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Abstract: Forest fires have devastating effects on extensive forest areas, compromising vital ecological
services such as air purification, water conservation, and recreational opportunities, thus posing
a significant socioeconomic threat. Furthermore, the risk of forest fires is steadily increasing due
to climate change. The most effective method for mitigating forest fire risk is proactive prevention
before forest fires can occur by identifying high-risk areas based on land surface conditions. This
study aimed to develop a machine learning-based forest fire diagnostic model designed for Republic
of Korea, considering both satellite-derived land surface data and anthropogenic factors. For the
remote sensing data, VICI (Vegetation Temperature Condition Index) was used to reflect the land
surface dryness. In addition, fire activity maps for buildings, roads and cropland were used to
consider the influence of human activities. The forest fire diagnostic model yielded an accuracy of
0.89, demonstrating its effectiveness in predicting forest fire risk. To validate the effectiveness of the
model, 92 short-term forest fire risk forecast maps were generated from March to May 2023 with
real-time data on forest fire occurrences collected for verification. The results showed that 73% of
forest fires were accurately classified within high-risk zones, confirming the operational accuracy of
the model. Through the forest fire diagnostic model, we have presented the impact relationships of
meteorological, topographical, and environmental data, as well as the dryness index based on satellite
images and anthropogenic factors, on forest fire occurrence. Additionally, we have demonstrated the
potential uses of surface condition data.

Keywords: forest fire; diagnostic model; remote sensing; disaster risk reduction

1. Introduction

Forest fires represent a significant socioeconomic threat with the capacity to devastate
expansive forest areas. These blazes not only consume the forests themselves but also
eliminate the myriad ecological services they provide, such as air purification, water
conservation, and recreational opportunities. Notably, the impairment of the forest carbon
sequestration ability and large amounts of carbon emissions pose substantial obstacles to
achieving carbon neutrality goals [1-3]. Recent data underscores an alarming trend: the
incidence and severity of forest fires are escalating, a pattern that is expected to intensify
with the progressing climate crisis [4,5]. According to official statistics from the Korea
Forest Service, the trend of forest fire frequency and damaged area increased in the 2020s
compared to the past, from the 1980s to the 2000s. Approximately 8369 ha of forest was
burned, and the number of incidents reached a peak of 580 in the 2020s [6].

While climate change is undoubtedly exacerbating weather conditions conducive to
forest fires, the fact that most of these fires in Republic of Korea are caused by human
activity cannot be overlooked, highlighting the necessity of robust prevention measures [7].
Central to the strategy of forest fire mitigation is the accurate prediction of fire risks.
Most forest fire prediction models, which largely depend on meteorological data, do not
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sufficiently consider the actual conditions of the land surface, indicating a potential area
for improvement in which remote sensing technologies could be of significant use.

Studies on the use of satellite imagery for fire prediction have primarily focused
on monitoring fuel dryness. Myoung et al. developed an empirical model function for
live fuel moisture based on the correlation of satellite vegetation indices with in-situ fuel
moisture [8]. Others, such as Verbesselt et al., compared satellite indices with meteorological
drought indices, revealing that satellite indices can provide superior reflections of arid
conditions [9]. Although these studies have validated the relevance of satellite data, they
predominantly focused on long-term risk estimation and fell short of their applicability to
daily risk assessment.

To address this limitation, Kang et al. yielded more granular spatiotemporal patterns
through the integration of spatial road and population data, marking progress in fire
risk prediction [7]. Similarly, Kim et al.’s machine-learning applications, incorporating
socioeconomic trends, disclosed a direct relationship between population density and forest
fire risk [10]. Nevertheless, these studies did not fully exploit surface condition data by
using satellite imagery, and their resolutions were inadequate for identifying high-risk
zones on a fine administrative scale. Forest fire risk forecasts rely on models that do not
sufficiently consider the influence of anthropogenic activities, which are crucial factors
affecting Korean forest fires.

Previous studies on forest fire prediction have faced limitations in fully reflecting
surface conditions and have relied solely on historical data when utilizing satellite imagery.
Therefore, this study developed a forest fire diagnostic model that accurately reflects the
current surface conditions. To address the gaps commonly found in traditional satellite
image applications, a model predicting satellite indices was developed, and its outputs
were utilized as input data. Additionally, to simulate anthropogenic fire occurrences, fire
activity maps that delineate the range of human activities were constructed and used.

2. Materials and Method
2.1. Study Area

The focus of this study was Republic of Korea, located between 124° and 132° East
longitude and 33° and 43° North latitude, on the eastern side of the Eurasian continent
and to the northwest of the North Pacific Ocean. The country’s terrain is primarily defined
by a mountainous spine that stretches from north to south, creating a gradient of eleva-
tion that is lower in the west and higher in the east. The average annual precipitation is
1306.3 mm, 54% of which occurs during the summer [11,12]. This uneven rainfall distri-
bution contributes to extended periods of drought in spring and winter, which in turn
increases the prevalence of forest fires [13,14]. In Republic of Korea, a significant proportion
of forest fires are attributed to anthropogenic activities, particularly in regions close to
residential areas bordering forests [15,16]. These areas experience more than 60% of forest
fire incidents, whereas regions at higher elevations, which are more densely forested, tend
to have fewer occurrences [7,17,18]. Comparing the forest fire inventory with the DEM,
most points of forest fire were concentrated in low-elevation areas, while they were sparsely
distributed in high-elevation areas (Figure 1).
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Figure 1. Study area with DEM and forest fire inventory.
2.2. Data
To develop the forest fire diagnostic model and VTCI prediction model, forest fire label
data, remote sensing data, and fire activity maps were utilized. In addition, meteorological,
topographical, and environmental data were collected. The data are summarized in Table 1.
Table 1. Data description.
Dataset Name Source Abbreviation
Label Data Forest Fire Inventory Data Korea Forest Service (KFS) -
Vegetation Temperature Condition Index Moderate Resolution Imaging VTCI
Remote Sensing Data Land Surface Temperature Spectroradiometer LST
Normalized Difference Vegetation Index (MODIS) NDVI
Road -
. . 1 National Geographic
Build -
Fire Activity Map urdme Information Institute (NGII)
Cropland -
Effective Humidity EH
Duff Moisture Contents DMC
. Fine Fuel Moisture Contents Korea Meteorological FEMC
Meteorological Data .. .
Humidity Administration HMD
(KMA)
Precipitation PCP
Wind Speed WND
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Table 1. Cont.
Dataset Name Source Abbreviation
Average Temperature Korea Meteorological Avg TMP
Meteorological Data Maximum Temperature Administration Max TMP
Minimum Temperature (KMA) Min TMP
Digital Elevation Model DEM
Slope Nathnal Gquraphlc B
Information Institute (NGII)
) Aspect -
Topographical and —
Environmental Data Korea Ministry of
Landcover Environment LC
(KME)
Coordinate

(longitude and latitude)

2.2.1. Forest Fire Label Data

Forest fire inventory data was obtained from records maintained by the Korea Forest
Service. These data, accessible via an API (Application Programming Interface) provided
by the Forest Service, included the location addresses of past forest fires. The data were
converted into a geospatial dataset containing latitude and longitude coordinates. How-
ever, given that the original data was based on address information, there were concerns
regarding the accuracy of identifying the exact locations of the forest fires. To enhance the
reliability of this dataset, a validation process was undertaken that included the use of
historical media reports and visual inspections to refine the data. From 2003 to 2020, we
collected data from 8115 locations where forest fires occurred.

To train a model for classifying forest fire occurrence areas, data on forest fire non-
occurrence areas is required. Previous studies have primarily utilized ratios of occurrence
to non-occurrence data ranging from 1:1 to 1:2 [19,20]. In this study, to distinguish forest
fire risk areas based on as much data as possible, we constructed the data with a 1:2
ratio. In Republic of Korea, over 50% of wildfires occur in the spring and fall, while the
risk significantly decreases in the summer. To clearly distinguish the actual differences
in wildfire risk and train the model effectively, we applied different extraction ratios for
non-occurrence points monthly. This approach ensures that fewer non-occurrence samples
are extracted during high-risk months and more samples are extracted during low-risk
periods.

The total number of non-occurrence data points was 16,000, accounting for approx-
imately 66% of the label data. In Table 2, each column is marked with the signs (a) to
(e). Column (a) represents the monthly counts of forest fires in the inventory data, and
column (b) shows the monthly ratio of forest fires. Column (c) contains the values obtained
by inverting the ratios in column (b), and column (d) represents the ratios of the values
in column (c). The final counts of non-occurrence data are calculated by multiplying the
values in column (d) by 16,000, the total number of non-occurrence cases. The number of
non-occurrence labels for the monthly sample numbers was calculated as shown in Table 2.

Table 2. Method for calculating the monthly non-occurrence label sample sizes.

@ (b) © (d) (e)
Month Forest Fires Ratio of Value Ratio of Non-Occurrence
Forest Fire Value Data
January 634 8% 1279.96 3% 439
February 999 12% 812.31 2% 279
March 2053 25% 395.27 1% 136
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Table 2. Cont.
@ ) © @ (e)
Month Forest Fires Ratio of Value Ratio of Non-Occurrence

Forest Fire Value Data
April 1990 25% 407.78 1% 140
May 697 9% 1164.27 2% 400
June 467 6% 11,737.68 4% 597
July 52 1% 15,605.76 33% 5358
August 87 1% 9327.58 20% 3203
September 94 1% 8632.97 19% 2964
October 266 3% 3050.75 7% 1048
November 390 5% 2080.76 4% 714
December 386 5% 2102.33 5% 722

Total 8115 100% 46,597.49 100% 16,000

2.2.2. Remote Sensing Data

We used the Vegetation Temperature Condition Index (VTCI) to monitor the dryness
of forest areas as a component of land surface data. The VTCI measures the variance
in Land Surface Temperature (LST) across pixels designated with specific Normalized
Difference Vegetation Index (NDVI) values within a broad study region [21-23]. The VTCI
was formulated as follows:

LSTNDV1imax—LSTNDV I
VTCI = (1)
LSTNDVIimax—LSTNDV 1imin
LSTNDVH max — a4 + bNDVIl (2)
LSTNDVIi min = @' + V' NDVI; 3)

LSTNDVIimax and LSTNDvimin Tepresent the maximum and minimum LSTs of the
pixels that have the same NDV[;, respectively. LSTnpy1; is the LST of a single pixel with a
specific NDVI; value. The coefficients g, b, a’, and b’ are determined from the study area,
where soil moisture ranges from the wilting point to the field capacity [24].

The NDVI was calculated using bands 1 (red) and 2 (near-Infrared) from the MOD11A1
dataset provided by NASA'’s Terra Moderate Resolution Imaging Spectroradiometer (MODIS),
whereas LST was obtained from MOD09GA data from the same source. All satellite image data
were provided daily, and the VTCI values were calculated by excluding locations obscured by
cloud cover. For missing values, a deep learning-based VTCI prediction model was employed
for interpolation.

2.2.3. Forest Fires Activity Map

According to Korea Forest Service statistics, 33% of forest fires in Republic of Korea are
caused by hikers’ negligence, with other significant causes including agricultural residue
burning (13%), garbage incineration (13%), and cigarette-related incidents (6%). These data
highlight the prevalence of human influences on forest fire ignition [17]. The forest fire
activity map is a dataset constructed to estimate the range of human activities based on
anthropogenic data. In this study, data on buildings, roads, and agricultural land from
digital topographic maps was used to create the forest fire activity data for each element.
Three types of forest fire activity maps were developed using the kernel density method
and applied to spatial data on agricultural land, buildings, and road infrastructure sourced
from the National Geographic Information Institute of Republic of Korea (Figure 2).
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Figure 2. Forest Fire Activity Maps. (a) Building; (b) Road; (c) Cropland.

2.2.4. Meteorological Data

We collected and utilized the daily average humidity, daily total precipitation, daily
average wind speed, daily average temperature, daily maximum temperature, and daily
minimum temperature provided by the Korea Meteorological Administration (KMA). All
meteorological data were sourced from KMA observation stations and converted into
nationwide raster spatial data with a 1 km resolution using the Inverse Distance Weighting
(IDW) interpolation method.

Meteorological factors such as Effective Humidity (EH), Fine Fuel Moisture Code
(FEMC), and Duff Moisture Code (DMC) were incorporated. EH is a specialized index used
to gauge the potential risk of forest fires based on the atmospheric moisture content. It is
calculated by aggregating the relative humidity levels over a set period, typically incorporat-
ing data from both the current day and several preceding days, to provide a comprehensive
picture of the atmospheric moisture availability that affects fire conditions [25,26].

The FFMC and DMC are two critical components of the Canadian Forest Fire Weather
Index System (CFFDRS), designed to assess the moisture content of forest fuels, which is a
key factor in determining the risk and behavior of forest fires [27,28]. The FFMC specifically
targets the moisture content of fine fuels such as leaves, grasses, and small twigs that are
less than 1/4 inch in diameter. These materials are highly responsive to weather conditions
and can dry rapidly under appropriate conditions, thereby becoming highly flammable.
The FFMC value ranges from 0 to 100, where lower values indicate a higher moisture
content and a lower risk of fire ignition, whereas higher values suggest drier conditions
and a higher susceptibility to ignition and support fire spread. This index is particularly
sensitive to relative humidity and temperature changes, and can significantly fluctuate over
the course of a single day [29-31].

DMC, on the contrary, focuses on the moisture content of moderately decomposed
organic matter located below the litter of freshly fallen leaves or needles, which is commonly
referred to as the duff layer. This layer is deeper and denser than the materials targeted by
the FFMC and therefore responds more slowly to weather changes. This serves as a good
indicator of the drying trends in these medium fuels, which are crucial for the sustained
burning of fires. The DMC also ranges from 0 to a high value, typically approximately
300, with higher numbers indicating drier conditions and a greater potential for a fire to
consume deeper fuel layers and persist once ignited [32,33].
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2.2.5. Topographical and Environmental Data

To evaluate the influence of topographic characteristics on forest fire occurrence,
we employed data from a Digital Elevation Model (DEM) along with slope and aspect
information, all of which were provided by the National Geographic Information Institute.
Topographical factors influence human accessibility, solar radiation, and wind speed, which
in turn correlate with soil moisture and humidity levels in forests, closely linking them to
the occurrence of forest fires [10,15,34,35].

Additionally, we considered the ecological impact of various forest tree species and
patterns of initial fire outbreaks across different types of land cover. This analysis was facil-
itated by a land-cover map from the Korean Ministry of Environment, which categorized
the landscape into nine distinct types: urban areas, agricultural lands, various forest types
(coniferous, deciduous, and mixed), grasslands, wetlands, barren lands, and water bodies.
This detailed categorization helps understand how land cover variability contributes to
fire dynamics.

For further analysis, longitudinal and latitudinal data were used to identify and track
the patterns of recurrent fire occurrences. This geographical information aided in identifying
high-risk areas and understanding the spatial distribution of fire events over time.

2.3. Development of the VTCI Prediction Model

In response to the need for updated and accurate VICI data, a deep-learning-based
model was developed to predict VICI values using satellite imagery. Due to the lim-
ited number of studies that have directly predicted satellite imagery in existing research,
methodologies and input variables were selected by referencing studies predicting soil
moisture [36-38]. Figure 3 shows the workflow of the VTCI prediction model, which incor-
porates remote sensing, meteorological, and environmental factors. For the remote sensing
factors, NDVI and LST data were utilized, with each satellite index being constructed from
the average, maximum, and minimum values of data for the same month from 2003 to
2020. In the case of meteorological factors, average temperature, maximum temperature,
minimum temperature, humidity, precipitation, and wind speed were used, along with the
FFMC index, which measures the dryness of the surface layer. Additionally, land cover
maps and a latitude-longitude coordinate system were utilized.

Environmental
Landcover Lon
Factors / // g

i i
H ]
H ]
| 1
i 1
| i
I | Remote sensing Avg, Min, Max // AVG, Min, Max / i
H Factors NDVI monthly LST monthly Predicted i
]
i vTCI E
]
1 + i
1 . !
! Meteorologlcal/ FFMC // WND // PCP / i
H Factors i
]
i ]
: ]
| / HMD // Avg TMP // Max TMP // Min TMP / !
i DNN |
i 1
i 1
H ]
; /AN i
i i
d i

Figure 3. The Workflow of the VTCI Prediction Model.

The model incorporated a DNN (Deep Neural Network) algorithm. DNN, a highly
prevalent regression model in machine learning, has proven effective in soil moisture
retrieval [39,40]. An illustration in Figure 4, DNN model constructed with 10 hidden layers,
where each layer contained nodes between 100 and 500. The model utilized the LeakyReLU
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activation function and the Adam optimization algorithm to minimize the Mean Squared
Error (MSE) loss function. The performance of the final model was evaluated using
two metrics: Mean Absolute Error (MAE) and R2. Twelve models were developed to
effectively account for monthly weather variations. Each model was trained with a batch
size of 1000 and ran for a default of 10 epochs.

T

10 hidden layers

(Node foreach layers : 100 x 200 x 300 x 400 x 500 x 500 x 400 x 300 x 200 x 100)

Figure 4. Structure of the DNN Algorithm for the VTCI Prediction Model.

2.4. Development of a Forest Fire Diagnostic Model

To develop a forest fire diagnostic model, we utilized the Python PyCaret module,
which is an open-source, low-code machine-learning framework that facilitates the rapid
deployment of models after data preparation. PyCaret was designed to simplify the
development, assessment, comparison, and deployment of machine learning models,
making the process as efficient and effective as possible [41,42]. In PyCaret, the performance
of the model was evaluated against seven criteria: Accuracy, Area Under the Receiver
Operating Characteristic Curve (AUC), Recall, Precision, F1 score, Kappa Value, and
Matthews Correlation Coefficient (MCC). For this project, use PyCaret version 3.0.0.

Using PyCaret, we compared various machine learning algorithms to select the best-
performing algorithm for the forest fire diagnostic model. CatBoost was selected, which
utilizes ordered boosting, a novel approach for managing categorical variables, and auto-
matically handles them without requiring preprocessing such as one-hot or label encod-
ing [43,44]. Although this study does not utilize multiple categorical variables, CatBoost
still incorporates advanced techniques, such as the robust handling of missing values,
feature importance estimation, and efficient GPU support for faster training [45].

Figure 5 illustrates the comprehensive workflow of the study, which comprises three
primary components. The first is the previously detailed VTCI prediction model, which
serves as a foundational element. The second is the Forest Fire Diagnostic Model, which
utilizes the predicted VTCI as input data. Finally, the wildfire risk forecasting section relies
on 3-day short-term weather forecast data sourced from the KMA.
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Figure 5. Workflow of the Forest Fire Diagnostic Model and Forecast Process.

2.5. SHapley Additive exPlanations (SHAP)

The SHAP values were utilized to analyze the impact of each variable in the model.
SHAP is a versatile approach used to explain the output of machine learning models. It
provides insights on the importance and contribution of each feature in making predictions,
offering a broader understanding of the model behavior. SHAP values are based on
the Shapley values from cooperative game theory and provide a fair way to allocate
credit among features. By examining the SHAP values, users can discern how changes in
individual features affect model predictions, aiding model interpretation and debugging.
Moreover, SHAP values can be aggregated to explain global model behavior or used to
analyze specific predictions on a per-instance basis, thereby enhancing model transparency
and trustworthiness [46,47]. The formula for the SHAP value of the variable (i) is as follows:

2i= ), i _F|!S| = [fSU{i} (xsu{i}) — fs(xs)] )

SCF\{i}

o; is the SHAP value of the i-th data point and F represents the entire dataset. S
denotes the set of all subsets obtained by removing the i-th data point from the dataset.

fsutiy (xsu {i}) is the contribution of the entire set (including the i-th data point), and fs(xs)
is the contribution of the subset obtained by removing the i-th data point [48].

3. Results and Discussion
3.1. VICI Prediction Model Performance
The final VTCI prediction model demonstrated an average Mean Absolute Error (MAE)

of 0.0038, Mean Squared Error (MSE) of 0.1103, and an R? of 0.86. The best model perfor-
mance occurred in February, whereas the lowest was in August (Table 3). Performance
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gradually declined from February to August, and increased from September onwards. In
Republic of Korea, rainfall increases from June to August leading to a greater amount
of cloud cover and making satellite image acquisition more challenging. Months with
heavy rainfall typically have lower data availability than relatively drier periods, leading
to decreased utilization of data and, consequently, lower model performance.

Table 3. Performance of the VTCI prediction model.

Metric

January

February March April May June

Train Test

Train Test Train Test Train Test Train Test Train Test

MSE 0.002 0.002
MAE 0.033 0.036

0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.004
0.029 0.029 0.035 0.035 0.037 0.037 0.04 0.04 0.05 0.05

R? 0.921 0.899 0.937 0.937 0.913 0.912 0.908 0.907 0.88 0.879 0.818 0.809
July August September October November December
Metri
etric Train Test Train Test Train Test Train Test Train Test Train Test

MSE 0.005 0.005
MAE 0.052 0.053

0.005 0.008 0.004 0.004 0.004 0.004 0.003 0.003 0.002 0.002
0.053 0.065 0.046 0.049 0.049 0.049 0.426 0.426 0.035 0.035

R? 0.834 0.83 0.816 0.715 0.847 0.826 0.865 0.865 0.899 0.898 0.911 0.813
Despite some errors, the performance of the VTCI prediction model was high. Con-
sidering that forest fires in Republic of Korea are concentrated between January and early
June, it is valid to use the VTCI derived from this model. Furthermore, it allows for the
assessment of forest dryness in areas not observed in satellite imagery owing to cloud cover
and can provide future results using weather forecast data.
3.2. Forest Fire Diagnostic Model Performance
The results of comparing various machine learning algorithms showed that boosting
algorithms demonstrated relatively high performance, with the CatBoost model exhibiting
the highest performance in terms of Accuracy, AUC, F1 Score, Kappa Value, and MCC. In
addition, it demonstrated commendable performance in terms of Recall and Precision.
After selecting the CatBoost algorithm, the model was tuned for 50 iterations based on
the kappa criterion. Based on validation data, the final forest fire diagnostic model yielded
the following performance metrics: Accuracy of 0.8898, AUC of 0.9541, Recall of 0.8515,
Precision of 0.8279, F1 Score of 0.8395, Kappa of 0.7557, and MCC of 0.7558 (Table 4).
Table 4. Comparison of Machine Learning Algorithma in PyCaret.
Model Accuracy AUC Recall Precision F1 Kappa MCC
CatBoost Classifier 0.8899 0.9524 0.8423 0.8324 0.8372 0.7541 0.7543
Light Gradient 08875 09502 08414 08272 08340 07490 07493
Boosting Machine
Random Forest Classifier 0.8844 0.9473 0.8281 0.8280 0.8279 0.7408 0.7410
Extreme Gradient Boosting 0.8840 0.9480 0.8319 0.8248 0.8282 0.7407 0.7408
Gradient Boosting Classifier 0.8839 0.9479 0.8294 0.8258 0.8275 0.7399 0.7401
Extra Tree Classifier 0.8817 0.9460 0.8132 0.8313 0.8220 0.7334 0.7337
Ada Boost Classifier 0.8777 0.9410 0.8155 0.8199 0.8175 0.7256 0.7257
Linear Discriminant 08761 09371 07993 08262 08124 07199 07202
Analysis
Ridge Classifier 0.8757 0 0.7932 0.8292 0.8107 0.7182 0.7187
Logistic Regression 0.8364 0.9099 0.7494 0.7630 0.7353 0.6325 0.6334
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Table 4. Cont.
Model Accuracy AUC Recall Precision F1 Kappa MCC
Decision Tree Classifier 0.8267 0.8067 0.7458 0.6354 0.7430 0.6123 0.6124
Naive Bayes 0.7932 0.9043 0.9023 0.5857 0.7456 0.5801 0.6056
Quadratic Discriminant Analysis 0.7147 0.7738 0.6828 0.8023 0.6001 0.38886 0.4174
K Neighbors Classifier 0.6657 0.6513 0.3976 0.5026 0.4438 0.2095 0.2125
Dummy Classifier 0.6643 0.5 0 0 0 0 0
SVM-Linear Kernel 0.5520 0 0.3586 0.2278 0.2202 0.0094 0.0110

3.3. Variable Impact Analysis Based on SHAP Value

Figure 6 presents a SHAP summary plot of the input feature factors derived from
the CatBoost classifier. The feature factors were ranked based on their contributions. The
X-axis represents the SHAP value, and the y-axis represents the feature factors. Each dot
in the plot corresponds to a sample of forest fires from the test dataset, with the color
indicating the value of a specific factor. Blue signifies a lower value, whereas red indicates
a higher value. The horizontal position of the dot indicates whether the feature factor has a
positive or negative influence on prediction [48]. A positive value indicates an impact on the
occurrence of wildfires (1), increasing the risk of fire. Conversely, a negative value affects
cases where no wildfires occur (0), reducing the fire risk. In the example of EH, the model
assesses a higher forest fire risk as the EH value decreases (indicated by blue), whereas a
decrease in the EH value (indicated by red) leads to a lower assessment of forest fire risk.
Furthermore, the influence of EH can be evaluated by examining the numerical values
along the x-axis. Upon analyzing the impact of variables in the forest fire diagnostic model
based on the SHAP Summary Plots, EH emerged as the variable with the most significant
influence among all variables, followed by FFMC, which also showed a substantial impact.
The satellite imagery index VTCI, although relatively less influential on the results, revealed
that differences in dryness affect forest fire occurrence.
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Figure 6. SHAP summary plots of the forest fire diagnostic model based on the CatBoost classifier.
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Figures 7-10 show the SHAP-dependence plot for these factors. The SHAP dependence
plot identifies the relationship between a single factor (X-axis) and the corresponding SHAP
values generated (Y-axis) to evaluate the effect of each feature factor.
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Figure 7. SHAP dependence plots for meteorological and satellite image data.
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Figure 8. SHAP dependence plots for forest fire activity map.
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In the graph, the positions of the dots represent the SHAP values corresponding to
each variable, indicating their association with the forest fire occurrence. Notably, for EH
values below 50, FEMC showed the risk increased significantly when the value exceeded 60.
On the contrary, the DMC indicated risks above 60, and even values between 0 and 10 were
considered risky, suggesting that forest fires in Korea are heavily influenced by surface
dryness rather than prolonged drought, which affects underground dryness in forests.

The VTCI exhibited a distinction in forest fire risk around a threshold of 0.5, indicating
a correlation with forest fire occurrence. Despite VICI’s lower influence compared to
meteorological data, the predicted VICI data demonstrated their utility.

In the case of forest fire activity maps, the risk of forest fires increased as the density of
buildings and roads increased. However, for buildings, the trend indicated a decrease in
forest fire risk at densities above approximately 0.6, whereas the impact of roads on risk
levels remained consistent. Unlike buildings and roads, farmland showed a tendency to
reduce risk levels as density increased, although a higher risk of forest fire occurrences was
observed in the range of approximately 0.0 to 0.3.

Among the topographical factors, a DEM between 0 and 350 m showed a higher forest
fire risk, particularly in low-lying areas accessible to humans, reflecting the tendency for
forest fires to occur in lowland areas rather than in higher-elevation forests. Aspect angles
between 100° and 300°, closer to south-facing, exhibited higher forest fire risks, likely due
to higher solar radiation and the resulting evaporation rates in those areas. Slope angles
between approximately 5° and 30° were associated with forest fire occurrence, indicating
their influence on distinguishing between forested and non-forested land.

Analysis using SHAP values revealed that longitude significantly influenced the risk
of forest fire occurrence in Republic of Korea. Areas along the western coast and adjacent
inland regions in the south, as well as coastal areas in the east, exhibited higher forest fire
risks, whereas the central regions showed relatively lower risks. This pattern reflects the
topographical characteristics of Republic of Korea, where forest fires predominantly occur
in urban areas adjacent to forests rather than in centrally forested areas. This phenomenon
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is also evident from the higher SHAP values observed in regions with higher latitudes,
indicating the influence of the Gyeonggi and Gangwon provinces, where forest fires are
more frequent [49]. Regarding land cover, coniferous forests (LC 4), grassland (LC 6),
mixed forests (LC 5), and deciduous forests (LC 3) had a higher impact on forest fire risk, in
descending order, which is consistent with historical forest fire occurrence statistics based
on tree species [15,50].

3.4. Forest Fire Forecast for Republic of Korea

To conduct short-term forest fire forecasting, an automated process was developed
by integrating the short-term weather forecasting process with the forest fire diagnostic
model established in this study. This automated forecasting process involves collecting and
processing meteorological data to obtain process information, such as the average relative
humidity, daily precipitation, average/maximum /minimum temperature, and average
wind speed announced at 5 PM the day before the forecast. This information was then used
as the input for the model, and the process culminated in the production and mapping of
the final forecast results.

Utilizing short-term weather forecast data provided by the Meteorological Adminis-
tration at 5 PM on the previous day, the process calculates the forecast results one to three
days ahead. A total of 92 short-term forest fire risk forecast maps were generated for the
period of 1 March-31 May 2023. Forest fire inventory data was collected from the Korea
Forest Service Real-Time Forest Fire Information Platform. The data were compiled by
referencing the map locations provided by the platform for verification purposes. During
the forecasted period, 362 forest fires occurred.

Based on short-term forecast data for forest fire diagnoses, additional validation was
conducted on the forest fire diagnostic model, with 362 forest fire occurrences recorded from
March to May 2023. The classification of these forest fire occurrences into the categories
in Table 5. showed 165 cases as “Very High”, 99 cases as “High”, 21 cases as “Moderate”,
40 cases as “Low”, and 37 cases as “Very Low”. With “High” and “Very High” cases making
up 264 of the total, accounting for 73% of all incidents, it was confirmed that the forest fire
diagnostic model significantly and accurately diagnoses actual forest fire risks.

Table 5. Forest Fire Forecast Result Verification.

Number of
Risk Risk Level Forest Fire Percentage
Occurrences
0.8-1.0 Very High 165 46%
0.6-0.8 High 99 27%
0.4-0.6 Moderate 21 6%
0.2-0.4 Low 40 11%
0-0.2 Very Low 37 10%

On 2 April 2023, 34 forest fires occurred, the highest number of forest fires on a single
day in 2023. Comparing the forest fire risk map with the actual forest fire occurrence locations,
forest fire risks were effectively differentiated between urban (Seoul City) and rural areas
(Yangpyeong County). In both cases, forests located near residential areas had a higher fire
risk than those located in the central parts of the forests. However, despite the close proximity
of the two areas, there is a significant difference in the distribution of forest fire risk levels,
which is likely influenced by the distribution of the forest fire activity map. In the forest fire
activity map of buildings and roads, areas marked in red, representing high density, coincide
with major cities in Korea and show higher forest fire risk levels centered around these urban
areas. In particular, Seoul shows a significant difference in forest fire risk levels in forests near
residential areas compared to Yangpyeong (Figures 11 and 12).
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Figure 11. Forest fire forecast result for 2 April 2023 in Seoul City.
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On the other hand, Gangwon Province has the highest proportion (82%) of forests
in Republic of Korea, and most areas shown in green in the forest fire diagnostic forecast
results correspond to forested areas (Figure 13). Historical forest fire records also indicate
that, apart from the central forested areas of Gangwon Province, forest fires have primarily
occurred near the eastern coastline and western residential areas (Figure 1). A similar trend
has been observed in the current distinctions of areas at risk of forest fires.
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Figure 13. Ortho imagery (left) and Forest Fire Diagnostic forecast result (right) for 2 April 2023 in
Gangwon Province.

4. Conclusions

In this study, we developed a forest fire diagnostic model using land surface condition
data (which were VTCI satellite image index) and forest fire activity maps that can diagnose
forest fire risks at a resolution of 100 m. One of the key components of the forest fire diagnostic
model, the VTCI prediction model, demonstrated its usability with an average performance
of R-square 0.83, MSE 0.1103, and MAE 0.0038, thereby validating the model’s applicability.
The forest fire diagnostic model yielded an accuracy of 0.89. The performance of the forest fire
prediction was validated using short-term weather forecasts nationwide from March 2023 to
May 2023, showing that 73% of forest fires were included in high-risk areas.

The forecast results of the forest fire diagnostic model showed that areas adjacent to
human activity showed a higher risk of forest fire occurrence, demonstrating the potential
for simulating anthropogenic fire events. However, since the wildfire activity map is
constructed based on density, it appears that urban areas have a higher risk of wildfires
compared to small towns or rural areas, which is an aspect that needs to be improved in
further research. The results derived from SHAP values indicate that the impact of VICl is
relatively lower compared to meteorological factors. Nevertheless, the dryness indicated
by VTCI has shown a correlation with actual forest fire occurrences, highlighting its utility
in applying satellite image predictions to diagnose forest fire occurrences. Additionally,
by utilizing the VTCI prediction model, it has become possible to address issues related to
missing data points caused by clouds or snow, which were limitations previously identified
when using satellite images for forest fire risk prediction.

Despite the limitations mentioned earlier, the model developed in this study can
diagnose forest fire risks that reflect not only natural environmental factors but also an-
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thropogenic influences by incorporating the condition of the land surface. Furthermore, by
utilizing the forecast results, it is believed that the model can contribute to more effective
forest fire prevention and response activities.
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