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Abstract: Forest fire monitoring plays a crucial role in preventing and mitigating forest disasters.
Early detection of forest fire smoke is essential for a timely response to forest fire emergencies. The key
to effective forest fire monitoring lies in accounting for the various levels of forest fire smoke targets
in the monitoring images, enhancing the model’s anti-interference capabilities against mountain
clouds and fog, and reducing false positives and missed detections. In this paper, we propose an
improved multi-level forest fire smoke detection model based on You Only Look Once v5s (Yolov5s)
called SIMCB-Yolo. This model aims to achieve high-precision detection of forest fire smoke at
various levels. First, to address the issue of low precision in detecting small target smoke, a Swin
transformer small target monitoring head is added to the neck of Yolov5s, enhancing the precision of
small target smoke detection. Then, to address the issue of missed detections due to the decline in
conventional target smoke detection accuracy after improving small target smoke detection accuracy,
we introduced a cross stage partial network bottleneck with three convolutional layers (C3) and a
channel block sequence (CBS) into the trunk. These additions help extract more surface features
and enhance the detection accuracy of conventional target smoke. Finally, the SimAM attention
mechanism is introduced to address the issue of complex background interference in forest fire smoke
detection, further reducing false positives and missed detections. Experimental results demonstrate
that, compared to the Yolov5s model, the SIMCB-Yolo model achieves an average recognition accuracy
(mAP50) of 85.6%, an increase of 4.5%. Additionally, the mAP50-95 is 63.6%, an improvement of 6.9%,
indicating good detection accuracy. The performance of the SIMCB-Yolo model on the self-built forest
fire smoke dataset is also significantly better than that of current mainstream models, demonstrating
high practical value.

Keywords: SIMCB-Yolo; forest fire smoke detection; SimAM; Swin transformer

1. Introduction

Forests are often referred to as the “lungs of the Earth”, serving not only significant
economic purposes [1] but also providing vital ecosystem services and holding an indis-
pensable position within global ecosystems [2]. However, in recent years, as a result of
climate change, the scale, intensity, and duration of forest fires have escalated [3], posing
significant challenges to the conservation and protection of forests.

Forest fires are difficult to detect in their early stages due to dense forest vegetation
cover. However, under the influence of forest environmental humidity, the insufficient
combustion of combustibles can produce a small amount of smoke. Hence, smoke detection
in forest fires is crucial for enhancing early warning capabilities. Traditional methods, such
as manually constructed watchtowers, rotating patrols, and real-time observation by forest
rangers, have limited detection range and duration and require significant human and
material resources. Consequently, detecting and identifying forest fire smoke through
images or videos captured by various cameras [4] proves to be an effective approach.
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Early algorithms for forest fire detection primarily identified fires by analyzing the
texture and color characteristics of smoke. Vicente et al. [5] developed an automated
smoke detection algorithm for early forest fires that combined pixel and spectral analysis.
Toreyin et al. [6] utilized wavelet transforms to compute wavelet energy based on smoke
texture features, thus improving the accuracy of fire detection. This method significantly
enhanced the efficiency of automatic monitoring. Huang et al. [7] developed a texture
analysis algorithm using texture image classification (LBP) and a graph pyramid model
that took into account the impact of mountain clouds and fog, effectively lowering the false
alarm rate in forest fire detection. While these early algorithms for forest fire detection
yielded satisfactory outcomes, they all required sophisticated image processing methods,
leading to suboptimal generalization and robustness [8].

In recent years, significant advancements in deep learning technology for image pro-
cessing have led to its widespread application in target detection. Based on the nature of
their calculation methods, deep learning technologies can be classified into two categories:
two-stage regression detection methods, including Faster R-CNN [9], Libra R-CNN [10],
and R-FCN [11], and single-stage regression detection methods, such as RetinaNet [12], the
Yolo series [13–15], and EfficientDet [16]. Building on these methods, researchers have de-
veloped numerous algorithms for detecting forest fire smoke, achieving impressive results.
Zhao et al. [17] utilized Fast R-CNN as the foundational framework and introduced a forest
fire smoke recognition method that integrates environmental information by constructing
a multi-level region of interest pool structure. This approach significantly lowered the
false alarm rate for forest fire smoke. Khan et al. [18] proposed a forest fire detection
model utilizing a convolutional neural network (CNN) based on the MobileNet model.
They incorporated the symmetrical feature image extracted by the fully connected layer for
enhanced forest fire detection. Their model’s detection accuracy was significantly improved
compared to other CNN models. Pang et al. [19] introduced an anchor-free target detection
algorithm based on an encoder–decoder structure. They designed the remaining effective
channel attention block as the decoding unit, enhanced it using an attention-based adaptive
fusion residual module, and incorporated the CA attention mechanism. This algorithm
demonstrates high accuracy and recall rates, significantly improving the detection accuracy
of early forest fire smoke. Qian et al. [20] combined two independent weak supervision
models, Yolov5 and EfficientDet, and applied the weighted box fusion algorithm (WBF)
to process the prediction results. This approach enhanced both the speed and accuracy of
forest fire smoke detection. These methods have performed well on self-made or public
datasets, proving to be highly significant for early forest fire detection.

Given the sudden onset of forest fires, detection equipment captures forest fire smoke
targets of varying sizes. While existing models have achieved high accuracy in detecting
conventional smoke targets, there is still a need to improve the detection accuracy for small
smoke targets. To address the issue of low precision in detecting small smoke targets, many
scholars have developed specialized algorithms for small target smoke detection. Zhao
et al. [21] extended the feature extraction network of Yolov3 into three dimensions and
enhanced the model’s prediction performance using a feature pyramid. They proposed a
target detection model specifically for small target forest fires that demonstrated significant
advantages in detecting small forest fire targets. Guo et al. [22] introduced a more accurate
small target detection mechanism (MASD) combined with a multi-scale feature fusion
(MCF) path. This approach fused image semantic features with location information and
incorporated the SimAM attention mechanism. They designed a small target detection
model for UAV aerial forest fire images, significantly enhancing the detection accuracy
and speed for small target forest fire smoke. Hui et al. [23] designed a small target forest
fire smoke detection model that leverages the strengths of the Yolov5 structure. They
incorporated a spatial graph convolution operation based on the message passing neural
network mechanism and introduced the multi-head attention mechanism before each
detection head of Yolov5. This model demonstrated excellent accuracy using a self-made
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small target forest fire smoke dataset. These algorithms for detecting small target forest fire
smoke offer high detection accuracy and practical value.

Currently, scholarly research on forest fire smoke detection primarily focuses on
enhancing the accuracy of small target smoke detection, as well as improving the overall
detection accuracy, speed, and anti-interference capabilities of forest fire smoke detection
methods. Research on balancing the detection accuracy of forest fire smoke for targets of
various sizes and reducing false positives and missed detections remains insufficient. Based
on this, this paper proposes an improved algorithm based on Yolov5s called SIMCB-Yolo.
This algorithm enhances the detection accuracy of smoke targets at various levels and
improves the model’s anti-interference capability in complex natural landscapes, such as
clouds and fog, thereby reducing false positives and missed detections of forest fires. The
specific contributions of this article are as follows:

• This study presents a multi-tiered forest fire smoke detection model based on Yolov5s
that is designed to accurately detect small target smoke in the early stages of forest
fires. It offers new insights and approaches for fire detection and monitoring.

• To improve the model’s accuracy in detecting small target smoke, we incorporated
the Swin transformer module into the neck of Yolov5s, blending its output feature
maps into the detection layer to bolster the model’s capability to extract pixel-level
feature information, thereby improving its detection accuracy for small target smoke
and significantly reducing missed detections.

• To balance the model’s accuracy in detecting general target smoke, we incorporated a
C3 block and CBS block into the main body of Yolov5s, which not only expanded the
model’s receptive field but also enriched the information it extracted.

• To bolster the model’s resilience against complex natural backgrounds, such as moun-
tain clouds and fog, we incorporated the SimAM attention mechanism at the end
of the backbone network. This enhancement enables the model to more effectively
identify regional features resembling smoke, mitigating interference from complex
environmental backgrounds, and thereby significantly improving detection accuracy
while reducing false positives.

2. Data and Methods
2.1. Data

Forest fire smoke recognition requires adequate data support. To this end, we utilized
Python web scraping techniques to obtain 2000 images related to forest fires from the
internet, along with an additional 400 images of backgrounds in forest areas. Among these
images are also 100 pictures of fog that are easily confused with smoke from fires. Some
samples of the dataset are shown in Figure 1.
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Figure 1. Samples from the smoke dataset. (a) Close-up of large-scale smoke. (b–d) Close-up,
mid-range, and distant small target smoke. (e) Forest areas without fire occurrence. (f) Mountain
clouds and fog that are easily confused with forest fire smoke.
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To further expand the dataset, we applied data augmentation techniques, including
rotation, blurring, and noise addition, to the collected images [24], aiming to simulate
the complex interference backgrounds likely encountered in practical forest fire smoke
detection scenarios (as show in Figure 2). The final dataset comprises 7200 images. Prior to
conducting the experiment, we reviewed key literature on dataset partitioning [25,26]. We
chose to divide the dataset into an 8:1:1 ratio, allocating 80% of the data for training, 10%
for validation, and the remaining 10% for testing.
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Figure 2. Schematic diagram of data augmentation. (a) Image without any operation (b) Add 10%
salt and pepper noise to the image. (c) Rotate the image counterclockwise/counterclockwise by
45 degrees. (d) Grayscale the image. (e) Blur the image using a fuzzy convolution with a size of 255.

2.2. Methods
2.2.1. Yolov5s

The improvements in this article are based on the lightweight Yolov5s model from
the Yolov5 series. Yolov5, developed by Ultralytics in June 2020, is a deep learning model
widely used in the field of image processing [13,14]. Due to its excellent detection efficiency
and accuracy, Yolov5 was widely adopted and improved upon shortly after its release. The
Yolov5 model primarily comprises four components: input, backbone, neck, and prediction.

In the Yolov5s model, the input part employs adaptive image scaling to reduce in-
terference from image noise and other irrelevant information. The backbone primarily
consists of C3 [15], SPPF, and CBS [27] components. CBS, as the basic convolution unit in
Yolov5s, comprises a 2D convolution layer (Conv), batch normalization layer (BN), and
SiLU activation function. The C3_1_x and C3_2_x, based on CSPNet [27], are mainly used
for feature fusion and downsampling, enhancing the feature extraction capabilities of the
backbone while reducing the number of parameters. The spatial pyramid pooling improve-
ment (SPPF) is located at the end of the backbone and extracts global features. It evolved
from SPP but is more efficient than its predecessor. The neck uses a PANet structure to
merge features extracted from the backbone with those from the detection layers, thereby
obtaining richer and more detailed features. The final prediction part consists of three
detection layers for object detection. A detailed diagram of the Yolov5s network structure
is shown in Figure 3.

The backbone and neck shown in Figure 3 play an extremely important role in feature
extraction and fusion. The backbone utilizes a deep convolutional network to extract low-
level, intermediate, and high-level features from the input image. Among them, low-level
features include edges and textures, intermediate features include the shape and contour of
objects, and high-level features involve the complex patterns and semantic information of
objects. The neck provides rich feature representation for the head by further integrating
and processing these features. Specifically, the neck employs the feature pyramid network
(FPN) and path aggregation network (PaNet) to achieve multi-scale feature fusion and
context information aggregation. This approach enhances the model’s ability to detect
objects of various sizes, thereby improving detection accuracy and robustness. Through
the synergy of the trunk and neck, Yolov5s can efficiently extract and utilize multi-level
features from images to achieve accurate target detection.
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Figure 3. Yolov5s Network architecture diagram. The whole network is divided into the backbone,
neck and head. The * sign in the figure indicates that the module can be repeated many times.

2.2.2. Swin Transformer

In today’s image processing tasks, transformers play an essential role. The Swin trans-
former, proposed by Liu et al. in 2021, is a compact visual transformer [28] that, compared
to the original transformers used in natural language processing [29], adopts a hierarchical
structure to avoid the high computational overhead associated with global self-attention.

The Swin transformer block consists of four main components: a multi-layer percep-
tron (MLP), window-based multi-head self-attention (W_MSA), shifted window multi-head
self-attention (SW_MSA), and layer normalization (LN). The backbone structure is depicted
in Figure 4.
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Within the Swin transformer, input features are first normalized and subsequently
processed through a shifted window attention mechanism. This process involves direct
residual computations, followed by subsequent learning and residual operations within
the perceptron layer and the window attention matrix layer. The computed outputs from
these operations are as follows:

ẑl = W_MSA
(

LN
(

zl−1
))

+ zl−1 (1)

zl = MLP
(

LN
(

ẑl
))

+ ẑl (2)

ẑl+1 = SW_MSA
(

LN
(

zl
))

+ zl (3)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (4)

where zl represents the features extracted from forest fire smoke images by various modules.
In this study, we incorporate the Swin transformer as a standalone module into the

neck structure of Yolov5s. By integrating this multi-head attention mechanism, we enhance
the extraction of correlated features among neighboring pixels in small target smoke,
thereby improving the model’s capability to detect smoke from distant forest fires.

When the input feature passes through the swing transformer block shown in Figure 4,
it first passes through LN and then calculates the attention score using W_MSA to achieve
efficient feature extraction. The further optimized features are input into SW_MSA, and the
context information exchange between features is enhanced through window offset. The
enhanced features are further processed and transformed using MLP. There are residual
connections behind each main module (W_MSA and MLP) to retain input information,
promote gradient transmission, and ultimately achieve the purpose of improving the ex-
pression ability and training stability of the model. These steps enable the Swin transformer
block to efficiently extract and fuse multi-level features, thereby enhancing the model’s
representation capability.

2.2.3. SimAM

Image datasets of forest fire smoke typically contain a large amount of background
interference, such as sun glow and mountain fog. These factors increase the difficulty
of target monitoring. When employing methods such as adding C3 and CBS blocks to
deepen the depth of the network backbone to capture more features, this also makes the
network susceptible to these interference signals. Moreover, adding more network layers
could result in some overfitting, potentially impacting the model’s effectiveness in smoke
detection. To tackle this issue, we introduced the SimAM attention mechanism [31]. This
mechanism constructs three-dimensional weights without adding parameters, enhances the
unit’s downsampling capability, and thereby improves the model’s efficiency in extracting
features related to the similarity between smoke instances. The relevant computation
formula is as follows:

et(wt, bt, y, xi) =
(
yt − t̂

)2
+

1
M − 1

M−1

∑
i=1

(y0 − x̂i)
2 (5)

Here, t̂ = wt + bt and x̂i = wtxi + bt are linear transformations of t, while t and xi
represent the target neurons and other neurons within a single channel of the input features,
respectively. M is the number of neurons in the channel, and wt and bt are the weights
required for the linear transformation. The specific calculation formulas are as follows:

wt = − 2

(t − µ̂)2 + 2σ̂2 + 2λ
(t − µt) (6)
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bt = −1
2
(t + µt)wt (7)

µ̂ =
1

M − 1

M−1

∑
i=1

xi (8)

σ̂2 =
1

M − 1

M−1

∑
i=1

(xi − µ̂)2 (9)

Here, µ̂ and σ̂2 represent the mean and variance, respectively, calculated for the
neurons in the channel, excluding t. The distribution patterns of the two follow a normal
distribution. After processing with SimAM, the complete three-dimensional image weights
are obtained, as illustrated in Figure 5.
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Figure 5. The structure diagram of SimAM [32].

This module converts feature x into three-dimensional weights, which are then multi-
plied by the target neuron’s weights and the initial feature map’s features to generate the
final output feature map. In each subfigure, the consistent color signifies that one scalar is
assigned to each channel, spatial location, or individual point within those features [31].

2.2.4. The Improved Forest Fire Smoke Recognition Model

By incorporating the Swin transformer [28] and the SimAM attention mechanism [31],
we have significantly enhanced the backbone and neck of the Yolov5s model. This inte-
gration has resulted in the creation of an innovative forest fire smoke detection model, as
depicted in Figure 6.

At the end of the backbone, we introduced a CBS block [27] and a C3 block [15] to
enhance the extraction of smoke features. To avoid extracting excessive redundant features
unrelated to forest fire smoke detection, we incorporated a SimAM attention mechanism
after the final C3 block. This mechanism helps suppress irrelevant features and enhances
the network’s ability to extract smoke-related information, as shown in Figure 6.

In the neck, we added an upsampling and concatenation module at the entry point.
This module links the feature map output from the final C3 module (eighth layer) in the
backbone to the upsampled feature map, ensuring that the added C3 and CBS modules
do not introduce dimensional computation errors. Prior to the final concat block, we
integrated an extra concat block and upsample block to link the feature maps drawn from
the newly incorporated C3 and CBS modules in the backbone to the neck. Ultimately, we
added a Swin transformer block at the neck’s end, using feature maps from layers 24, 27,
30, and 33 as inputs for the smoke detection layer. By preserving the original Yolov5s
detection structure and incorporating the output from the Swin transformer block as new
detection feature maps, the model’s accuracy in detecting small target smoke is significantly
enhanced.

In Figure 6, the red box highlights several crucial aspects of network enhancement:
1⃝~ 2⃝ Upgrading the neck region to capture necessary feature maps for small object detec-

tion, 3⃝ Enhancing the neck region to connect the feature maps, and 4⃝~ 5⃝ Increasing the
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backbone capacity to extract smog features more efficiently. These enhancements have sig-
nificantly bolstered the model’s capability to efficiently detect and analyze smoke features.
We call this improved Yolov5s model SIMCB-Yolo.
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3. Results
3.1. Implement Details

Table 1 displays the experimental setup for our work, while Table 2 lists some of the
hyperparameters utilized during training. Additionally, we employed the Yolov5s model
as our baseline model to assess the advantages of model enhancements throughout the
training phase.

Table 1. Parameters of study resources.

Train Environment Details

Programming language Python3.9.18
Operating system Centos7

Deep learning framework Pytorch1.12.0+cu102
Running device Tesla V100
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Table 2. Initial training hyperparameters.

Training Parameters Details

Epchos 300
Batch size 32
Image size 640

Learning rate 0.01
Optimizer SGD
Patience True

3.2. Evaluation Metrics

Given that Yolo series models employ intersection over union (IOU) to gauge training
effectiveness, this study assesses the final recognition performance of the model using
metrics such as precision (P), recall (R), mean average precision (mAP@0.5), and frames per
second (FPS).

Before outlining these evaluation metrics, the study first defines a set of acronyms as
shown in Table 3.

Table 3. Metrics used to evaluate the models.

Symbols Meanings

TP The count of samples where the model accurately detects smoke.
FP The quantity of samples where the model incorrectly identifies background as smoke.
FN The count of samples where the model identifies smoke as background.
TN The quantity of samples where the model correctly identifies background.
AP The area beneath the precision–recall curve, indicative of the average precision in smoke detection.

Precision represents the proportion of correctly identified smoke samples relative to
the total number of samples detected as smoke by the model. This metric assesses the
model’s accuracy in smoke detection. The formula used to calculate precision is as follows:

P =
TP

FP + TP
(10)

Recall quantifies the percentage of smoke samples accurately detected by the model
out of all smoke samples, assessing the model’s smoke recognition capabilities. The formula
for this calculation is outlined below:

R =
TP

TP + FN
(11)

mAP@0.5 represents the average detection rate when setting the IOU threshold at 0.5
and is typically derived using precision and recall. The formula for computation is outlined
as follows:

AP =
∫ 1

0
P(r)dr (12)

mAP = ∑C
i=1

APi
C

(13)

where C is the number of samples.
FPS indicates the quantity of images processed by the model per second, assessing the

operational efficiency of the model. The formula for this calculation is detailed below:

FPS =
N
T

(14)

where N represents the number of images, and T denotes the time required to process
these images.
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3.3. Impact of Different Swin Transformer Improvements

There are two methods for incorporating a Swin transformer block. One approach in-
volves using the Swin transformer block as the main unit for feature extraction, substituting
all C3 blocks within the model. The other involves incorporating the Swin transformer as a
standalone module at the end of the neck, as depicted in Figure 6. To ascertain which strat-
egy most significantly enhances detection accuracy, we conducted separate experiments for
each approach and documented their impact on forest fire smoke detection accuracy. The
findings are displayed in Table 4.

Table 4. Comparison of different Swin transformer improvement methods.

Improvement Methods Precision Recall mAP50 mAP50-95 FPSbs=1

Yolov5s 0.895 0.793 0.811 0.567 112
Yolov5s+Swin 0.859 0.784 0.836 0.594 86

Yolov5s+Swin_RE_C3 0.846 0.711 0.755 0.468 71

Table 4 shows that Yolov5s+Swin outperforms Yolov5s+Swin_RE_C3 in terms of
performance metrics. While the Yolov5s+Swin shows a slight reduction in detection
precision and recall compared to the benchmark model, the two critical metrics, mAP@50
and mAP@50-95, have improved by 2.5% and 2.7% respectively. We contend that integrating
the Swin transformer block improves the model’s capability to extract smoke features
from small targets. In this scenario, the model might incorrectly identify smoke with
features similar to clouds, fog, etc., as background. This misrecognition diminishes the
model’s capability to accurately recognize such features, consequently impacting the overall
precision and recall of the model. However, mAP@50 and mAP@50-95 shows that the
object detection ability of the model has been enhanced, and the recognition accuracy of
multi-level forest fire smoke has been improved. It should be noted that although the
decrease in precision and recall may appear unfavorable, in application, mAP is often seen
as a more comprehensive and important evaluation indicator because it comprehensively
considers the performance of precision and recall. Therefore, although there has been a
decrease in certain indicators, the improvement of Yolov5s+Swin in mAP indicates an
overall improvement in its performance in small target smoke detection tasks.

3.4. Impact of Different Attention Mechanisms

In order to verify whether the precision and recall reduction of Yolov5s+Swin are
indeed due to the insufficient ability to extract smoke features from large targets, we made
targeted improvements to the backbone of the model. We incorporated the C3 block and
CBS block to bolster the model’s capacity to extract smoke features from large targets and
introduced an attention mechanism to enhance the model’s resilience against interference
from cloud and fog backgrounds. We designed and implemented experiments to combine
several commonly used attention mechanisms with the benchmark model Yolov5s to
explore their impact on model performance. The results are shown in Table 5.

Table 5. Comparative analysis of various attention mechanisms.

Improvement Methods Precision Recall mAP50 mAP50-95 FPSbs=1

Yolov5s 0.895 0.793 0.811 0.567 112
Yolov5s+SE 0.884 0.753 0.797 0.545 113
Yolov5s+CA 0.903 0.794 0.816 0.570 116

Yolov5s+SimAM 0.892 0.764 0.798 0.577 111
Yolov5s+CBAM 0.906 0.753 0.810 0.560 114

From Table 5, it is evident that incorporating the squeeze and excitation (SE) [33] and
convolutional block attention module (CBAM) [34] attention mechanisms did not substantially
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enhance the model’s detection performance, though there was a minor increase in processing
speed. The detection performance of models with added coordinate attention (CA) [35] and
SimAM Attention has been improved. This proves that these two attention mechanisms have
a positive effect on model improvement. Therefore, when selecting attention mechanisms,
priority should be given to adding CA and SimAM attention mechanisms.

Figure 7 depicts how the model’s focus shifts in the task of detecting forest fire
smoke under the influence of different attention mechanisms. By observing the changes
in detection focus after integrating different attention mechanisms into the model, we
can more intuitively understand the role of these mechanisms in enhancing the model’s
multi-level forest fire smoke detection accuracy.
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As shown in Figure 7, introducing the SE attention mechanism or SimAM attention
mechanism into the model results in the focus of attention being highly consistent with
the distribution of smoke. In particular, the model using SE attention mechanism shows a
wider range of areas of concern. However, in the detection task involving minimal targets,
such a wide range of areas of concern may lead to inaccurate positioning of minimal
targets [36]. On the other hand, the model with CA or CBAM attention mechanism focuses
on the edge of the image or the edge of the smoke. This primarily occurs because these
mechanisms focus on vital information using channel attention and employ spatial attention
to accentuate key spatial regions on the feature map, thereby overstating the significance
of image and target edge detection. Consequently, in this study, we opted for the SimAM
attention mechanism to more precisely extract characteristics of small target smoke.

3.5. Ablation Experiment

In the preceding sections, we structured experiments from two perspectives: enhanc-
ing the neck network and upgrading the backbone network. This was done to thoroughly
investigate the model’s detection performance on both large and small smoke targets.
Table 4 indicates that enhancing the neck of Yolov5s with Swin improves the model’s capa-
bility to detect small target smoke. Table 5 reflects that the improvement of the backbone
and the attention mechanism combination effectively enhance the detection effect on large
target smoke. However, combining the experimental results from Tables 4 and 5, it can
be inferred that Yolov5+Swim+SimAM and Yolov5s+Swim+CA may achieve excellent
model performance. However, it cannot be ruled out that performance degradation may
occur when two modules are combined. Therefore, we further designed ablation exper-
iments. Four design schemes were obtained by combining four attention mechanisms
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with the Yolo5s+Swin model. Subsequently, we will compare these four schemes with the
benchmark module Yolov5s. The experimental results are shown in Table 6.

Table 6. Ablation experiment comparison results.

Improvement Methods Precision Recall mAP50 mAP50-95 FPSbs=1

Yolov5s 0.895 0.793 0.811 0.567 112
Yolov5s+SE+Swin 0.856 0.763 0.803 0.58 87
Yolov5s+CA+Swin 0.886 0.773 0.815 0.592 73

Yolov5s+SimAM+Swin 0.915 0.794 0.856 0.636 85
Yolov5s+CBAM+Swin 0.827 0.739 0.796 0.594 80

From Table 6, it can be seen that among the four alternative schemes, the Yolov5s+
SimAM+Swin scheme has higher values in all other indicators except for slightly lower FPS
(frame rate per second), which fully indicates that this scheme is the best combination choice.
Compared with the benchmark model Yolov5s, although its FPS has decreased, it shows
superiority in other indicators. Specifically, mAP@50 increased by 4.5%, while mAP@50-95
increased by 6.9%, significantly improving the model’s smoke detection performance.

In order to observe the dynamic changes in smoke detection performance of the
benchmark model Yolov5s and the combination schemes Yolov5s+SimAM+Swin and
Yolov5s+CA+Swin, we plotted the relationship between the number of iterations and the
mAP50 index, as shown in Figure 8.
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From Figure 8, it can be seen that the performance indicators of the Yolov5s, Yolov5s+
CA+Swin, and Yolov5s+SimAM+Swin models during forest fire smoke detection are as
follows: mAP@50 values of all models show an upward trend with the increase in itera-
tion times. Among them, the performance of the Yolov5s and Yolov5s+CA+Swin models
is basically similar. However, when the number of iterations reaches 140 or more, the
Yolov5s+SimAM+Swin model exhibits significant advantages. This result fully demon-
strates that the Yolov5s+SimAM+Swin model performs the best in detecting multi-level
large, medium, and small target smoke with natural landscape interference background
and can meet the needs of our fire smoke detection targets.
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3.6. Comparison

To further evaluate the performance of the SIMCB-Yolo model, we designed a com-
parative experiment. We compared the improved SIMCB-Yolo model with five current
advanced target detection models, including Yolov5s, Yolov8s, SSD, Yolov4 tiny, and Faster
R-CNN, to explore the differences in detection effectiveness for various levels of forest fire
smoke. The comparison results are presented in Table 7.

Table 7. Comparison of forest fire smoke detection effects of different models.

Model mAP50 mAP50-95 FPSbs=1

Yolov5s 0.811 0.567 112
Yolov8s [37] 0.728 0.411 101

SSD [38] 0.773 0.423 103
Yolov4 tiny [15] 0.703 0.416 88

Faster R-CNN [9] 0.847 0.502 54
SIMCB-Yolo 0.856 0.636 85

The results in Table 7 show that the SIMCB-Yolo model outperforms these existing
models in terms of average recognition accuracy mAP50 and mAP50-95. In particular, the
mAP50-95 index is significantly better than other models; for example, it is 22.5% higher than
the Yolov8s model. This shows that the SIMCB-Yolo model has high detection accuracy.

In order to more intuitively compare and display the differences between the SIMCB-
Yolo model and the existing advanced target detection model, we draw the focus heat map
of the model that performs better in the detection and recognition comparative experiments,
so as to observe the detection effect of different models (Figure 9).
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Figure 9. Heat maps of different model detection concerns. From (a–d), the target of forest fire smoke
continues to increase, and the range of smoke continues to expand.

Figure 9 illustrates how each model’s detection focus on forest fire smoke shifts under
varying smoke target conditions. Line (a) clearly shows that when the detection target is
very small, the SSD model’s focus does not encompass the smoke location, whereas the
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SIMCB-Yolo model, Yolov5s, and Faster R-CNN models exhibit similar detection focuses,
completely covering the forest fire smoke location. It is worth noting that with the gradual
increase in the size of the detection target, the focus of each model also began to change, and
there are varying degrees of errors between the focus coverage and the range of the actual
target. Conversely, the SIMCB-Yolo model effectively covers detected targets across various
levels in forest fire smoke detection, further underscoring its outstanding performance in
identifying forest fire smoke at multiple levels.

To further assess the performance of the SIMCB-Yolo model, we selected three types of
forest fire smoke images from real-world scenes that are closely related to our improvements
for detection. We subsequently compared the results with those from Yolov5s, SSD, Fast
R-CNN, and other models. The results are shown in Figure 10.
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As can be seen from Figure 10, the four models show significant differences in the
detection effect of forest fire smoke in the actual scene. In Figure 10a, the Yolov5s, SSD and
Faster R-CNN models mistakenly recognize clouds as smoke, while the SIMCB-Yolo model
accurately eliminates the interference of clouds. In Figure 10b, the Yolov5s model missed
the detection of small target smoke. Although the SSD model detected small targets, there
was a large error between the marked forest fire smoke location and the actual forest fire
location. Although the Fast R-CNN model also detects small target smoke, its confidence
is lower than that of the SIMCB-Yolo model. In Figure 10c, we selected natural landscape
images that were very similar to forest fire smoke for testing. The results showed that the
Yolov5s, SSD and Faster R-CNN models misjudged mist as forest fire smoke, while the
SIMCB-Yolo model was not affected by this interference. By comparing the detection effect
in the actual scene, the superior performance of the SIMCB-Yolo model in the detection of
different levels of forest fire smoke detection is further highlighted.

4. Discussion

Major forest fires often originate from small sources in their early stages, making precise
and rapid detection crucial [26]. Given the damp conditions and dense vegetation in forests,
combustibles burn inefficiently in the early stages of a fire, resulting in only a small amount
of smoke. Furthermore, the detection of this smoke is challenging, compounded by the
interference of natural features like clouds and fog. Consequently, the task of early smoke
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detection is highly challenging. Traditional methods, such as ground patrols, observation
towers, and satellite remote sensing, have limitations in terms of monitoring accuracy, real-
time capabilities, and coverage. In recent years, deep learning’s outstanding performance in
image feature extraction has increasingly been utilized in forest fire monitoring.

Common deep learning algorithms are categorized into two-stage and single-stage
algorithms. Consequently, two approaches for forest fire image detection have emerged.
Two-stage monitoring models like Faster R-CNN, with their large parameter counts and
lengthy computation times, are not conducive to real-time detection tasks. On the other
hand, single-stage models like the Yolo series excel in real-time performance but suffer
from somewhat lower accuracy [15]. Therefore, the choice of model often depends on the
specific needs of the task.

To improve the accurate detection of smoke, flames, and other targets in forest fires
and to enhance early warning capabilities, scholars have developed various deep learning
models focused on forest fire smoke imagery. These models aim to address the detection
challenges present in real-world scenarios [39–41].

Given the issues of false positives stemming from the resemblance of natural landscapes
like clouds and fog to smoke in open environments and the challenges of missed detections
due to the scarcity of features in small targets within the context of image hierarchy, this study
has implemented improvements using Yolov5s as the benchmark model.

(1) To address the issue of missed detection of smaller target smoke in the benchmark
Yolov5s model, the Swin transformer module was integrated into the neck region of
the model in this study. This enhancement improved the model’s accuracy in detecting
small forest fire smoke targets; however, we observed a decline in its precision and recall
performance. The reason for this is that under such conditions, the model might mistakenly
classify smoke with similar features, such as clouds and fog, as the background, leading
to a lack of recognition for these features and subsequently impacting the model’s overall
accuracy and recall. (2) To address this issue, a CBS block and C3 block were introduced
into the main body of the network to further extract features of smoke at different levels
of the image. This, however, also led to an increase in the extraction of information from
natural landscape interference factors such as clouds and fog. Consequently, a SimAM
attention mechanism was added to the end of the network backbone to mitigate the impact
of these interference factors on model performance and, to a certain extent, mitigate false
detections due to interference factors. The ablation experiment results demonstrate that
the model’s overall performance was enhanced. This, in turn, partially resolves the issue
of small target smoke detection in the presence of natural landscape interference, such as
clouds and fog.

While the SIMCB-Yolo has significantly enhanced accuracy, it exhibits a decrease
in FPS. Moving forward, we will delve deeper into methods to elevate the model’s FPS
performance. Lightweighting the model further by integrating strategies such as knowledge
distillation [42,43], model pruning [44,45], and lowrank decomposition [46,47] is also a focus
of our research. Furthermore, forest fire smoke monitoring tasks in natural environments
present highly intricate scenarios, making dataset construction a crucial aspect. There are
shortcomings in datasets utilized in existing studies. Consequently, in subsequent research,
we will also address the issue of enhancing dataset quality.

SIMCB-Yolo remains in the experimental phase, and, in the future, we will contemplate
how to integrate it with electronic sensing devices, such as small servers or drones, to
facilitate the transition from theoretical research to practical applications.

5. Conclusions

Forest fires are characterized by their suddenness, destructiveness, and danger [48].
Once they break out, they pose a significant threat to human society [49]. Therefore, it is
crucial to detect and respond promptly to forest fires in their early stages.

Given that smoke often serves as a crucial indicator for early warning of forest fires,
developing models using deep learning technology for detecting forest fire smoke holds
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significant practical importance [50]. However, images captured in open environments are
frequently disturbed by natural landscapes such as clouds and fog, inevitably leading to
false positives in model detection. Additionally, the initial fine smoke, due to its small size
and unclear features, also makes detection more challenging, leading to missed detections.
To address these issues, this paper proposes an enhanced Yolov5s model, SIMCB-Yolo,
based on the concept of image hierarchy. The goal is to enhance the recognition accuracy of
multi-level forest fire smoke in images disturbed by natural landscapes, while minimizing
the occurrence of false positives and missed detections. This model aims to develop a robust
and well suited smoke detection model for forest fires, thereby improving the accuracy and
reliability of forest fire warnings.

Specifically, we added a Swin transformer block to the neck of the Yolov5s model
to improve its accuracy in detecting small target smoke. Following this, we introduced
an additional C3 block and CBS block to the backbone to augment its feature extraction
capabilities and acquire more detailed image feature information. Ultimately, the SimAM
attention mechanism was integrated at the end of the backbone network to boost the
model’s ability to resist interference from natural elements like clouds and fog.

Relative to the Yolov5s model, the enhanced model demonstrates a notable improve-
ment in detection accuracy, with increases of 4.5% in mAP@50 and 6.9% in mAP@50-95.
Furthermore, the model’s robustness and generalization capabilities are significantly im-
proved. While the detection speed of the enhanced model may theoretically decrease,
it stays within an acceptable limit, rendering it appropriate for use on small devices for
real-time forest fire monitoring. The natural landscape in open environments is extremely
complex, and the information in smoke images is highly variable, making forest fire smoke
detection a highly challenging problem with vast application potential. In future research,
we will conduct practical application tests using SIMCB-Yolo.
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