 a | |
low | 12.23 a | 4.02 abc | 11.6 ab | 3.1 abc | 39.4 ab | 5.08 bc | 2.44 bc | 0.79 bc | 1.65 ab | 1.37 ab | 9.45 ab | 2.64 ab | 3.52 a | 0.91 ab | 18.9 a | 35.1 a | 0.15 a | 0.33 a | 0.51 a | 1.09 a | |
medium | 8.21 b | 3.27 bcd | 9.03 bc | 2.9 bc | 28.0 bc | 3.74 cd | 2.13 cd | 0.71 bc | 1.42 ab | 0.77 c | 9.88 bc | 1.62 cd | 3.11 a | 1.14 a | 13.1 a | 34.6 a | 0.19 a | 0.37 a | 0.44 a | 0.84 a | |
high | 8.45 b | 2.83 cd | 9.2 bc | 2.2 c | 25.1 bc | 3.11 d | 1.34 cd | 0.47 c | 0.87 c | 1.02 bc | 9.15 bc | 1.76 bcd | 3.26 a | 0.73 ab | 19.7 a | 40.5 a | 0.15 a | 0.28 a | 0.57 a | 1.48 a | |
very high | 5.54 b | 2.13 d | 6.8 c | 2.4 bc | 19.2 c | 2.12 d | 1.0 d | 0.33 c | 0.68 c | 0.78 c | 6.09 c | 1.12 d | 3.04 a | 0.44 b | 19.7 a | 55.0 a | 0.15 a | 0.32 a | 0.52 a | 1.1 a | |
Pinus nigra | control | 12.49 a | 4.13 a | 24.1 a | 3.7 a | 57.6 a | 6.18 a | 3.41 a | 1.41 a | 2.0 a | 1.38 a | 1.55 a | 2.77 a | 2.47 a | 1.0 a | 9.49 a | 42.3 ab | 0.23 a | 0.32 a | 0.45 a | 0.82 a |
very low | 10.21 ab | 4.44 ab | 20.5 ab | 2.8 ab | 52.3 ab | 5.55 ab | 3.16 a | 1.28 a | 1.89 ab | 1.06 ab | 1.13 a | 2.39 ab | 2.56 a | 1.39 a | 8.92 a | 41.4 ab | 0.22 a | 0.34 a | 0.44 a | 0.84 a | |
low | 9.12 ab | 3.18 abc | 14.8 bc | 2.5 b | 33.6 bc | 5.6 ab | 3.27 a | 1.38 a | 1.89 ab | 0.89 ab | 1.27 a | 2.33 ab | 2.42 a | 1.79 a | 6.82 a | 23.9 b | 0.25 a | 0.34 a | 0.41 a | 0.71 a | |
medium | 7.2 bc | 2.65 bc | 13.6 bc | 2.3 bc | 30.2 a | 4.46 bc | 2.74 ab | 1.38 a | 1.37 abc | 0.6 bc | 0.85 a | 1.72 b | 2.23 a | 2.59 a | 6.41 a | 33.3 ab | 0.31 a | 0.31 a | 0.39 a | 0.63 a | |
high | 6.78 bc | 2.81 abc | 9.8 c | 1.6 bc | 30.9 c | 3.76 c | 1.79 bc | 0.72 ab | 1.07 bc | 0.75 bc | 0.74 a | 1.97 b | 3.21 a | 1.68 a | 13.1 a | 26.0 ab | 0.18 a | 0.28 a | 0.54 a | 1.29 a | |
very high | 4.22 c | 1.57 c | 9.6 c | 1.2 c | 26.0 c | 1.93 d | 1.08 c | 0.31 b | 0.77 c | 0.35 c | 0.34 b | 0.85 c | 3.29 a | 1.73 a | 15.0 a | 57.7 a | 0.16 a | 0.37 a | 0.47 a | 0.95 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jourgholami, M.; Hosseiniala, E.A.; Latterini, F.; Venanzi, R.; Picchio, R. The Effects of Soil Compaction on the Growth and Architecture of the Seedlings of Species Commonly Used for Afforestation in Iran. Forests 2024, 15, 1090. https://doi.org/10.3390/f15071090
Jourgholami M, Hosseiniala EA, Latterini F, Venanzi R, Picchio R. The Effects of Soil Compaction on the Growth and Architecture of the Seedlings of Species Commonly Used for Afforestation in Iran. Forests. 2024; 15(7):1090. https://doi.org/10.3390/f15071090
Chicago/Turabian StyleJourgholami, Meghdad, Elahe Alsadat Hosseiniala, Francesco Latterini, Rachele Venanzi, and Rodolfo Picchio. 2024. "The Effects of Soil Compaction on the Growth and Architecture of the Seedlings of Species Commonly Used for Afforestation in Iran" Forests 15, no. 7: 1090. https://doi.org/10.3390/f15071090
APA StyleJourgholami, M., Hosseiniala, E. A., Latterini, F., Venanzi, R., & Picchio, R. (2024). The Effects of Soil Compaction on the Growth and Architecture of the Seedlings of Species Commonly Used for Afforestation in Iran. Forests, 15(7), 1090. https://doi.org/10.3390/f15071090