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Abstract: Slope orientation significantly influences soil’s physicochemical properties and the soil
hydrological environment. However, the regulatory mechanisms and effects, particularly in semi-arid
highlands, remain poorly understood. This study investigated soil physicochemical and hydrological
properties on shaded and sunny slopes. Results indicated that in the 0–20 cm soil layer, the water-
holding capacity was higher on sunny slopes, while water retention in the 10–20 cm layer was
significantly higher on shaded slopes. This suggests that vegetation on shaded slopes experiences
less soil erosion due to higher topsoil water retention. Additionally, slope orientation altered soil
properties: the electrical conductivity (EC) of the 0–20 cm soil layer was significantly higher on
shaded slopes. Nutrient elements such as Ca, Cu, and Zn were also relatively higher on shaded
slopes, whereas soil organic matter was significantly lower compared to sunny slopes. Overall, soil
water-holding capacity and supply were primarily controlled by EC, followed by capillary porosity
and nutrient elements like Ca, Mn, and Fe. Therefore, slope orientation has a significant effect on soil
hydrological properties, with stronger topsoil water retention on shaded slopes. These findings offer
valuable insights for vegetation restoration in semi-arid highland ecosystems.

Keywords: semi-arid woodlands; shaded and sunny slope; soil hydrological characteristics; soil properties

1. Introduction

Understanding the spatial dynamics of soil moisture and hydraulic properties is
crucial for studying various hydrological and ecological processes [1]. Soil hydrological
properties play a crucial role in soil hydrological processes [2], controlling mechanisms
such as infiltration, water availability, and evapotranspiration [3]. Nevertheless, factors
such as vegetation type [4,5], the degradation of grasslands [3,6], soil properties [7,8],
topography [9], and slope aspect [10] influence hydrological characteristics. Key soil
hydrological parameters, such as water retention and hydraulic conductivity, also regulate
multiple soil hydrological functions, including water storage, supply purification, and
runoff regulation [8,11]. The aspect of slope, whether regarding south-facing (SF) or
north-facing (NF) slopes [12], notably impacts temperature, vegetation growth, energy,
and water equilibrium [13–15], consequently shaping soil hydrological characteristics.
Numerous studies have explored the impact of slope orientation on infiltration, employing
theoretical equations from infiltration kinetics and models like Philip, Green–Ampt, and
Brooks–Corey models [16,17]. However, most models focus exclusively on horizontal or
low-slope soil surfaces, neglecting their influence on the infiltration process. The infrequent
consideration of diverse slope orientations [18] restricts the comprehensive understanding
of how slope affects soil hydrological processes. Therefore, exploring the variations in soil
hydrological properties among various slope aspects and their driving mechanisms can
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provide valuable insights for managing semi-arid mountainous woodlands and improving
hydrological models.

The influence of slope aspect on soil hydrological properties has been largely neglected,
significantly hampering the thorough assessment of soil hydrological processes in intricate
landscapes. Typically, microclimatic conditions and vegetation attributes vary between NF
and SF slopes. For instance, SF slopes receive three times more solar radiation than NF
slopes, resulting in higher soil temperatures and lower humidity on SF slopes compared
to NF slopes [9]. As a result, differences in vegetation status and soil characteristics
between SF and NF slopes are expected to impact soil hydrological properties. Sun et al. [9]
observed that the soil moisture content was 20.9% higher on NF slopes compared to SF
slopes, while SF slopes exhibited greater soil water retention, attributed to higher levels of
soil organic carbon and available nitrogen on NF slopes [19]. Additionally, studies have
also found that soils on north-facing (NF) slopes have higher organic matter (SOM) and
clay content [20]. These findings highlight the variability of soil hydrological properties
influenced by slope orientation.

However, previous studies have seldom focused on arid and semi-arid regions, par-
ticularly the Loess Plateau. The physicochemical characteristics of soil have a significant
impact on how roots spread within the soil and on the plant’s capacity to draw in water
and nutrients from its surroundings [21]. We hypothesize that due to the unique climatic
conditions of the Loess Plateau, such as large temperature differences between morning
and evening, high evaporation rates, and low precipitation, soil water retention may yield
significantly different results.

In arid and semi-arid regions, afforestation leads to exposed soil surfaces that are more
susceptible to wind and water erosion [22]. When surface water is inadequate, numerous
trees planted in such regions initially access deep soil moisture [23–25]. However, this
approach can have detrimental effects, including the demise of naturally occurring, shallow-
rooted vegetation or the obstruction of vegetation-restoration. Furthermore, apart from
afforestation, climate change represents an additional adverse influence on vegetation
development in the Loess Plateau [26–28]. Prior research indicates that the climate of the
Loess Plateau has experienced a shift towards warmer and drier conditions over the past
few decades [29,30]. Due to global warming, both the frequency and severity of droughts
on the Loess Plateau are increasing [31]. These harsh environmental conditions limit tree
density and result in woodlands with larger spacing between trees [32]. A typical pattern
observed under scattered trees in these areas is an increase in organic matter, total N, S, K,
and soluble salts within the uppermost soil layers, leading to improved soil quality [33].
Investigations have revealed that trees scattered in harsh environments tend to expand
their root systems to procure additional resources, which are subsequently redistributed,
thereby generally bolstering the accessibility of water and nutrients in the topmost soil
layers [34]. Indeed, semi-arid mountainous ecosystems are very vulnerable due to their
unique climatic conditions, making their ecosystem services extremely important [35].
The soils in mountainous areas are particularly prone to degradation due to these unique
climatic conditions.

While the significance of hydraulic properties in soils with different slope aspects is
widely acknowledged, research specific to semi-arid montane forests remains limited in
the current literature, and even fewer studies delve into the controlling factors, particularly
soil nutrients, in these regions. Based on the above, the following research hypothesis is
proposed: the soil and vegetation conditions on shaded and sunny slopes exhibit significant
differences induced by topographic variations, which, in turn, alter the soil hydrological
properties. Therefore, this study aims to (1) examine the differences in soil hydrological
properties, including water retention capacity and water storage capacity, between shaded
and sunny slopes, and (2) explore the driving factors behind these hydrological changes.
The findings of this research will aid in the better management of semi-arid montane forests,
contributing to soil moisture conservation in semi-arid ecosystems and informing more
effective and targeted management strategies for these environments.
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2. Materials and Methods
2.1. Study Area

This study was conducted on Cuiying Mountain (35.95◦ N, 104.14◦ E, elevation 1968 m)
in Yuzhong County, Lanzhou City, Gansu Province, China. The site is located at the junction
of the Loess Plateau, the Inner Mongolia Plateau, and the northeastern Qinghai–Tibet
Plateau. It serves as a transitional zone between the eastern monsoon region, the arid region
of northwest China, and the alpine zone of the plateau, making it regionally representative.
The underlying surface features typical Loess Plateau topography with primary forests,
shrubs, and grassland vegetation, under a temperate continental climate. The surrounding
environment is minimally impacted by human activities, reflecting the average conditions
of semi-arid regions within a few hundred kilometers.

2.2. Experimental Design and Soil Sampling

Field experiments were carried out in April 2023 on Cuiying Mountain, at an elevation
of approximately 1968 m. Sampling was carried out along a transect from the mountain
top to the foot, on both shady and sunny slopes (Figure 1a). Six sampling points were
selected on each slope (Figure 1b,c). At each sampling point, three 1 m × 1 m square plots
were established and quartered. Soil samples, including both undisturbed and disturbed
ones, were gathered from these designated areas. Undisturbed soil samples (100 cm3) were
collected from two soil layers (0–10 cm and 10–20 cm) in each of the three plots using a
core ring sampler and then preserved in sealed aluminum boxes. These samples were used
to measure soil water content (SWC), bulk density (BD), and other hydraulic properties.
Disturbed soil samples were obtained by using a soil auger at the different depths (0–10 cm
and 10–20 cm) vertically. These samples were sealed in bags, with plant roots, residues, and
other debris removed. The samples were air-dried, ground, and sieved through 2 mm and
0.149 mm sieves for physicochemical property analysis. Table 1 provides basic information
about the sampling sites.
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Table 1. Basic information about the research sites.

Aspect Latitude Longitude Altitude (m) Vegeration Coverage (%) Woodland Type

Shaded slope

35◦56′40′′ N 104◦8′27′′ E 1925 95 Cupressus funebris forest
35◦56′45′′ N 104◦8′38′′ E 1923 90 Mixed deciduous forest
35◦56′47′′ N 104◦8′36′′ E 1909 90 Mixed deciduous forest
35◦56′52′′ N 104◦8′40′′ E 1913 85 Mixed deciduous forest
35◦56′56′′ N 104◦8′41′′ E 1861 85 Shrubbery
35◦56′57′′ N 104◦8′30′′ E 1752 85 Shrubbery

Sunny slope

35◦56′39′′ N 104◦8′17′′ E 1931 95 Platycladus orientalis
forest

35◦56′34′′ N 104◦8′14′′ E 1928 88 Populus alba forest
35◦56′39′′ N 104◦8′22′′ E 1885 85 Shrubbery
35◦56′36′′ N 104◦8′26′′ E 1844 90 Shrubbery
35◦56′34′′ N 104◦8′31′′ E 1793 85 Shrubbery
35◦56′32′′ N 104◦8′49′′ E 1721 85 Populus alba forest

2.3. Laboratory Measurements and Analysis

Soil physicochemical properties were determined following the guidelines outlined
in “Soil Agricultural Chemistry Analysis” [36]. Soil pH and electrical conductivity (EC)
were measured using a pH meter (PHS-3E, Leici, Shanghai INESA Scientific Instrument
Co., Ltd., Shanghai, China) and an EC meter (HI 98311, HANNA Instruments, Villafranca,
Italy) at a soil-to-water ratio of 1:2.5 at room temperature. Soil organic carbon (SOC) was
assessed using the potassium dichromate oxidation method [37]. Soil carbonate (CaCO3)
content was measured using the volumetric titration method [38]. Total potassium (TK)
was determined using a flame photometer. The concentrations of Ca, Fe, Cr, Mn, Ni, Cu,
Zn, and Pb in the soil were quantified using atomic absorption spectrophotometry (Thermo
Fisher, Waltham, MA, USA, SOLAAR M6). To ensure accuracy, soil samples from the
China National Standard Material Center (GSS-8) were used as standard samples, with
one analysis performed for every 20 samples, achieving recovery rates between 80 and
120%. All the reagents and chemicals employed in the process were of analytical grade.
Soil water content (SWC) and bulk density (BD) were determined using the 105 ◦C drying
method. Total porosity (TP; %) was calculated using soil BD and particle density (PD), with
an average PD value of 2.65 g·cm−3. The formulas used to derive soil capillary porosity
(CP; %), non-capillary porosity (NCP; %) [39], and soil water storage (SWS; mm) [40] were
as follows:

BD =
mass of soil (g)

volume of soil (cm3)
(1)

TP = 1 − BD
PD

(2)

CP = CMC × BD (3)

NCP = TP − CP (4)

SWS = SWC × BD × h × 10−1 (5)

where CMC is the capillary moisture capacity (%), h is soil depth (cm), and 10−1 (mm/cm)
is the unit conversion factor.

2.4. Statistical Analysis

Statistical analysis, data visualization, and normalization were performed using Mi-
crosoft Excel 2021 (Microsoft, Redmond, WA, USA). Statistical analyses were performed
using R software version 4.3.2 (R Development Core Team 2006) and utilized the “vegan”
package. Redundancy analysis (RDA) and Pearson correlation were utilized to investigate
the relationships between hydrological characteristics and basic soil properties, aiming to
ascertain the primary factors influencing soil water retention. All graphs and charts were
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generated using Origin 2024b (OriginLab, Northampton, MA, USA). The sampling location
map was created using ArcMap 10.8.1.

3. Results and Discussion
3.1. Soil Hydrological Characteristics of Shaded and Sunny Slopes

Figure 2 illustrates the soil hydrological properties at different soil layers on the two
slopes. There was a greater difference in soil hydrological properties between the 10–20 cm
and 0–10 cm layers. The soil water content (SWC) (Figure 2a) and bulk density (BD)
(Figure 2b) at 10–20 cm on the shady slope were significantly higher than those on the
sunny slope, consistent with the soil water storage (SWS) results, with the shady slope
having notably higher SWS (Figure 2g). At various soil depths, the total porosity (TP)
(Figure 2c) and non-capillary porosity (NCP) (Figure 2f) of the shady slope soil were higher
than those of the sunny slope, while the capillary porosity (CP) (Figure 2e) was higher on
the sunny slope. The capillary moisture capacity (CMC) (Figure 2d) tended to be higher on
the sunny slope, with the difference being more pronounced in the 10–20 cm soil layer.
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In view of the influence of slope aspect on soil temperature and moisture [41,42], one
can deduce that soil hydrological characteristics will also undergo changes accordingly. The
increased solar radiation on the sunny slope enhances soil evaporation, leading to greater
water consumption. Studies in arid and semi-arid regions have also reported higher soil
evaporation rates on sunny slopes compared to shady slopes [43,44], ultimately resulting
in lower soil moisture content on sunny slopes under the same precipitation conditions.
This is consistent with our research findings, where we observed higher soil water storage
on shady slopes than on sunny slopes in the 0–20 cm layer (Figure 2g), with significant
differences, particularly at the 10–20 cm soil depth. This contrasts sharply with earlier
findings indicating that the field capacity of sunny slope soils is higher than that of shady
slope soil [20,45]. Generally, soil bulk density (BD) and total porosity are the main factors
affecting plant traits [46]. The higher soil water retention capacity on sunny slopes may
be attributed to greater vegetation height and above-ground biomass, as well as a lower
rainfall infiltration capacity.

3.2. Soil Physicochemical Properties and Trace Element Contents on Shaded and Sunny Slopes

The general soil physicochemical properties and trace element contents (K, Ca, Fe,
Cr, Mn, Ni, Cu, Zn, Pb) of the two slope aspects are shown in Table 2. The pH values
of the soils on both slopes are slightly alkaline, which is consistent with the calcareous
soil background of the area. The electrical conductivity (EC) of the shady slope soil is
significantly higher than that of the sunny slope. Since electrical conductivity reflects the
soil’s ability to conduct an electric current, the increase in EC is likely influenced by changes
in soil hydrology and chemical substances [47]. The soil organic matter (SOM) content
on both slopes is significantly lower than the background value for Gansu Province, with
the sunny slope showing notably higher SOM compared to the shady slope. The average
CaCO3 content is higher than the background value for Gansu soils, indicating an alkaline
soil environment, which can improve soil structure and stability but may also affect nutrient
supply and soil fertility in complex ways.

The trace element contents on both slopes are significantly lower than the background
values for Gansu Province, possibly due to low availability and the rapid consumption
of trace nutrients by plants, leading to deficiencies. However, Cr and Pb concentrations
are higher, reaching risk levels according to screening standards, which may be related to
irrigation with reclaimed water, indicating a risk of heavy metal pollution in the study area.
Additionally, the concentrations of nutrients such as K, Ca, Fe, and Mn are relatively high
on both slopes, with Fe concentrations being 11.7–16.8 times higher and Mn concentrations
1.4–1.9 times higher than the background values for Gansu soils. Iron is a major limiting
factor for sustainable crop growth in soils with coarse texture, low organic matter content,
high CaCO3 content, and high pH [48]. The concentrations of other trace elements (Ni, Cu,
Zn) show little difference from the background values.

Soil exhibits considerable heterogeneity and variability in its physical and chemical
characteristics. Soil characteristics vary by soil type and location, reflecting differences in
parent material, climate, and land use. Understanding soil property variations is crucial as
they determine the productivity and utilization of the area [49]. Forest stands composed
of different tree species have varying litter quality and root exudates, which ultimately
lead to changes in soil properties [50]. Soil physicochemical properties can effectively
improve various soil functions during vegetation restoration [51]. Soil EC is considered
the most important property distinguishing constant land use types [52], with the higher
electrical conductivity in the surface soil of abandoned lands possibly due to enhanced
capillary action from vegetation removal or loss. This further increases salt accumulation
in the surface soil due to reduced precipitation and increased evaporation from deeper
soil layers [53]. Compared to EC, soil pH and BD show minor differences with soil depth
across land use types, consistent with previous studies conducted in similar areas on the
Chinese Loess Plateau [54–56]. Soil organic matter is the most discriminative variable with
soil depth. Soil organic carbon is the largest carbon pool in terrestrial ecosystems, playing
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a crucial role in balancing soil multifunctionality and serving as a key indicator of soil
functions [57,58]. The low organic matter content in these soils is due to the prevailing
arid and semi-arid climate conditions, limiting the contribution of soil organic matter to
the total and available trace nutrients [59]. The presence of calcium carbonate affects the
availability of certain nutrients. For instance, CaCO3 can enhance the availability of calcium
and magnesium but may reduce the availability of phosphorus and some trace nutrients
(such as Fe, Mn, Zn, Cu) due to higher pH levels. While moderate CaCO3 content benefits
soil fertility, excessively high levels can lead to low soil fertility, particularly in arid and
semi-arid regions, where excessive CaCO3 can cause soil hardening and reduced nutrient
supply [60].

Table 2. Soil physicochemical properties and heavy metal content statistics for two slopes.

Slope Min Max Mean SD CV (%) Background Value a

pH Shaded 8.02 9.04 8.58 0.25 2.93
8.4Sunny 7.98 9.95 8.68 0.34 3.88

EC
(µS/cm)

Shaded 143.4 1822.0 802.9 506.0 63.0
NASunny 107.8 1871.0 323.1 333.9 103.3

SOM
(g/kg)

Shaded 0.002 0.042 0.023 0.011 48.0
8.0Sunny 0.031 0.087 0.055 0.012 21.1

CaCO3
(%)

Shaded 13.77 16.07 15.50 0.0072 4.67
11.8Sunny 13.84 16.11 15.42 0.0057 3.68

K
(mg/kg)

Shaded 173 246 212.7 13.7 6.4
NASunny 192 252 215.3 12.6 5.8

Ca
(mg/kg)

Shaded 656 1229 867.1 121.3 14.0
NASunny 648 1031 793.4 78.2 9.9

Fe
(mg/kg)

Shaded 330 438 387.1 26.1 6.7
28.1Sunny 332 473 384.9 26.3 6.8

Cr
(mg/kg)

Shaded 64.2 79.0 71.1 4.8 6.8
70.2Sunny 55.9 113.0 74.4 10.1 13.6

Mn
(mg/kg)

Shaded 647.8 760.6 719.0 32.6 4.5
464Sunny 639.7 872.3 736.2 51.3 7.0

Ni
(mg/kg)

Shaded 30.3 46.2 37.7 3.3 8.7
35.2Sunny 31.2 47.1 37.0 3.4 9.2

Cu
(mg/kg)

Shaded 24.7 44.5 31.4 3.5 11.2
20.1Sunny 25.4 36.2 29.9 2.6 8.5

Zn
(mg/kg)

Shaded 58.2 121.7 71.5 8.7 12.1
68.5Sunny 62.0 97.1 72.8 5.2 7.1

Pb
(mg/kg)

Shaded 19.0 45.1 23.1 3.7 16.0
18.8Sunny 20.3 39.6 23.5 3.0 12.9

CV: Coefficient of variation, SD: standard deviation, NA: no data. a: Gansu Province soil background value
(CNEMC, 1995).

The slope aspect causes changes in environmental factors, significantly influencing soil
properties [20,55,61]. We found that the soil organic matter (SOM) content in the 0–20 cm
soil layer was significantly higher on sunny slopes compared to shady slopes. This finding is
consistent with previous studies, where the SOM on north-facing slopes was lower than that
on south-facing slopes [20,55]. In relatively dry regions, plant growth is more constrained by
soil moisture than soil temperature. Therefore, the higher soil moisture on southern slopes
can stimulate microbial activity and vegetation growth, promoting litter decomposition
and nutrient cycling [61], ultimately leading to higher SOM on southern slopes.

In contrast, in our study, plant growth was primarily limited by temperature and
soil moisture. The extended solar exposure and elevated temperatures characteristic
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of sunny slopes significantly stimulate plant growth, which consequently results in a
substantial increase in vegetative biomass and accelerates the decomposition of organic
litter. Therefore, the elevated SOM content on south-facing slopes is likely attributed to the
increased vegetation biomass and the accelerated decomposition of litter, as the majority
of soil carbon inputs are derived from plant biomass [62]. Additionally, aspect-induced
environmental variations significantly influence SOM levels by modulating vegetation
biomass. An earlier study reported that the amount of direct solar radiation received by
south-facing slopes, particularly during the peak radiation period in summer, is nearly
three times that of north-facing slopes [9]. Higher solar radiation can promote root biomass
growth, consequently leading to higher soil carbon content on sunny slopes compared to
shaded slopes [61]. Moreover, soil bulk density (BD) also undergoes changes depending on
the slope aspect. The topsoil BD (0–20 cm) on shady slopes is higher than on sunny slopes
(Figure 2b). The lower BD on sunny slopes might be related to the higher SOM content [63].

3.3. Relationship between Soil Hydrological Properties and Soil Characteristics on Shaded and
Sunny Slopes

Redundancy analysis (RDA) was employed to detect the contributing factors of each
environmental variable (soil properties). When the angle between the response variable (soil
hydrological properties) and the environmental variables approached 90◦, the explanatory
power of the environmental variables on the response variable was minimal. Therefore,
using the RDA method, irrelevant variables can be removed to improve the model and
reduce variance. As shown in Figure 3, soil properties were significantly correlated with
the first RDA axis (RDA1) and weakly correlated with the second RDA axis (RDA2). The
RDA1 and RDA2 axes collectively accounted for a remarkable 99.99% of the total variability
observed in the soil’s hydrological characteristics. Pearson correlation analysis indicated
that soil SWS on the shady slope (Figure 4a) was significantly positively correlated with EC
and CP, and significantly negatively correlated with CaCO3 content. This variation was not
evident on the sunny slope (Figure 4b).

Forests 2024, 15, 1136 9 of 14 
 

 

 
Figure 3. Redundancy analysis of soil hydraulic and physicochemical properties between shaded 
slope and sunny slope. Note: The environmental variable was set to soil physicochemical properties 
and the response variable was set to soil hydrological properties. The percentages of total variation 
explained by each RDA axis are indicated by the values on the respective axes. 

 
Figure 4. Correlation analysis was performed on soil hydraulic and physicochemical properties, 
comparing shaded slope (a) and sunny slope (b). Note: SWC: soil water content, BD: soil bulk den-
sity, TP: soil total porosity, CP: soil capillary porosity, NCP: non-capillary porosity, SWS: soil total 
carbon, SOM: soil organic matter. Significant correlations at p ≤ 0.01 are indicated by white asterisks. 

Soil hydrological properties are substantially affected by the physicochemical attrib-
utes of the soil [64]. Changes in soil texture, soil porosity, bulk density (BD), and soil or-
ganic matter (SOM) alter soil water retention and hydraulic conductivity, thereby chang-
ing the availability of soil moisture [65], which aligns with our findings. Soil pore structure 
dictates the rate of water ingress and percolation through the soil [66]. The restoration of 

Figure 3. Redundancy analysis of soil hydraulic and physicochemical properties between shaded
slope and sunny slope. Note: The environmental variable was set to soil physicochemical properties
and the response variable was set to soil hydrological properties. The percentages of total variation
explained by each RDA axis are indicated by the values on the respective axes.



Forests 2024, 15, 1136 9 of 13

Forests 2024, 15, 1136 9 of 14 
 

 

 
Figure 3. Redundancy analysis of soil hydraulic and physicochemical properties between shaded 
slope and sunny slope. Note: The environmental variable was set to soil physicochemical properties 
and the response variable was set to soil hydrological properties. The percentages of total variation 
explained by each RDA axis are indicated by the values on the respective axes. 

 
Figure 4. Correlation analysis was performed on soil hydraulic and physicochemical properties, 
comparing shaded slope (a) and sunny slope (b). Note: SWC: soil water content, BD: soil bulk den-
sity, TP: soil total porosity, CP: soil capillary porosity, NCP: non-capillary porosity, SWS: soil total 
carbon, SOM: soil organic matter. Significant correlations at p ≤ 0.01 are indicated by white asterisks. 

Soil hydrological properties are substantially affected by the physicochemical attrib-
utes of the soil [64]. Changes in soil texture, soil porosity, bulk density (BD), and soil or-
ganic matter (SOM) alter soil water retention and hydraulic conductivity, thereby chang-
ing the availability of soil moisture [65], which aligns with our findings. Soil pore structure 
dictates the rate of water ingress and percolation through the soil [66]. The restoration of 

Figure 4. Correlation analysis was performed on soil hydraulic and physicochemical properties,
comparing shaded slope (a) and sunny slope (b). Note: SWC: soil water content, BD: soil bulk density,
TP: soil total porosity, CP: soil capillary porosity, NCP: non-capillary porosity, SWS: soil total carbon,
SOM: soil organic matter. Significant correlations at p ≤ 0.01 are indicated by white asterisks.

Soil hydrological properties are substantially affected by the physicochemical at-
tributes of the soil [64]. Changes in soil texture, soil porosity, bulk density (BD), and soil
organic matter (SOM) alter soil water retention and hydraulic conductivity, thereby chang-
ing the availability of soil moisture [65], which aligns with our findings. Soil pore structure
dictates the rate of water ingress and percolation through the soil [66]. The restoration
of plants prompts a decrease in BD and a consequential increase in soil porosity, thereby
enhancing soil permeability and promoting optimal water retention [67,68]. CP and NCP
mainly reflect micropores and macropores, respectively [69]. The distribution of soil pore
sizes has a significant impact on the soil hydrological characteristics [70]. Soil moisture
content is highly correlated with Fe content [71]. Studies have shown that organic matter
content is significantly positively correlated with Fe concentration in gravel soils, which
may hinder plants’ absorption of water-soluble organic matter due to low organic matter
content, thus affecting known plant root growth and germination [72,73].

3.4. Implications for Soil and Water Conservation and Vegetation Restoration in Semi-Arid Regions

The Loess Plateau is an important area for vegetation restoration [74]. The water
retention capacity of artificial forests has been vital in addressing water scarcity on the
Loess Plateau [75], as forest restoration enhances soil retention properties by physically
aggregating soil particles [76,77]. The results indicate that the soil water content (SWC)
on shady slopes is significantly higher than on sunny slopes (Figure 2g), suggesting that
vegetation on shady slopes may be less susceptible to soil-moisture stress and soil erosion.
Higher capillary moisture capacity (CMC) on sunny slopes indicates a greater tolerance
of vegetation to drought and high temperatures on these slopes. Studies have shown that
implementing soil and water conservation measures can significantly improve most soil
physicochemical properties, thereby enhancing soil fertility and vegetation biomass [78].
In addition, soil on different slope aspects exhibits variations in particle size distribution.
Within the 0–50 cm soil layer, the clay content on the north-facing (NF) aspect is higher than
on the south-facing (SF) aspect, with significant differences, particularly in the 20–30 cm
and 30–40 cm layers [40]. The slightly elevated clay content contributes to the greater water
retention capacity of the NF soil [79]. However, compared to soil grain size, SOM is the
predominant factor influencing water retention in alpine soils [8]. Therefore, this study
provides important insights for forestland restoration on the Loess Plateau.
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4. Conclusions

This study investigated the relationship between soil hydrological properties and
soil physicochemical characteristics on different slope aspects in semi-arid mountainous
forestlands of the northwest region. Significant differences were observed between shady
and sunny slopes. Soil water storage capacity in the 0–20 cm layer was markedly higher
on shady slopes compared to sunny slopes, while soil water retention capacity showed
the opposite trend. These findings were consistent with the results for soil capillary
porosity (CP) and electrical conductivity (EC). Therefore, it can be concluded that soil
water retention and supply capacity are related to CP and EC, indicating that the topsoil on
shady slopes may be less susceptible to soil erosion and moisture stress. Additionally, the
study demonstrated that slope aspect significantly influences soil hydrological properties,
altering soil characteristics such as soil organic matter (SOM), with sunny slopes having
significantly higher SOM content than shady slopes. Nutrient elements like Ca, Mn, Cu,
and Zn also showed substantial differences between slopes.

In comparison with previous studies, slope is identified as an important factor influ-
encing changes in soil hydrological properties, though it is not the sole factor. As drought
intensifies, forests in water-stressed areas will face more severe threats. This study will
establish a theoretical basis for predicting the responses, adaptations, and feedback of soil
hydrological properties, physical and chemical properties, and nutrient elements to slope
changes in this region. Thus, when restoring degraded forests and grasslands in semi-arid
ecosystems and formulating soil water conservation strategies, slope aspect should be con-
sidered. Moreover, obtaining more accurate and deeper soil data is crucial for conducting
soil hydrological studies and managing water resources effectively.
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