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Abstract: To investigate the low-temperature adaptability of different provenances of Ziziphus jujuba
var. spinosa, we used 21 clones from seven provenances as experimental materials and observed the
changes in physiological and biochemical indicators and the characteristics of anatomical structures
under low-temperature stress. A comprehensive evaluation of their cold resistance was conducted
using the membership function method. As the temperature decreased, the relative electrical conduc-
tivity (REC) of clone 89 became stable and had the lowest LT50 value (−44.04 ◦C). The cold-resistant
Z. jujuba var. spinosa had a higher bound water/free water (BW/FW) ratio and antioxidant enzyme
activity and accumulated large quantities of osmotic regulatory substances. Higher xylem, phloem,
and xylem–cortex ratios and greater conduit density enhanced the cold resistance of Z. jujuba var.
spinosa. The membership function values of clones 89, 90, 91, 604, and 612 were greater than 0.6,
indicating that they could be evaluated as resources with the potential for low-temperature resistance.
The cold resistance rankings for the different provenances were as follows: Kazuo, Liaoning > Jiaxian,
Shaanxi > Fuxing, Heibei > Changqing, Shandong > Neiqiu, Heibei > Yanchuan, Shaanxi > Xiaxian,
Shanxi. These results provide a scientific basis for the rapid and accurate identification of cold
resistance in Z. jujuba var. spinosa resources and the breeding and cultivation of new cold-resistant
varieties of this subspecies.

Keywords: Ziziphus jujuba var. spinosa clones; low-temperature stress; physiological and biochemical
indices; anatomical structure; comprehensive evaluation

1. Introduction

Ziziphus jujuba var. spinosa (Bunge) Peng, Li, and Li is a small deciduous shrub of the
family Rhamnaceae, also known as wild thorn and mountain jujube [1]. It is primarily
distributed in Shanxi, Hebei, Henan, Shaanxi, and other regions of China. Numerous
studies have shown that Z. jujuba var. spinosa has high economic and medicinal value.
The fruit flesh is enriched with nutrients such as vitamin C, with benefits such as lipid-
lowering abilities and gastrointestinal protection. Ziziphus jujuba var. spinosa kernels tonify
the liver, relax the heart, and calm the mind. Ziziphus jujuba var. spinosa leaves have
various health benefits such as anti-inflammatory properties and the promotion of bile
acid synthesis [2]. Additionally, Z. jujuba var. spinosa has strong resistance to adverse
environmental conditions and plays an important role as a wind break, in reducing sand
displacement, and in soil and water conservation.

Low temperature is an abiotic stressor that limits the geographical distribution, growth,
and development of plants [3]. Plants improve their cold tolerance by modifying their
morphological and physiological adaptations to regulate metabolic processes [4]. Sustained
low temperatures can damage plant cell membranes and increase plasma membrane
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permeability, resulting in increased relative electrical conductivity (REC) [5]. The half-lethal
temperature (LT50), calculated using a logistic equation fitted with the REC, accurately
represents the cold resistance of plants. This method has been widely used to assess cold
resistance in various plant species [6–8]. Research on the different varieties of jujube trees
using the electrical conductivity method revealed that their LT50 is between −19.53 ◦C
and −40 ◦C [9,10]. Furthermore, low-temperature stress can easily induce an imbalance
in reactive oxygen species (ROS), causing membrane lipid peroxidation reactions and
resulting in the formation of large quantities of malondialdehyde (MDA) in branches [11].
Therefore, the maintenance of a dynamic ROS balance is crucial for plant survival under
adverse conditions. Plants have antioxidant systems that include both enzymatic and non-
enzymatic chemicals that protect them from oxidative harm [12]. Among these, superoxide
dismutase (SOD) and peroxidase (POD) are important protective enzymes that inhibit ROS
free radicals [13]. Apples [14] and pomegranates [15] clear ROS by increasing SOD and
POD activities under low-temperature stress. Osmotic regulation is another mechanism
by which plants resist cold damage and includes the utilization of soluble sugars (SSs),
soluble proteins (SPs), and proline (Pro). Increased levels of osmotic regulators may
effectively reduce plant water loss, balance the cellular osmotic pressure, and alleviate
low-temperature damage [16–19]. Cold resistance is not only related to physiological and
biochemical activities within plants but is also influenced by differences in plant anatomical
structures. Therefore, anatomical structure becomes a key indicator for evaluating plant
cold resistance [20]. Living cortical cells in branched structures are prone to freezing and
can damage or even rupture the cell membrane at low temperatures [21]. The medullary cell
gap is obvious and permeable, weakening the cold air barrier effects [22] and reducing plant
resistance to low temperatures. The well-developed phloem and large number of vessels
and vessel densities of a plant give it improved metabolic ability and water transportation
efficiency, which enhances its adaptability to adverse conditions [23,24]. Plant xylem mainly
consists of dead cell vessel molecules and hard, thick cell walls, which can help protect the
cell membrane from damage at low temperatures [25].

Research on the cold resistance of Z. jujuba var. spinosa has mostly focused on physi-
ological and biochemical characteristics under low-temperature stress [26,27]. However,
there is a lack of studies that have examined a combination of physiological and biochemical
indexes along with the morpho-anatomical structure of Z. jujuba var. spinosa under low-
temperature stress. Therefore, we used 1-year-old branches of 21 Z. jujuba var. spinosa from
seven different provenances as experimental materials and comprehensively evaluated
the differences in their physiological and biochemical indices and anatomical structures
under low-temperature stress. We conducted correlation and cluster analyses and used the
membership function method to explore the physiological responses of different Z. jujuba
var. spinosa plants at low temperatures and their mechanisms of cold resistance. This is
important for the early and rapid selection and identification of superior cold-resistant par-
ents of Z. jujuba var. spinosa, preservation, and the utilization of cold-resistant germplasm
resources of Z. jujuba var. spinosa. The findings provide a material basis for the selection
and industrial development of Z. jujuba var. spinosa.

2. Materials and Methods
2.1. Experimental Materials

A total of 21 Z. jujuba var. spinosa plants from different provenances were planted
at the Shenyang Agricultural University Z. jujuba var. spinosa national forest germplasm
resource repository (41◦02′59′′ N, 119◦51′26′′ E). The plants were from the provenances
of Kazuo, Liaoning (LK); Xiaxian, Shanxi (SX); Jiaxian, Shaanxi (SJ); Yanchuan, Shaanxi
(SY); Fuxing, Heibei (HF); Neiqiu, Heibei (HN); and Changqing, Shandong (SC). Spikes of
superior Z. jujuba var. spinosa trees were gathered from different provenances in December
2021 and grafted onto 2-year-old Z. jujuba var. spinosa rootstocks in the field by split grafting
in May 2022 (Figure 1). The grafted plants were then planted in a north–south direction
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with a spacing of 2.0 × 3.0 m. The plants grew well, without pests or diseases. The specific
conditions are listed in Table 1.
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Figure 1. Growth status of experimental plants. (A) Images taken in August. (B) Images taken prior
to sample collection.

Table 1. Information of the origins of the Ziziphus jujuba var. spinosa clones tested.

Clones Provenances
Average
Seeding
Height

/cm

Average
Diameter

/mm
Longitude

/E
Latitude

/N
Mean Altitude

(m)
Annual
Average

Temperature/◦C

89, 90, 91 Kazuo, Liaoning
(LK) 74.71 9.79 119◦50′ 41◦24′ 407.30 8.70

530, 531, 535 Xiaxian, Shanxi
(SX) 91.16 11.42 111◦12′ 35◦50′ 539.67 12.90

604, 612, 614 Jiaxian, Shaanxi
(SJ) 89.91 11.38 110◦29′ 38◦40′ 507.17 10.00

637, 643, 645 Yanchuan, Shaanxi
(SY) 83.85 9.14 110◦19′ 36◦52′ 561.00 10.80

702, 706, 709 Fuxing, Heibei
(HF) 90.82 11.02 114◦18′ 36◦34′ 180.62 13.50

750, 752, 753 Neiqiu, Heibe
(HN) 71.44 10.29 114◦22′ 37◦14′ 168.13 11.50

853, 859, 862
Changqing,
Shandong

(SC)
85.07 9.99 116◦52′ 36◦29′ 112.36 13.80

2.2. Experimental Treatment

In November 2022, sample trees with robust and uniform growth for each clone
were selected and 1-year-old branches were collected. After washing with distilled water,
the cut ends were sealed with wax, and the samples were returned to the laboratory.
The samples were subjected to low-temperature stress in an MDF-U5412N high–low-
temperature test chamber (PHCBI, Sakata, Japan). A total of 6 low-temperature gradients
were set at 4 ◦C, −20 ◦C, −25 ◦C, −30 ◦C, −35 ◦C, and −40 ◦C, with 4 ◦C as the control.
The temperature control accuracy was ±1 ◦C and, after reaching the set temperature, it was
maintained for 12 h. The rate of decrease in freezing temperature and the rate of increase
in thawing temperature were both 4 ◦C·h−1. Subsequently, the samples were placed in
a 4 ◦C refrigerator for thawing for 12 h. After completion of the low-temperature stress
exposure, the branches were cut into approximately 0.5~1 cm thick sections (avoiding bud
positions). A portion of these segments was used to determine REC and water content.
Another portion was rapidly frozen in liquid nitrogen and stored in a −80 ◦C ultra-low-
temperature freezer for the measurement of physiological and biochemical indicators. Each
stress temperature and measurement parameter was replicated three times.
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2.3. Experimental Methods
2.3.1. Measurements of Physiological Indices

For the measurement of relative electrical conductivity [28], branches, post-stress,
were cut into approximately 0.5 cm pieces. The cut pieces (0.5 g) were weighed and placed
in centrifuge tubes containing 20 mL of deionized water. The samples were then soaked for
30 min. After a predetermined time period, the conductivity of the solution was measured
at room temperature (R1). Subsequently, the samples were boiled in a water bath for 20 min
and cooled to room temperature to measure their final conductivities (R2). The REC was
calculated as follows:

REC = (R1/R2) × 100%

The REC was fitted into the logistic regression equation, y = 100/(1 + ae−bt), where y
represents the REC and a and b are the function parameters [29].

The total water content of the branches was determined using the drying method [30].
Free water content was measured using an Abbe refractometer [30]. MDA content was de-
termined using the thiobarbituric acid method [31]. The soluble sugar and starch contents
were quantified using the anthrone colorimetric method [32]. The soluble protein content
was determined by measuring Coomassie Brilliant Blue G-250 [33]. Proline content was de-
termined using the ninhydrin colorimetric method [34]. The SOD activity was determined
using the nitro blue tetrazolium chloride method [33]. The POD was determined using the
guaiacol method [33].

2.3.2. Observation of Anatomical Structure

Randomly selected branches from each clone were washed under 4 ◦C conditions.
A 1 cm stem segment from the middle part of each branch was placed in a fixative
(FAA: formaldehyde, alcohol, and acetic acid). Sections were obtained using a hand mi-
crotome with a thickness of 6–8 µm and stained using the safranine/solid green method.
Cross-sections of each slice were observed using a Stemi 2000-C stereo microscope (ZEISS,
Oberkochen, Germany), photographed with an AxioCam ICc 5 microscope camera (ZEISS,
Oberkochen, Germany), and analyzed for anatomical tissue structure using Zen software.
For every image, a 200 × 200 pixel square was constructed, and the vessel density was
determined by counting the number of vessels in the frame. Three slices were selected for
each clone, with four fields of view observed per slice, resulting in 12 replicates.

Ratio of xylem (%) = (Thickness of xylem/Radius of branch) × 100

Ratio of cortex (%) = (Thickness of cortex/Radius of branch) × 100

Xylem-cortex ratio = (Thickness of xylem/Thickness of cortex)

2.4. Statistical Analyses

We used SPSS 26.0 (IBM, Armonk, NY, USA) and Microsoft Excel 2016 (Microsoft,
Redmond, Washington, DC, USA) for data analysis and chart creation, with data presented
as the mean ± standard deviation. A comprehensive evaluation of the data was conducted
using membership function, cluster analysis, and correlation analysis. Origin 9.0 (EA,
Northampton, MA, USA) was used for visualization. A comprehensive analysis and evalu-
ation of the cold resistance of Z. jujuba var. spinosa were conducted using the membership
function [35] and the following equations:

U(Xij) = (Xij − Xjmin)/(Xjmax − Xjmin)

U(Xij) = 1 − (Xij − Xjmin)/(Xjmax − Xjmin)
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where i represents a specific clone, j represents a specific index, Xij denotes the index j
testing the value of clone i, Xjmin denotes the index j minimum value for all clones, Xjmax
denotes the index j maximum value for all clones, Uij denotes the value of clone i, and
index j is associated with cold-hardiness.

3. Results
3.1. Response of Branch Membrane Stability to Low-Temperature Stress
3.1.1. Relative Electrical Conductivity

With decreasing temperature, the REC of Z. jujuba var. spinosa showed a gradually
increasing trend (Supplementary Data Table S1), and the stress temperature and REC
followed an “S”-shaped type curve. The REC of all clones reached a maximum at −40 ◦C
and was significantly higher than at the other treatment temperatures. Clones 530 and
645 exhibited significantly higher REC values compared to the other clones. Throughout
the low-temperature stress process, clone 89 had the lowest mean REC value (30.98%),
whereas clone 530 had the highest (55.50%). The REC of Z. jujuba var. spinosa branches from
different provenances (Figure 2A) all peaked at −40 ◦C, with LK and SJ being significantly
lower than other provenances. Throughout the entire low-temperature stress period, the
provenances from LK had the lowest average REC value (35.05%).
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Figure 2. Relative electrical conductivity and MDA content in branches of Ziziphus jujuba var. spinosa
clones from different provenances under low-temperature treatments. (A) The REC of Z. jujuba var.
spinosa branches from different provenances, (B). The MDA content of branches from the different
provenances. Letters indicate comparisons between different clones at the same temperature (p < 0.05).
LK: Kazuo, Liaoning; SX: Xiaxian, Shanxi; SJ: Jiaxian, Shaanxi; SY: Yanchuan, Shaanxi; HF: Fuxing,
Heibei; HN: Neiqiu, Heibei; SC: Changqing, Shandong.

The REC was used to fit the logistic equation to calculate the inflection point half-
lethal temperature (LT50), which was negatively correlated with plant cold resistance. This
suggested that a lower LT50 indicated stronger cold resistance in plants. As shown in
Table 2, the R2 ranged from 0.65 to 0.89 and the fitting results were considered reliable.
These results indicated that the LT50 values of Z. jujuba var. spinosa clone cultivars ranged
from −18.92 ◦C to −44.04 ◦C. Clone 89 exhibited the lowest LT50, while clone 530 had
the highest, resulting in a temperature difference of −25.12 ◦C between the two clones.
The LT50 of Z. jujuba var. spinosa from different provenances ranged from −23.83 ◦C to
−41.60 ◦C, with LK having the lowest LT50. The cold resistance ranking of Z. jujuba var.
spinosa branches from the different provenances was as follows: LK > SJ > HN > SY > HF >
SC > SX. The LT50 values of plants from different provenances decreased with increasing
latitude, whereas their cold resistance increased with increasing latitude. This indicated
that materials from higher-latitude regions have more stable cold resistance [36,37].
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Table 2. Semi-lethal low temperature (LT50) of branches of Ziziphus jujuba var. spinosa clones under
different low-temperature treatments.

Clones Logistic Equation R2 LT50/◦C

89 y = 100/(1 + 7.6845e−0.0454t) 0.71 −44.04
90 y = 100/(1 + 4.4696e−0.0380t) 0.76 −39.25
91 y = 100/(1 + 4.1272e−0.0327t) 0.75 −40.39
LK y = 100/(1 + 5.1074e−0.0392t) 0.74 −41.60

530 y = 100/(1 + 2.4562e−0.0475t) 0.73 −18.92
531 y = 100/(1 + 2.7210e−0.0355t) 0.86 −24.97
535 y = 100/(1 + 2.9868e−0.0356t) 0.65 −28.42
SX y = 100/(1 + 2.7012e−0.0417t) 0.76 −23.83

604 y = 100/(1 + 4.1148e−0.0321t) 0.75 −39.74
612 y = 100/(1 + 4.3929e−0.0319t) 0.76 −41.33
614 y = 100/(1 + 5.3228e−0.0431t) 0.74 −39.71
SJ y = 100/(1 + 4.5814e−0.0375t) 0.75 −40.59

637 y = 100/(1 + 2.7584e−0.030t) 0.82 −32.03
643 y = 100/(1 + 2.6461e−0.0317t) 0.86 −29.26
645 y = 100/(1 + 4.0342e−0.0509t) 0.68 −26.57
SY y = 100/(1 + 3.0716e−0.0388t) 0.78 −28.92

702 y = 100/(1 + 3.2482e−0.0554t) 0.83 −22.27
706 y = 100/(1 + 2.4900e−0.0299t) 0.79 −29.91
709 y = 100/(1 + 4.1103e−0.0361t) 0.73 −35.60
HF y = 100/(1 + 3.1782e−0.0406t) 0.82 −28.48

750 y = 100/(1 + 4.3649e−0.0477t) 0.77 −30.89
752 y = 100/(1 + 2.7007e−0.0395t) 0.89 −24.71
753 y = 100/(1 + 6.0515e−0.0438t) 0.71 −37.20
HN y = 100/(1 + 3.9932e−0.0435t) 0.81 −31.83

853 y = 100/(1 + 2.7569e−0.0367t) 0.87 −27.41
859 y = 100/(1 + 2.8537e−0.0307t) 0.80 −29.37
862 y = 100/(1 + 2.8637e−0.0280t) 0.82 −27.05
SC y = 100/(1 + 2.8474e−0.0373t) 0.83 −28.05

LK: Kazuo, Liaoning; SX: Xiaxian, Shanxi; SJ: Jiaxian, Shaanxi; SY: Yanchuan, Shaanxi; HF: Fuxing, Heibei;
HN: Neiqiu, Heibei; SC: Changqing, Shandong.

3.1.2. Malondialdehyde Content

The MDA content of Z. jujuba var. spinosa clones increased and then decreased with
decreasing temperature (Supplementary Data Table S2). Among them, the MDA content
of branches of clone 89 reached their peak at −35 ◦C, and was significantly higher than
at other stress temperatures, except −30 ◦C. The MDA content of eight clones, including
clones 90, 91, and 604, peaked at −30 ◦C, and the rest of the clones peaked at −25 ◦C stress.
The lowest mean value of MDA content in the branches of clone 604 was 3.87 µmol/g
during the treatment range from 4 ◦C to −40 ◦C. As shown in Figure 2B, during the 4 ◦C
to −25 ◦C treatment stages, the MDA content of branches from the different provenances
rapidly increased under low-temperature influence. The branches from five provenances
reached their peak MDA content at −25 ◦C, whereas those of LK and SJ peaked at −30 ◦C,
and were significantly different (p < 0.05) from those of other provenances throughout the
whole stress process.

3.2. Response of Branch Water Content to Low-Temperature Stress
3.2.1. Total Water Content

As the stress temperature decreased, the total water content (Supplementary Data
Table S3) of Z. jujuba var. spinosa clones exhibited a decreasing trend. At 4 ◦C, the total
water content in branches of clones 89, 90, 604, 614, and 753 was significantly higher
(p < 0.05) than that of other clones. By −40 ◦C, the total water content in branches of all
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clones decreased to the lowest, showing significant differences compared to the control
(4 ◦C). Among them, clone 709 exhibited the smallest decrease (8.33%) in branch total
water content. The mean total water content of the branches of clones 89, 90, 604, 614, and
753 was >25.00% throughout the stress treatment. The total water content of Z. jujuba var.
spinosa clones from different provenances (Figure 3A) gradually declined with decreasing
temperature, reaching its lowest point at −40 ◦C. Except at 4 ◦C, branches from LK, SJ, and
HN showed significantly higher total water contents than those from other provenances
during the remaining low-temperature stress conditions.
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Figure 3. Water content in branches of Ziziphus jujuba var. spinosa clones from different provenances
under low-temperature treatments. (A). The total water content of Z. jujuba var. spinosa clones
from different provenances, (B). The BW/FW ratio in branches of each provenance. Letters indicate
comparisons between different clones at the same temperature (p < 0.05). LK: Kazuo, Liaoning;
SX: Xiaxian, Shanxi; SJ: Jiaxian, Shaanxi; SY: Yanchuan, Shaanxi; HF: Fuxing, Heibei; HN: Neiqiu,
Heibei; SC: Changqing, Shandong.

3.2.2. Bound Water/Free Water Ratio

The BW/FW ratio of Z. jujuba var. spinosa clones exhibited an increasing trend with
decreasing temperature, reaching the maximum value at −40 ◦C (Supplementary Data
Table S4). All of these values were significantly higher than those for the other stress
temperatures, among which, clone 89 increased the most, reaching 15.73. Throughout the
stress process, the average BW/FW ratio of clone 89 was the highest (5.45), followed by
clone 90 (4.74), with clone 530 having the lowest ratio (0.84). As illustrated in Figure 3B, the
BW/FW ratio in branches of each provenance increased rapidly between the −20 ◦C and
−30 ◦C treatments, with the highest increase in those from LK. By −40 ◦C, the BW/FW
ratio in branches of Z. jujuba var. spinosa of various provenances reached a maximum, with
the LK and SJ provenances having significantly higher ratios than the other provenances.

3.3. Response of Antioxidant Enzyme Activities of Branches to Low-Temperature Stress
3.3.1. POD Activity

POD activity in Z. jujuba var. spinosa clones showed a single-peak curve that first
increased and then decreased with decreasing temperature (Supplementary Data Table S5).
At−25 ◦C, the POD activities of 13 clones of Z. jujuba var. spinosa rapidly increased, reached
a peak, and were significantly higher (p < 0.05) than at the other stress temperatures. At
−30 ◦C, the POD activities of clones 90, 91, 604, 612, 709, and 753 reached a peak, and clone
90 had the largest increase (82.63%). The POD activities of only two clones, 89 and 614,
reached a peak at −35 ◦C and were significantly higher than those of the other clones.
During stress from 4 ◦C to −40 ◦C, the POD activity of the branches of clone 89 was
significantly greater than that of the other clones and had the highest mean value of
2173.46 U/g, followed by clone 614 (1939.57 U/g). As shown in Figure 4A, the POD
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activities of the branches of the five provenances peaked at −25 ◦C, except for LK and
SJ, in which the POD activity of SX increased further but was still significantly lower
than that of the other provenances. The POD activities of LK and SJ peaked at −30 ◦C.
Except for −20 ◦C, the POD activity of LK and SJ during the temperature stress process
was significantly higher than for other provenances.
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Figure 4. POD and SOD activity in branches of Ziziphus jujuba var. spinosa clones from differ-
ent provenances under low-temperature treatments. (A). The POD activities of the branches of
the five provenances, (B) The SOD activities of all five provenances. Letters indicate compar-
isons between different clones at the same temperature (p < 0.05). LK: Kazuo, Liaoning; SX: Xi-
axian, Shanxi; SJ: Jiaxian, Shaanxi; SY: Yanchuan, Shaanxi; HF: Fuxing, Heibei; HN: Neiqiu, Heibei;
SC: Changqing, Shandong.

3.3.2. SOD Activity

With a decrease in the stress temperature, the SOD activity of Z. jujuba var. spinosa
clones generally showed a pattern of first rising and then falling, and different clones
appeared to peak at different temperatures (Supplementary Data Table S6). The SOD
activity of clone 89’s branches peaked at −35 ◦C and was significantly greater (p < 0.05)
than that of the other clones, except for clone 614. It increased by 56.89% compared to the
control temperature of 4 ◦C. Throughout the low-temperature stress period, clone 614 had
the highest mean SOD activity (374.38 U/g), followed by clone 89 (369.78 U/g). As shown
in Figure 4B, the SOD activities of all five provenances except LK and SJ peaked at −25 ◦C,
with SX and SC being significantly lower than the SJ provenance, but not significantly
different from the other provenances. The SOD activities of the branches from LK and SJ
also peaked at −30 ◦C, and the SOD activity of SJ increased the most (42.60%) during the
whole stress process.

3.4. Response of Osmotic Regulatory Substances of Branches to Low-Temperature Stress
3.4.1. Soluble Protein Content

As the stress temperature decreased, the SP content of Z. jujuba var. spinosa clones
initially increased and then decreased (Supplementary Data Table S7). At −20 ◦C, the SP
content of clone 530’s branches increased rapidly and reached the peak value, which was
significantly higher (p < 0.05) than that at other stress temperatures. The SP content of
clones 89, 604, and 612 reached a peak value at −35 ◦C, which was significantly higher than
that of the other clones. Clone 612 showed the greatest increase of 57.06%, followed by
clone 89 (51.62%), during the entire stress process. The SP content of Z. jujuba var. spinosa
branches from various provenances increased rapidly at−25 ◦C, with SC having the largest
increase (Figure 5A). The SP content of Z. jujuba var. spinosa branches from the LK and SJ
provenances peaked at −30 ◦C and −35 ◦C, respectively, and was significantly higher than
other provenances during the −30 ◦C ~ −40 ◦C treatment stage. Under low-temperature
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stress, the average SP content of Z. jujuba var. spinosa branches from SJ was the highest,
followed by those from LK.
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Figure 5. Osmotic regulation content in branches of Ziziphus jujuba var. spinosa clones from different
provenances under low-temperature treatments. (A). The SP content of Z. jujuba var. spinosa branches
from various provenances, (B). The SS content of the remaining five provenances, (C). The Pro content
of Z. jujuba var. spinosa branches of the other five provenances, (D). The starch content of Z. jujuba
var. spinosa clones from different provenances. Letters indicate comparisons between different clones
at the same temperature (p < 0.05). LK: Kazuo, Liaoning; SX: Xiaxian, Shanxi; SJ: Jiaxian, Shaanxi;
SY: Yanchuan, Shaanxi; HF: Fuxing, Heibei; HN: Neiqiu, Heibei; SC: Changqing, Shandong.

3.4.2. Soluble Sugar Content

As the stress temperature decreased, the SS content of the branches of Z. jujuba var.
spinosa clones first showed an increasing trend and then a decreasing trend (Supplementary
Data Table S8). Clones 89, 91, and 612 reached a peak SS content of the branches at −35 ◦C
and exhibited a significant difference from the other clones, of which clone 612 had the
greatest increase (47.02%). Clones 90, 604, 614, and 753 also peaked at −30 ◦C and, except
for clone 753, showed a significant difference from the other clones (p < 0.05). Throughout
the low-temperature stress treatment, the average SS contents of six clones (89, 90, 91, 604,
612, and 614) exceeded 60.00 mg/g. Clone 530 had the lowest average value of 44.19 mg/g.
The SS content of Z. jujuba var. spinosa branches from the LK and SJ provenances peaked at
−35 ◦C and −30 ◦C, respectively. The SS content of the remaining five provenances peaked
at −25 ◦C (Figure 5B). During the whole low-temperature stress process, except for −20 ◦C
and −25 ◦C, the SS content of branches of the LK and SJ provenances was significantly
higher than the other provenances, among which, the average SS content of LK was the
highest (64.65 mg/g).
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3.4.3. Proline Content

During low-temperature stress, Pro content in Z. jujuba var. spinosa clones first in-
creased and then decreased (Supplementary Data Table S9). Clones 89 and 612 reached a
peak Pro content at −35 ◦C, significantly higher (p < 0.05) than at other treatment tempera-
tures, with increases of 45.54% and 47.57%, respectively. During the whole stress process,
the Pro contents of clones 89, 90, and 612 were maintained at a generally high level, with
their average values reaching 740.71 µg/g, 747.37 µg/g, and 768.39 µg/g, respectively.
Clone 530 had the lowest average value (299.48 µg/g). As shown in Figure 5C, except for
LK and SJ, the Pro content of Z. jujuba var. spinosa branches of the other five provenances
peaked at−25 ◦C, with SX being significantly lower than that of the other provenances. The
provenances of LK and SJ also peaked at −30 ◦C, and their Pro content was significantly
higher than that of the other provenances during the stress process.

3.4.4. Starch Content

The starch content of Z. jujuba var. spinosa clones under low-temperature stress
(Supplementary Data Table S10) varied from 8.88 mg/g to 25.57 mg/g, with an overall
decreasing and then increasing trend. The starch content of clones 530, 531, and 643
decreased to the lowest levels at −25 ◦C, which was 33.97%, 30.19%, and 24.96% lower
than that of the control (4 ◦C), respectively. The starch content of clones 89, 91, 614, 750, and
753 decreased to the lowest at −35 ◦C stress. During the low-temperature treatment from
4 ◦C to −40 ◦C, clone 90 had the highest average starch content (20.41 mg/g), followed
by clone 89 (19.93 mg/g). The starch content of Z. jujuba var. spinosa clones from different
provenances showed a decreasing trend, which increased with decreasing temperatures
(Figure 5D). The starch content of Z. jujuba var. spinosa branches from different provenances
decreased to the lowest levels at −30 ◦C, among which, branches from SX, HN, and SC had
significantly lower contents (p < 0.05) than branches from the other four provenances. The
starch content of branches from LK and SJ was significantly higher than that of branches
from the other provenances throughout the low-temperature stress period.

3.5. Branch Anatomical Structure

The anatomical structures of branches of each Z. jujuba var. spinosa clone investigated
were pith, xylem, phloem, cortex, pericarp, and epidermis, from inside to outside. Based
on Figure 6 and Supplementary Data Table S11, except for clone 90, the thickness of the
phloem and vessel densities of clone 89 were significantly larger (p < 0.05) than those of
the other clones. The xylem thickness of clone 90 was significantly larger than that of the
other clones, with the difference ranging from 37.51 µm to 652.22 µm. Clone 530 had the
largest pith radius and cortex thickness, and, except for clone 862, its periderm thickness
was significantly greater than that of the other clones, measuring 117.73 µm. The branch
radii and vessel diameters of clone 862 were significantly larger than those of the other
clones, measuring 2297.75 µm and 54.02 µm, respectively. The xylem thickness, phloem
thickness, and conduit density of the branches of LK were significantly greater than those
of branches from the other provenances. The branch radius and vessel diameter of plants
from SC were significantly larger than those from the other provenances.

Regarding the anatomical structure proportions of branches from each clone
(Supplementary Data Table S12), the pith and cortex ratios of clone 531 were signif-
icantly higher than those of the other clones, reaching 42.34% and 6.26%, respectively.
The xylem and phloem ratios of clones 89, 90, 91, 612, and 614 were significantly higher
than those of other clones. Clone 91 had the largest xylem ratio of 57.60%, and its
xylem–cortex ratio was significantly higher than that of the other clones. Clone 89
had the highest phloem ratio, whereas clone 531 had significantly lower xylem and
xylem–cortex ratios. The xylem, phloem, and xylem–cortex ratios of the branches from
LK were significantly higher than those from other provenances. The pith and cortex
ratios of the branches from SX were significantly higher than those of the branches from
the other provenances, at 38.93% and 5.83%, respectively.
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Figure 6. Anatomical structure indices of annual branches of Ziziphus jujuba var. spinosa clones from
different provenances: (A) clone 89 (LK); (B) clone 531 (SX); (C) clone 614 (SJ); (D) clone 643 (SY);
(E) clone 702 (HF); (F) clone 753 (HN); (G) clone 853 (SC). a: pith; b: vessel; c: xylem; d: pith ray;
e: phloem; f: cortex; g: pericerp; h: epidermal.

3.6. Comprehensive Evaluation of Cold Resistance
3.6.1. Correlation Analysis

Correlation analysis showed that there was a high correlation between physiological
and biochemical indices and anatomical structures (Figure 7). Vessel diameter, vessel
density, xylem ratio, phloem ratio, and xylem–cortex ratio showed significant positive
correlations with different enzymes and non-enzymatic substances and significant negative
correlations with LT50, REC, and MDA. The largest correlation coefficient was observed
between LT50 and the phloem ratio (r = −0.89). Pith and cortex ratios showed significant
negative correlations (p < 0.01) with various enzymes and non-enzymatic substances and
significant positive correlations with LT50, REC, and MDA. Epidermal thickness and branch
radius were correlated with various physiological indices, but not significantly.

3.6.2. Membership Function Analysis

The cold resistance of plants is affected and constrained by various factors, and it
was not possible to evaluate this using a single index. Thus, it was more reliable to utilize
the membership function method to synthesize multiple indicators to evaluate the cold-
hardiness of plants. Liu et al. [14] utilized the membership function method to evaluate
the cold resistance of apple rootstock branches and found that the larger the average
membership value, the greater the cold-hardiness. As shown in Supplementary Data
Table S13, clone 89 had the highest average membership function value (0.75), whereas
clone 530 had the lowest value (0.31). The ranking of cold resistance in Z. jujuba var. spinosa
clones by the average membership function value was 89 > 90 > 604 > 91 > 612 > 614 > 709
> 753 > 637 > 706 > 853 > 859 > 862 > 645 > 535 > 643 > 750 > 531 > 702 > 752 > 530. The
overall ranking of cold resistance among the provenances was as follows: LK > SJ > HF >
SC > HN > SY > SX.

3.6.3. Cluster Heat Map Analysis

Systematic cluster analysis was performed using membership function values for
each index of Z. jujuba var. spinosa clones. As shown in Figure 8, each clone was divided
into four classes based on cold resistance. Cluster I had the highest average membership
value (0.66) and included clones 89, 90, 91, 604, 612, and 614, which could be regarded
as the clones with the greatest potential for low-temperature tolerance. Cluster II had an
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average membership value of 0.51, including clones 637, 706, 709, and 753. Cluster III had
an average membership value of 0.38, including clones 535, 643, 645, 750, 752, 853, 859, and
862. Cluster IV had the lowest average membership value (0.34), including clones 530, 531,
702, and 752, indicating that it was more sensitive to low temperatures and demonstrated
poor cold resistance.
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4. Discussion

The cell membrane is an important component of plant cells with important physiolog-
ical functions such as maintaining intracellular stability, material exchange, and information
transfer, which are closely related to temperature [38]. Calculating the LT50 of plants by
fitting a logistic equation using REC can accurately reflect the cold-hardiness of plants;
the lower the LT50, the stronger the cold resistance of the plant [8,11,29,39]. In this study,
14.29% of Z. jujuba var. spinosa clones had an LT50 lower than −40 ◦C, among which, clone
89 had the lowest LT50, indicating that it had a strong cold-resistant ability, and can be
used as an object of introduction. At the same time, it can be used as a breeding parent
to cultivate new cold-resistant varieties. The principal locus of plant responses to low
temperatures is the cell membrane system. Low-temperature stress causes cell membranes
to break, leading to increased membrane permeability [40]. Conductivity is an important
parameter used to evaluate the stability of plant membrane systems [11,39]. In the present
study, we found that the REC of Z. jujuba var. spinosa clones showed an “S” curve, which
increased sharply during stress at −25 ◦C ~ −35 ◦C. The REC of clones with weak cold
resistance was higher and increased further, which may have been due to severe damage to
the plant biofilm system caused by low-temperature stress, leading to a large quantity of
electrolyte exudation [41]. At −40 ◦C, the REC of all Z. jujuba var. spinosa clones tended to
stabilize, presumably because most plant cells were severely traumatized and irreversibly
damaged [39]. The cold resistance of Z. jujuba var. spinosa clones gradually increased with
increasing latitude of the seed source location, and cold resistance was positively correlated
with latitude, suggesting that latitude is also one of the factors influencing cold resistance in
plants [36,37]. Membrane lipid peroxidation produces MDA, and the amount accumulated
under stress conditions reflects the injury level of the plant [42]. In the present study, the
MDA content of Z. jujuba var. spinosa clones with strong cold resistance was generally
lower and fluctuated stably, which was consistent with the REC, indicating that the lower
the REC and MDA content, the stronger the cold resistance [8,43]. MDA is not only affected
by ROS but is also associated with the activity of antioxidant enzymes; if the rate of ROS
production is much higher than the scavenging ability of the antioxidant enzyme system, it
will eventually lead to a large accumulation of MDA [44,45].

Cellular water content and its state of existence are important factors that affect the
metabolic intensity, growth rate, and resistance of plants. Low temperatures can easily
cause intercellular water to freeze and evaporate, resulting in the weakening of plant
resistance to low temperatures [46]. The total water content of clone 530 decreased the most
under low-temperature stress conditions. This may be because low temperatures cause
water in the intercellular spaces to freeze, leading to severe dehydration and shrinkage
of the cells and resulting in mechanical damage to the cell membranes [47]. In contrast,
the increase in the BW/FW ratio was greater in the cold-resistant Z. jujuba var. spinosa
clones, indicating that the branches of the cold-resistant clones had less cellular damage
and stronger water retention capacity. This suggests that a higher BW/FW ratio enhances
the ability of a plant to withstand low temperatures [30,48].

Low-temperature stress easily leads to an increase in ROS, and the large accumulation
of ROS induces ROS scavenging by the antioxidant defense system to preserve the stability
of the membrane structure [15,49]. As important components of the antioxidant system,
antioxidant enzymes such as SOD and POD are essential for plants to maintain the dynamic
balance of ROS under adverse conditions [50]. Studies have found that higher antioxidant
enzyme activity can attenuate oxidative damage and lipid peroxidation and enhance
plant defense mechanisms against low temperatures [51]. The SOD and POD activities
in Z. jujuba var. spinosa clones showed an increasing and then a decreasing trend, and
the enzyme activities of clones 89, 90, and 604 were higher and reached a peak at lower
temperatures, which may have been due to their different adaptabilities to low-temperature
environments. This indicates that the protective enzyme system of the plants was able
to react to low-temperature stress in time to mitigate the damage caused by this stress
by improving enzymatic activity [52]. However, as the stress intensified, the activities of
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SOD and POD began to decrease, which may be attributed to the fact that the ROS content
exceeded the capacity of the protective enzyme system, damaging the antioxidant enzyme
system and leading to a decrease in its activity [11,50].

Osmotic regulation is an important physiological mechanism by which plants with-
stand stress. Plants participate in the regulation of cellular osmotic balance through the
accumulation of osmotic regulators such as SP, SS, and Pro, thereby resisting biotic and
abiotic stresses [53,54]. Studies have indicated that under low-temperature stress, plants
enhance their resistance to low temperatures by accumulating large quantities of SP and
SS [55]. We found that the SS and SP contents of Z. jujuba var. spinosa clones exhibited a
trend of first increasing and then decreasing with decreasing temperature. The SS and SP
contents of the cold-resistant clones were significantly higher than those of the other clones
and peaked at lower temperatures. This indicates that high levels of sugars and proteins
can enhance the concentration of cellular fluids and the water-holding capability of cells,
thereby lowering their freezing point and enhancing cell membrane stability [56,57]. Pro is
an important osmotic regulator in plants that maintains osmotic balance and stabilizes the
cell structure under abiotic stress, acting as a non-enzymatic antioxidant to remove ROS
generated under adverse conditions and enhance cold resistance [58]. We found that low-
temperature stress significantly increased the Pro content in various Z. jujuba var. spinosa
clones, with a larger increase observed in cold-resistant clones such as 89 and 90. This
indicates that plants can enhance their adaptability to low temperatures by accumulating
large quantities of Pro to reduce ROS and increase their cellular osmotic potential [59].
Research on the cold resistance of grape rootstocks has shown that grapes accumulate large
quantities of Pro and exhibit high antioxidant enzyme activity under low-temperature
stress [43]. Starch indirectly influences the cold resistance of plants by interconverting with
SS and other substances [60]. In the present study, we observed that starch content first
decreased and then increased under low-temperature stress, indicating that plants resist
low temperatures by converting starch into sugar, resulting in a decline in starch levels [61].
However, as the low-temperature stress intensified, the SP, SS, and Pro contents of each
clone peaked and then began to decline, whereas the starch content began to increase.
This could have been due to the disruption of the osmotic regulatory metabolic system
at persistently low temperatures, which may have reduced the plant’s starch conversion
capabilities and blocked the corresponding enzymatic synthesis, thereby diminishing its
protective capacity [14].

The cold resistance of plants is not only related to physiological and biochemical
activities but also varies owing to differences in anatomical structure [50]. Influenced by
genetic characteristics, plant branches with different proportions of anatomical structures
have different levels of cold resistance [24,62]. Xylem vessels play a crucial role in trans-
porting water and their density is related to cold resistance. Furthermore, there is a positive
correlation between the xylem proportion and cold resistance [50,63]. In the present study,
we found that branch xylem thickness, proportion, and vessel density of the cold-resistant
Z. jujuba var. spinosa clones, such as 89 and 90, were significantly greater than those of the
other clones, which may be because the branches had a high degree of lignification and
vessel density, which enhanced the plants’ water transport capacity, thereby strengthening
their adaptation to low temperatures [46,64]. Thin-walled phloem cells typically contain
starch and other substances that serve as osmotic protectants, preventing cell membrane
damage caused by dehydration or low temperatures [65,66]. In the present study, strongly
cold-resistant clones demonstrated higher phloem ratios and resistance to low-temperature
stress by accumulating more soluble sugars. It is tentatively inferred that the thicker a
plant’s phloem layer, the higher the content of phloem fibers, which makes it more flexible
and enhances its ability to withstand low temperatures [46]. The cortex is composed mostly
of living cells and is significantly influenced by the external environmental conditions [46].
We found that the cortex ratio of clone 91 was significantly lower than that of the other
clones, whereas its xylem–cortex ratio was significantly higher than that of the other clones.
It can be preliminarily inferred that a lower cortex and higher xylem–cortex ratios are con-
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ducive to enhancing a plant’s ability to resist low temperatures. Studies on the anatomical
structure of peach branches have also revealed that cold-resistant peach varieties have
higher xylem and lower cortical ratios [67].

A comprehensive identification approach can accurately reflect the cold resistance of a
plant, which is influenced by multiple elements [62]. Currently, correlation, membership
function, and cluster analyses are primarily used in related studies to comprehensively
evaluate plant cold resistance [51,68,69]. Correlation analysis revealed a strong correlation
between physiological and biochemical indices and anatomical structures. Notably, the
LT50, REC, and MDA showed significant negative correlations with most anatomical struc-
tures. This indicates that membrane lipid peroxidation, resulting from low-temperature
stress, is the main cause of severe freezing damage in plants [51]. SOD, SS, Pro, and starch
exhibited high correlation coefficients with the proportion of various anatomical structures,
implying that plants enhance their low-temperature resistance by increasing the activity of
antioxidant enzymes and accumulating osmotic regulatory substances. In the present study,
a comprehensive evaluation of the membership function revealed that the cold resistances
of branches from LK and SJ and Z. jujuba var. spinosa clones 89, 90, and 604 were relatively
strong. This result was primarily consistent with the cold resistance results obtained from
the LT50 values, indicating that the membership function method can accurately evaluate
plant cold resistance [59].

5. Conclusions

We compared the physiological and biochemical changes and anatomical structures
of Z. jujuba var. spinosa clones from different provenances under low-temperature stress.
Additionally, we comprehensively evaluated their cold resistance by analyzing member-
ship functions. Cold-resistant clones had a more stable membrane lipid structure, higher
antioxidant enzyme activity, and resisted low temperatures by accumulating large quan-
tities of osmotic regulatory substances. Higher xylem, phloem, and xylem–cortex ratios;
greater vessel density; and smaller vessel diameter and cortex ratios could enhance the
cold resistance of Z. jujuba var. spinosa. A comprehensive evaluation revealed that clones
89, 90, 91, 604, 612, and 614 exhibited the strongest cold resistance. Among the different
provenances, the cold resistance of the clones from LK was the strongest, followed by that
of clones from SJ. These results provide a theoretical basis for the discovery of cold-resistant
germplasm resources of Z. jujuba var. spinosa, the early and rapid selection of superior-line
parents, and the selection of cold-resistant varieties.
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