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Abstract: This study aims to investigate the potential and advantages of multi-agent reinforcement learning
(MARL) in forest management, offering innovative insights and methodologies for achieving sustainable
management of forest ecosystems. Focusing on the Pinus yunnanensis secondary forests in Southwest China,
we formulated the objective function and constraints based on both spatial and non-spatial structural indices
of the forest stand structure (FSS). The value of the objective function (VOF) served as an indicator for
assessing FSS. Leveraging the random selection method (RSM) to select harvested trees, we propose the
replanting foreground index (RFI) to enhance replanting optimization. The decision-making processes
involved in selection harvest optimization and replanting were modeled as actions within MARL. Through
iterative trial-and-error and collaborative strategies, MARL optimized agent actions and collaboration to
address the collaborative optimization problem of FSS. We conducted optimization experiments for selection
felling and replanting across four circular sample plots, comparing MARL with traditional combinatorial
optimization (TCO) and single-agent reinforcement learning (SARL). The findings illustrate the superior
practical efficacy of MARL in collaborative optimization of FSS. Specifically, replanting optimization based
on RFI outperformed the classical maximum Delaunay generator area method (MDGAM). Across different
plots (P1, P2, P3, and P4), MARL consistently improved the maximum VOFs by 54.87%, 88.86%, 41.34%,
and 22.55%, respectively, surpassing those of the TCO (38.81%, 70.04%, 41.23%, and 18.73%) and SARL
(54.38%, 70.04%, 41.23%, and 18.73%) schemes. The RFI demonstrated superior performance in replanting
optimization experiments, emphasizing the importance of considering neighboring trees’ influence on
growth space and replanting potential. Following selective logging and replanting adjustments, the FSS
of each sample site exhibited varying degrees of improvement. MARL consistently achieved maximum
VOFs across different sites, underscoring its superior performance in collaborative optimization of logging
and replanting within FSS. This study presents a novel approach to optimizing FSS, contributing to the
sustainable management of Pinus yunnanensis secondary forests in southwestern China.

Keywords: stand structure optimization; selective cutting; replanting; multi-agent reinforcement
learning; co-optimization

1. Introduction

Secondary forests generally exhibit issues such as unsustainable forest stand structures
(FSSs), diminished biodiversity, heightened vulnerability to forest fires, and susceptibility to
natural calamities such as pest infestations, diseases, and wildfires [1–3]. The optimization
and adjustment of FSS represent pivotal technical interventions in forest management and
planning, offering indispensable strategies for managing secondary forests effectively [4,5].
Central to this endeavor is the meticulous determination of FSS indices, the formulation of
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optimization models, and the design of solution algorithms. Initially, the optimization model
is crafted through the judicious selection of FSS indexes, informed by the unique characteristics
of FSS. Subsequently, relevant algorithms are deployed to resolve the optimization model,
thereby facilitating management optimization through a spectrum of adjustment measures
including selective cutting, replanting, tending, and pruning. FSS indices encompass both
spatial and non-spatial dimensions, encompassing non-spatial metrics such as diameter scales
counts [6], species counts, and plant density [7], alongside spatial indices including the
mingling index (M) [8,9], canopy competition index (CI) [10,11], angle index (W) [12,13], story
index (S) [14], open comparison (OP) [15], and neighborhood comparison (U) [16].

Selective cutting emerges as a pivotal strategy in the optimization of FSS. This approach
entails the targeted removal of trees with limited growth potential, thereby orchestrating a
more conducive distribution pattern of trees, enhancing understory light conditions, and
alleviating competitive pressures within the forest milieu, ultimately culminating in FSS
optimization. However, the efficacy of singular selective cutting endeavors often falls short
in achieving the desired optimization outcomes. Complementarily, replanting constitutes
another indispensable mechanism for optimization and regulation, endeavoring to bolster
the stability and biodiversity of forest ecosystems through the strategic introduction of
young trees of indigenous species in judiciously chosen spatial domains. The crux of
replanting optimization resides in the discernment of pivotal indicators such as location
and species.

Conventional replanting methodologies typically rely on techniques like the Voronoi
diagram [17] or Delaunay triangulation [18], Kriging interpolation [19], among others,
for determining replanting locations. However, these methodologies often overlook the
intricate interplay between replanted trees and their neighboring counterparts, resulting
in rigid replanting locations and potentially exacerbating inter-tree competitive pressures.
Moreover, the scholarly discourse surrounding the optimization of stand structure based
on replanting strategies remains relatively sparse. Existing studies predominantly rely on
statistical analyses to ascertain replanting positions and pertinent information pertaining to
the replanted flora [17–19], with scant attention devoted to replanting research underpinned
by intelligent algorithms.

Numerous scholars have devised optimization and adjustment models, such as multi-
objective operation and spatial structure, building upon the aforementioned optimization
and adjustment strategies [17,20–22]. These models typically serve to simulate and opti-
mize individual interventions, such as selective cutting or replanting, or iteratively refine
stand structure through a sequence of actions, notably selective cutting followed by re-
planting (note: specific references are provided for sequential adjustments). However, none
of the aforementioned optimization frameworks have comprehensively considered the
collaborative synergies among multiple adjustment measures during model formulation
and solution. Particularly within the realm of replanting adjustments, addressing complex
multidimensional information encompassing spatial coordinates of replanted trees, tree
species, age, height, and related parameters poses a significant challenge. Integrating these
multidimensional attributes within the model and devising solution algorithms to capture
their nuances are essential for leveraging the synergistic effects of multiple measures in op-
timizing and controlling forest stand structure. Notably, in scenarios typified by secondary
forests dominated by a single species and characterized by extensive forest cover, a holistic
approach encompassing replanting, tending, and additional measures becomes imperative
to enhance spatial segregation within the forest stand and optimize pertinent indices.

The optimization of FSS is a nonlinear multi-objective optimization problem [23–25].
Existing literature predominantly explores algorithms for solving FSS optimization models
grounded in single measures. These encompass heuristic methodologies like Monte Carlo
(MC) [26–29] and bionic algorithms such as genetic algorithms (GAs) [30–32], simulated
annealing (SA) [33–35], and particle swarm optimization (PSO) [17,36]. While MC offers
simplicity and strong programmability, its outcomes often lack precision due to inherent
algorithmic limitations. Conversely, bionic algorithms like GAs and PSO frequently en-
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counter challenges such as local optimization pitfalls and volatility in the values of the
objective function (VOFs) during solution processes.

Reinforcement learning (RL), characterized by trial-and-error strategies, emerges as
a promising intelligent algorithm owing to its conceptual simplicity, absence of a model,
dynamic decision-making, and robust adaptability [37]. In a previous study, we addressed
the multi-objective logging optimization problem for FSS using single-agent reinforcement
learning (SARL), which excelled in single-measure multi-objective optimization. However,
FSS optimization necessitates the integration of multiple measures beyond selective logging
alone. Moreover, SARL is constrained by individual knowledge and experience, often
requiring prolonged training periods to adapt to environments and learned strategies, thus
posing challenges in balancing exploration and exploitation.

Multi-agent reinforcement learning (MARL) presents a novel approach by leveraging
multiple agents to collaboratively address complex optimization problems. Each agent
interacts with the environment, receiving rewards and adapting in response to the behaviors
of other agents. However, practical applications of MARL encounter challenges concerning
the balance between collaboration and competition among agents, as well as the intricate
design of reward functions. Despite its prominence in fields like autonomous driving and
smart grids, MARL remains largely unexplored in collaborative optimization of FSS.

Overall, the construction and design of FSS optimization models and algorithms neces-
sitate a comprehensive consideration of measures such as selective cutting and replanting,
effective representation of multidimensional tree characteristics during replanting regula-
tion, and a thorough integration of neighboring tree influences on replanted tree growth.
Synchronized optimization and adjustment simulations are imperative for solving the
optimal configuration of FSS. While SARL offers advantages over traditional heuristic and
bionic algorithms in addressing single-measure optimization models, it proves inadequate
for addressing synergistic optimization models involving multiple measures. Hence, this
study introduces the replanting foreground index (RFI), a logging and replanting collabora-
tive optimization model, and a MARL to address the collaborative optimization problem
of FSS based on Pinus yunnanensis secondary forest data in Yunnan Province, China. This
elucidates the potential and advantages of the multi-agent approach in forest management,
providing novel insights and methodologies for sustainable forest ecosystem management.

2. Materials and Methods
2.1. Study Areas

The forest inventories were undertaken within the geographical vicinity of Cangshan
Mountain, located between longitude 99◦55′–100◦12′ E and latitude 25◦34′–26◦00′ N, situ-
ated in Yunnan Province, China (Figure 1). The surveyed regions predominantly situated
on the eastern slope of Cangshan Mountain, include prominent features such as Lan Peak,
Malong Peak, Foding Peak, and Zhonghe Peak. This geographical area lies within the
subtropical climate belt, with an average annual temperature of around 15 °C, influenced
by prevailing southwest monsoon winds [38,39]. Notably, the region experiences abundant
annual precipitation exceeding 1000 mm, with distinct seasonal variations marked by
pronounced dry spells interspersed with heavy rainfall. The wet season predominantly
spans from May to October, accounting for approximately 84% of the total annual precipi-
tation [40]. Predominantly, the area is characterized by red soil, contributing to its unique
ecological landscape.
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Figure 1. Description of Study Sites: Cangshan Mountain, Yunnan Province, China. P1–P4 Designated
as Plot Locations.

2.2. Study Site and Data Collection

Table 1 presents key statistical data pertaining to the sample plots utilized in this
study. The primary focus of the investigation centered on the dominant tree species, Pinus
yunnanensis, spanning four circular sample plots, each strategically positioned atop distinct
peaks. These circular sample plots boasted radii measuring 19 m (Lan Peak), 20 m (Malong
Peak), 32 m (Foding Peak), and 35 m (Zhonghe Peak).

Between July and December 2022, comprehensive forestry operations were executed
within the delineated sample plots. This phase involved meticulous measurements and
recording of geographical coordinates, elevation, slope, slope direction, and plot radii.
Furthermore, a systematic survey was conducted encompassing live standing trees with
a diameter at breast height (DBH) equal to or exceeding 5 cm (DBH ≥ 5 cm) within the
sample plots. Each tree underwent a thorough assessment, documenting essential forestry
attributes including species, DBH, tree height (TH), crown width (CW), and crown length
(CL), facilitated by specialized altimeters and distance measurer. Using a Topcon GTS-
2002 autofocus total station (Topcon, Tokyo, Japan), we precisely determined the relative
coordinates of each tree’s base with respect to the center of the sample plots.

Table 1. Essential Details of Sample Plot Characteristics.

Sample
Plots East Long. North Lat. Elevation

(m)
Slope

(◦)
Slope
Dir.

Sample Plot
Radius (m)

Tree Species
Composition

Stand Density
(trees/ha)

P1 100°08.2149′′ 25°41.5280′′ 2254 13.45 East 35 8 PY-2 PA-BA-TG 1481
P2 100°10.9639′′ 25°38.1518′′ 2271 16.15 South 32 7 PY-3 PA 1822

P3 100°09.3947′′ 25°39.9506′′ 2195 17.70 NE 20 7 PY-3
PA-QAC-VBT-GGW-BA 1830

P4 100°07.1906′′ 25°43.5923′′ 2138 5.10 NE 19 10 PY-QAC 1975

Note: NE, North-East; PY, Pinus yunnanensis; PA, Pinus armandii; QAC, Quercus acutissima Carrut; VBT, Vaccinium
bracteatum Thunb; GGW, Gaultheria griffithiana Wight; BA, Betula alnoide; TG, Ternstroemia gymnanthera. The column
‘Tree Species Composition’ delineates the distribution of tree species within each plot. The numerical values
preceding each species denote the relative abundance of that particular species for every 10 trees sampled within
the plot.
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2.3. Determination of Spatial Structure Units and Edge Correction

The Voronoi method was used to delineate spatial structure units within the forest
stands [17]. This method constructs Voronoi diagrams based on the measured relative
positions of individual trees, creating polygons that represent spatial structure units for
each tree and its neighboring trees [41,42].

However, the spatial structure units at the edges of stands may be affected by sample
boundaries, potentially leading to errors in calculating spatial structure indices. To address
this issue, the study utilized the buffer zone method [21,43]. For example, for a circular plot
with a diameter of a meters, the buffer zone is created by extending b meters inward from
the edge of the plot towards the center. In other words, a m ring area is used as the buffer
zone [44]. When calculating the spatial structure index for a unit composed of a central tree
and its adjacent trees, the trees within the buffer area are only considered as adjacent trees
in forming the spatial structure unit.

The determination of the buffer zone width depends on several factors, including plot
size, methods for analyzing stand structure indices, and geographical location. This study
carefully considered these factors and, based on existing research and experience [45], set
the buffer zone width at 2 m.

2.4. Stand Structure Indexes

Quantifying stand structure is essential for optimizing FSS. In this study, the number
of tree diameter classes, the diversity of tree species, cutting intensity and plant density
were selected as indicators to quantify the non-spatial structure of the stand. To assess the
spatial structure of the forest stand, indicators such as uniform angle index, mingling index,
crown competition index, story index, and open comparison were utilized.

2.4.1. Non-Spatial Structural Indexes

(1) Tree Diameter Classes [6]

Categorizing trees into diameter classes is crucial for our analysis, as it correlates
directly with stand growth. In this study, we categorized trees based on their DBH, starting
from 6 cm and increasing in 2 cm increments. This systematic approach ensured consistency
in the number of diameter classes throughout FSS optimization:

D = D0 (1)

D0 denotes the count of diameter classes before selection cutting, and D signifies the
count post-selection cutting.

(2) Diversity of Tree Species

During the selection cutting process, it is crucial to preserve tree species diversity
to prevent unintentional extinction. We diligently ensured that the count of tree species
remained unchanged throughout the process:

T = T0 (2)

T0 signifies the initial count of tree species, and T denotes the count post-selection
cutting.

(3) Cutting Intensity

The vigor of the stand after optimization relies on the cutting intensity. Ideally, the
annual cutting volume should not exceed the annual growth rate of the stand. Previous
research [46,47] has indicated that the ideal cutting intensity for secondary forests of Pinus
yunnanensis should be limited to a maximum of 35%:

N ≥ N0(1− 35%) (3)



Forests 2024, 15, 1143 6 of 28

N0 signifies the total count of trees before selection cutting, and N represents the count
after selection cutting.

(4) Plant Density (PD) [7]

PD is the key factor influencing the replanting effect. Previous studies [48] showed that
the reasonable range of PD of Pinus yunnanensis is 1667∼3333 trees/hm2. After replanting
optimization, the PD of the sample plots should be within the range of [1667, 3333]:

1667 ≤ PD ≤ 3333 (4)

2.4.2. Spatial Structural Indexes

(1) M

The spatial segregation of tree species, represented by M, is calculated as the ratio of
neighboring tree j stem count, excluding the same species as the object tree i, to the total
neighboring tree stem count. It is mathematically expressed as [8,9]:

Mi =
1
n

n

∑
j=1

vij (5)

Mi symbolizes the mingling index of the object tree i, and vij is a discrete variable.
When the neighboring tree j is not of the same species as tree i, vij = 1; otherwise, vij = 0.

(2) CI

To measure the competitive pressures among trees, we designed a CI that employs
the overlap area of canopies. The index is calculated as follows [10,11,44]:

CIi =
1
Zi
×

n

∑
j=1

AOij ×
Lj

Li
(6)

CIi represents the canopy competition index for object tree i, Zi denotes the projected
canopy area of object tree i. Li = Hi × CWi × CLi, where Hi, CWi and CLi represent the
height, canopy width, and canopy length of the object tree i, respectively. Lj = Hj × CWj
× CLj, where Hj, CWj and CLj denote the height, canopy width, and canopy length of
the competing tree i, respectively. AOij indicates the overlap area between the canopies of
object tree i and competitor tree j, with AOij = 1 when there is no overlap.

(3) W

The characterization of the stand’s horizontal distribution pattern is represented by the
index W. This index measures the proportion of angles α between the object tree i and its
nearest neighbors that are smaller than a predefined standard angle α0.It is mathematically
expressed as [12,13]:

Wi =
1
n

n

∑
j=1

zij (7)

Wi denotes the angle index of tree i, and zij is a discrete variable. If the angle α between
trees i and j is less than α0, zij = 1; otherwise, zij = 0.

(4) S

The vertical diversity and complexity within a stand are encapsulated by the index
denoted as S, which quantifies the proportion of neighboring trees j at the same height
level as the object tree i. It is calculated as follows [14]:

Si =
1
n

n

∑
j=1

vij (8)
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Si represents the story index of tree i, and vij is a binary variable. If tree i shares the
same height level as tree j, vij = 0; otherwise, vij = 1.

(5) OP

The open comparison represents the light environment and available growing space
for tall trees within the stand. This index measures the degree to which the object tree i
within a spatial structure unit is overshadowed by its neighboring tree j. This index is
represented as follows [15]:

OPi =
1
n

n

∑
j=1

tij (9)

OPi is the open comparison corresponding to object tree i, tij is a discrete variable. If
the horizontal distance between object tree i and neighboring tree j exceeds their height
difference, tij = 1; contrarily, tij = 0.

(6) U

The size differentiation in the diameter of individual forest trees is described by the
proportion of neighboring trees j nearest to object tree i that are larger than object tree i
among the n neighboring trees. This comparison was calculated using the formula [16]:

Ui =
1
n

n

∑
j=1

kij (10)

Ui is neighborhood comparison of object tree i, kij is characterized as a discrete variable.
When the DBH of neighboring tree j is larger than that of object tree i, kij = 1; otherwise, kij = 0.

The aforementioned indices were calculated and analyzed using data from the stand
survey with R version 4.2.0.

2.5. Methods for Selecting Trees for Cutting

The RSM (random selection method) [24,44], QVM (Q-value method) [49], and VMM
(V-map method) [50] are widely employed techniques for selecting trees for cutting. RSM
identifies trees for removal through rapid random sampling from the initial pool of retained
trees (comprising all trees within the original stand), and ensuring selection intensity
remains within bounds. QVM constructs a single-tree composite index Qi using five
spatial structural parameters (W, M, CI, OP, and S), then ranks these Qi values within the
harvesting limit to determine the trees to be harvested. Previous research [49] suggests that
the probability of FSS achieving optimization is higher when trees corresponding to the top
Qi values are felled. Under ideal conditions, the average angle index of the stand (W) falls
within the range [0.475, 0.517], with a central value of 0.496. In VMM, the initial selection of
structural units for harvesting prioritizes the nearest neighboring trees of the reference tree
with the highest W value (0.496). These neighboring trees are then used to identify trees
for felling, with particular focus on those exhibiting weak mixing, moderate mixing, and
suppressed competition based on their M values.

In our prior study, we conducted experimental comparisons among these three se-
lection methods, revealing the RSM as the optimal choice for optimizing stand structure
when integrated with RL algorithm [44]. Consequently, the RSM has been selected as the
preferred method for tree selection in the cutting optimization segment of this research.

2.6. RFI
2.6.1. Number of Replanting Trees and Species Configuration

The literature suggests that the optimal planting density for Pinus yunnanensis ranges
from 1667 to 3333 trees per hectare. In the study, we set the upper limit of planting density
for the sample plots after replanting to 3333 trees/hm2. Considering various sample plot
sizes, we rounded down to determine the upper limit of tree numbers in P1, P2, P3, and P4,
resulting in 1282, 1072, 418, and 378 trees, respectively.
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In mixed forests, different proportions of replanting species may lead to varying
degrees of species segregation, while differences in DBH, H (tree height), CW (crown width),
and CL (crown length) of replanted trees may affect the competitive relationships among
neighboring trees post-replanting. The four sample plots in this study were secondary
forests dominated by Pinus yunnanensis, with other native or companion species present,
including Pinus armandii, Vaccinium bracteatum, Quercus acutissima, Betula alnoides, Gaultheria
griffithiana, and Ternstroemia gymnanthera. We set the average DBH of replanted trees at
5 cm, and trees within the [5, 6) cm DBH interval were used to calculate an average H of
4.79 m, an average CW of 6.05 m, and an average CL of 1.71 m, which determined the size
of replanted trees.

2.6.2. Maximum Delaunay Generator Area Method (MDGAM)

Ideal replanting locations are usually in relatively wide “forest gaps”. Traditional
methods for pinpointing these sites include the MDGAM [18], maximum null circle method
(MNCM) [17], and Kriging method [19]. These methods assess various areas to determine
the optimal replanting location rooted in maximal area calculation. The MDGAM, based
on Delaunay triangulation, represents each tree as a node and the distances between
neighboring trees as side lengths. This approach effectively captures both the “forest gaps”
and the forest stand’s distribution pattern [51]. In contrast, the MNCM and Kriging method
lack the Delaunay triangulation’s characteristics and cannot adequately consider the forest
stand’s distribution pattern, thereby presenting significant limitations in determining the
replanting location. Consequently, this study relied on the generating element area of
Delaunay triangulation as the primary criterion for determining replanting locations.

2.6.3. RFI

Replanted trees establish a new spatial structure within the stand alongside their
neighboring trees. While the basic MDGAM primarily considers growth space and stand
distribution patterns, merely positioning replanting sites within the maximal “forest gaps”
overlooks the impact of neighboring trees on the growth of newly planted ones. This oversight
may exacerbate competitive relationships within the stand. It becomes imperative to factor in
spatial relative coordinates, tree species, tree age, tree height, and articulate these multidimen-
sional characteristics within the replanting optimization model and solution algorithm.

Therefore, this study introduces a novel RFI to tackle these issues. Leveraging Delau-
nay triangulation, the RFI characterizes the relative coordinates of replanted trees and their
neighbors, the mingling index, the impact of replanting species on replanting efficacy, DBH
in neighborhood comparison to denote age, and the crown competition index to consider
tree crown and height influences. The specific formula for the RFI is outlined as follows:

RFIi =

1+DAAi
δDAA

· 1+Mi
δM
· 1+Ui

δU
1+CIi

δCI

(11)

RFIi represents the replanting prospect index of the tree to be replanted i, DAAi
denotes the area of the Delaunay triangulation generation element where tree i is situated,
Mi signifies the mingling index of tree i, Ui denotes the neighborhood comparison of tree i,
and CIi represents the canopy competition index of tree i. Additionally, δDAA, δM, δU , and
δCI denote the standard deviation of each structural parameter.

By introducing the RFI, we comprehensively consider the impacts of various factors
on the growth of replant trees, including growth space, mingling index, neighborhood
comparison, and canopy competition index. This integrated index enhances the accuracy
and effectiveness of determining replanting locations. During replanting operations, pri-
ority is assigned to locations with higher RFIs, thereby enhancing the efficiency of stand
adjustment and optimization.
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2.7. Forest Stand Structure Optimization Model

FSS optimization represents a multi-objective optimization challenge [17,24,44], where
the optimization model aligns with predefined objectives and constraints. This model
entails selective logging and replanting strategies to enhance the overall FSS. Construct-
ing an objective function in accordance with optimization goals is pivotal for effective
FSS optimization.

2.7.1. Objective Function

Solving a multi-objective optimization problem involves finding the optimal solution
considering multiple objectives while adhering to constraints [52,53]. Typically, these
objectives are interconnected and constrained, making it challenging to achieve optimal
solutions for each individual objective. Therefore, it’s crucial to integrate and synthesize
multiple sub-objectives into an overall objective function to find the optimal solution.

When optimizing FSS, a higher VOF signifies a better spatial structure for the forest
stand. This study employed the concept of “multiplication and division” [54] to select and
combine five spatial structure indices: angle index, mingling index, crown competition
index, story index, and open comparison into the objective function for the multi-objective
optimization model of FSS. This objective function was calculated using the formula:

max OF =
1
N

N

∑
i=1

1+Mi
δM
· 1+OPi

δOP
· 1+Si

δS
1+CIi

δCI
· 1+|Wi−0.496|

δ|W−0.496|

(12)

Mi, OPi, Si, CIi, and Wi denote the mingling index, open comparison, story index,
canopy competition, and uniform angle index of the central tree i, respectively. Additionally,
δM, δOP, δS, δCI , and δW represent the standard deviations of their respective structural
parameters. The midpoint of the range [0.475, 0.517] is 0.496, where a smaller value
of |Wi − 0.496| indicates that the forest stand’s horizontal distribution pattern is closer
to randomness.

To ensure consistency in model evaluation and comparison, and effectively explore
performance differences among different methods under optimization objectives, the same
objective function was employed for all optimization models in this study.

2.7.2. Traditional Combinatorial Optimization (TCO) Model

Achieving effective optimization of FSS often requires the collaboration of multiple
optimization measures, such as selective cutting and replanting strategies. The traditional
logging and replanting combinatorial optimization model serves as a common approach
for optimizing FSS, involving a dual optimization process. Initially, a portion of the trees
within the sample plot is selectively cut according to a predefined harvesting strategy to
attain a relatively optimal FSS. Subsequently, native tree species are replanted at suitable
locations within the plot post-harvesting, aiming for a double optimization of the FSS.

In a previous study [44], simulated selective logging experiments on four sample
plots yielded relatively optimal FSS outcomes. Building upon these findings, replanting
optimization experiments were conducted, based on the improved FSS after selective
cutting in each sample plot, to assess the practical application of the logging-first-then-
replanting optimization concept.

The optimization model is pivotal for FSS optimization, encompassing the objective
function, constraints, and other factors. The constraints of the TCO model are outlined
as follows:

(1) Constraints

Following optimization and adjustments, the quality of each sub-objective should
not deteriorate compared to its pre-optimization state, ensuring that the spatial structure
diversity of the forest stand remains intact. This necessitates a closer-to-random horizon-
tal distribution pattern and an enhanced mixing degree. During replanting, the plant
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density within the sample plot must be maintained within a reasonable range. Research
findings [48,55,56] suggest that the suitable planting density for Pinus yunnanensis ranges
between 1667∼3333 trees/hm2. The constraints of the TCO model are formulated as follows:

s.t.


∣∣W2 − 0.496

∣∣ ≤ ∣∣W1 − 0.496
∣∣

M2 ≥ M1
1667 ≤ PD ≤ 3333

(13)

W1 and M1 represent the average values of the angle index and mingling index of the
stand after selective logging, respectively. W2 and M2 denote the average values of each
parameter after replanting, and PD indicates the plant density of the stand in the sample
plot after replanting optimization.

(2) Solving Algorithm

Based on the findings of prior research [44], this study derived the FSS of each sample
plot following selection cutting optimization via RL. Then, the RFI was employed to
designate the replanting locations. Considering the predetermined upper limit for the
number of replanting trees in each plot, tree species for replanting were allocated in equal
proportions, and the dimensions of individual replanted trees were determined accordingly.
This process culminated in the compilation of the replanting tree set. Various quantities of
trees, ranging from 0 to the predefined upper limit, were selected for replanting from this set.
Consequently, their corresponding structural indices for each forest stand were calculated.
Figure 2 depicts the flowchart of the TCO process, while the algorithmic pseudocode is
elaborated in Appendix A.1.

Calculate the initial value of 

objective function, ƒ(g*)

Calculate the n e w  value  o f  objective 

function, ƒ(g), and constraints n=n+1

Retain the current feasible 

solution: g*=g ƒ(g*)=ƒ(g)

Select the first  n trees from the supplementary 

tree set to create a new set of retained trees, g

ƒ(g)>ƒ(g*) and 

satisfy all constraints
PD>3333

Output the optimal 

solution: g Q

End

Begin

Identify the set of trees after selective logging 

optimization to be retained, g*. Set the initial 

number of replanting trees as n=1.

Yes Yes

No

No

Plot boundary was corrected, and replanting positions 

were determined using the RFI index, sorted in 

descending order to create the replanting tree set.

Figure 2. Flowchart of TCO algorithm.
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2.7.3. Collaborative Optimization Model

The collaborative optimization model for logging and replanting aims to optimize the
FSS through replanting while adhering to the objectives and constraints of selection cutting,
thereby achieving dual optimization of the FSS. This model emphasizes real-time collabora-
tion between logging and replanting, enhancing flexibility and adaptability to varying site
conditions. RL presents advantages in addressing dynamic optimization problems like this,
yet the performance of SARL and MARL differs significantly in collaborative optimization
scenarios. SARL, constrained by individual knowledge and experience, necessitates exten-
sive training time for complex problems, whereas MARL, leveraging collaboration among
agents, encounters challenges in balancing cooperation and competition and designing
intricate reward functions. In this study, the objective function of the collaborative opti-
mization model aligns with that of the TCO model, facilitating effective comparison across
different optimization approaches. The constraints of the collaborative optimization model
are detailed as follows:

(1) Constraints

During the selection cutting process, it is imperative to ensure that the horizontal
distribution pattern of the forest stand approaches random distribution, enhancing the
mingling index, reducing stand competition, promoting vertical diversity, and increasing
openness and light penetration. Regarding non-spatial structure constraints, it is essential
to maintain the number of diameter classes and tree species in the stand during selective
logging optimization, with the cutting intensity not exceeding 35%. Replanting optimiza-
tion constraints are the same as those of the TCO model’s replanting optimization segment.
In the collaborative optimization model, the VOF post-selective logging F1 must exceed the
initial VOF F0, while the VOF post-replanting F2 must surpass F1. A higher F2 indicates
superior structure in the cooperative optimization. In summary, the constraints of the
collaborative optimization model are expressed as follows:

s.t.



∣∣W1 − 0.496 < W0 − 0.496
∣∣

M1 > M0
CI1 < CI0

S1 > S0
OP1 > OP0

D1 = D0
T1 = T0

N1 ≥ N0(1− 35%)∣∣W2 − 0.496 < W1 − 0.496
∣∣

M2 > M1
1667 ≤ PD ≤ 3333

F1 > F0
F2 > F1

(14)

W0, M0, CI0, S0, OP0 represent the average values of the uniform angle index, mingling
index, canopy competition index, story index, and open comparison, respectively, in the
forest stand before the selective felling; W1, M1, CI1, S1, OP1 denote the average values of
each parameter after selective cutting; D0, T0, N0 indicate the number of diameter classes,
tree species, and the total number of trees in the stand before selective logging, while D1, T1,
and N1 represent the values of each parameter after selective cutting; W2, M2 represent the
values of the angle index, crown competition index, story index, and open comparison of
the forest stand after replanting; PD denotes the density of forest stand plants after logging
and replanting collaborative optimization.

(2) Solving Algorithm Based on SARL

This study employs the RSM (random selection method) to determine the logging
trees and assesses the replanting potential using the RFI in solving the collaborative opti-
mization problem of selective cutting and replanting of FSS using SARL. The actions of
selecting logging trees and determining the number of replanting trees are translated into
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agent actions in RL. Agents can choose between selective and non-selective logging in the
logging optimization phase, and between replanting and non-replanting in the replanting
optimization phase. Four joint optimization actions are generated, including 1⃝ selective
cutting and replanting, 2⃝ no selective cutting and no replanting, 3⃝ selective cutting but
no replanting, and 4⃝ no selective cutting but replanting. Actions 3⃝ and 4⃝ are equivalent
to single optimization actions and have been extensively discussed in previous research.
This study focuses on actions 1⃝ and 2⃝, selective logging and replanting, and non-selective
logging and no replanting, as the co-optimization actions of SARL. Agents select actions
successively to maximize the reward value. Figure 3 illustrates the flowchart of SARL
for addressing the co-optimization problem of FSS logging and replanting, with detailed
algorithmic pseudocode provided in Appendix A.2.

Agent

Output the details of cutting trees and replanting 
trees meeting constraints and optimization 
objectives, including their objective function 
values and structural indexes

Give the agent 
Reward

Give the agent 
punishment

Agent moves one 
step toward the end

Cutting and 
replanting

No cutting and no 
replanting

STATE

ENVIRONMENT

ACTIONS

REWARD

ƒ*>ƒ 
and satisfy all constraints 

after optimization

Agent takes one 
step back from the 

starting point

Agent takes one 
step back from 

the starting point

Give the agent 
punishment

Begin

End

Save the current stand structure data, 
including cutting trees and replanting trees 
set, along with their objective function 
values and structural indicators

No
Yes

No

No

Yes

Yes

Calculate the value of objective function (ƒ*) and 
the corresponding structural indices of the initial 
retained trees . Initialize the control parameters.

Agent at 
"starting point"

Agent remains 
motionless

Reach the 
maximum number 

of iterations

Figure 3. Flowchart of SARL algorithm.

(3) Solving Algorithm Based on MARL

Figure 4 illustrates the flowchart of MARL for addressing the collaborative optimiza-
tion problem of FSS logging and replanting, while detailed algorithmic pseudocode is
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provided in Appendix A.3. At each iteration, Agent1 and Agent2 are positioned at the
“start point” and “end point” respectively. Agent1 is responsible for logging optimization,
while Agent2 achieves replanting optimization. Using trial-and-error strategy, Agent1 is
trained to find the set of selective logging trees satisfying the constraints, and Agent2 is
trained to determine the replanting points and the optimal number of replanting plants. The
collaborative optimization strategy motivates Agent1 and Agent2 to collaborate effectively
through cross-collaboration actions and ultimately obtain the optimal spatial structure of
the forest stand.

Designing an effective reward function is crucial in RL to find better results efficiently.
In this solving algorithm, the reward function in the selective harvesting optimization
part follows the result of previous study. For replanting optimization, a method based on
curve trend for sample point selection is designed, rewarding or penalizing based on the
presence of extreme points. Agent2 receives rewards and penalties in the replanting process
based on the rewards and penalties obtained in the first and second rounds, with specific
rules outlined in Table 2. Agent1 and Agent2 collaborate to move towards each other by
efficiently identifying the FSS that maximizes the objective function. The earlier meet of
Agent1 and Agent2 signifies the higher efficiency of MARL in solving multi-objective forest
stand structure (MOFSS) optimization.

Table 2. Reward and punishment rules in MCO.

Initial Rewards/Penalties Subsequent Rewards/Penalties Final Rewards/Penalties

(x+2b,ƒx+2b)

(x+4b,ƒx+4b)

(x,ƒx)

Increase Little reward
max( fx+b, fx+3b) >

max( fx , fx+2b, fx+4b)
Little reward Little reward + Little reward

Otherwise Little reward Little reward + Little reward

(x,ƒx)

(x+4b,ƒx+4b

(x+2b,ƒx+2b) Decrease Little reward
max( fx+b, fx+3b) >

max( fx , fx+2b, fx+4b)
Little reward Little reward + Little reward

Otherwise Little reward Little reward + Little reward

(x+2b,ƒx+2b)

(x+4b,ƒx+4b)(x,ƒx)

Convex Large reward
max( fx+b, fx+3b) >

max( fx , fx+2b, fx+4b)
Little reward Large reward + Little reward

Otherwise Large reward Large reward + Large reward

(x,ƒx) (x+4b,ƒx+4b)

(x+2b,ƒx+2b)

Concave Penalty
max( fx+b, fx+3b) >

max( fx , fx+2b, fx+4b)
Little reward Penalty + Little reward

Otherwise Large penalty Penalty + Large penalty

2.7.4. Experimental Scheme

Firstly, this study utilized an iterative algorithm to simulate replanting optimization
based on the initial and optimal stands after cutting in four sample plots. The effectiveness
of the RFI was compared with the MDGAM (maximum Delaunay generator area method)
to validate the efficacy of RFI.

Next, to assess the applicability and effectiveness of the TCO scheme employing
RFI, the stands of the four sample plots were subjected to logging optimization. The top
three ranked stand structures, determined by the VOF, were selected and further optimized
through replanting according to RFI. This aimed to validate the generalizability and efficacy
of the TCO model.

Finally, to evaluate the performance of SARL and MARL in solving the multi-objective
collaborative optimization model of FSS, SARL and MARL were employed. SARL and
MARL utilized RSM for selective logging determination, while RFI guided replanting
location determination, achieving collaborative optimization of forest stand structure
(COFSS) (Table 3).
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Table 3. Experimental schemes for FSS optimization.

Experiment Cutting Optimization Replanting Optimization

Name Type Purpose Cutting Method Solution
Algorithm

Resulting
Stand

Replanting
Method

Solution
Algorithm

Resulting
Stand

SR
Comparison
Experiment

Compare the effectiveness of
the RFI with the MDGAM

None None Initial stand
MDGAM

RFI
Iterate

Optimal replanting stand
based initial stand

OCR
RSM
QVM
VMM

MC
PSO
RL

Optimal
cutting stand

Optimal replanting stand
based optimal cutting stand

TCO

Optimization
experiment

Validate the effectiveness
and generalizability of

RFI-based TCO

First three optimal
cutting stands

RFI

Optimal replanting stand
based first three

optimal cutting stand

SCO
Evaluate the performance

of SARL and MARL in solving
multi-objective co-optimization

models with FSSs

RSM

SARL Optimal cutting stand
based on RSM-SARL

SARL
Optimal replanting stand using

RFI after the RSM-SARL optimal
cutting was conducted

MCO MARL Optimal cutting stand
based on RSM-MARL

MARL
Optimal replanting stand using

RFI after the RSM-MARL optimal
cutting was conducted

Note: SR: Single Replanting, OCR: Optimal Cutting–Replanting, TCO: Traditional Combinatorial Optimization, SCO: Collaborative Optimization based SARL, MCO: Collaborative
Optimization based MARL
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Figure 4. Flowchart of MARL algorithm.
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2.7.5. Parameter Settings

The parameter settings of each solution algorithm in the experiment are shown in
Table 4. The main experimental program was developed in Python version 3.10, with
all algorithms implemented manually. This approach allowed for precise control and
customization of the algorithmic processes without relying on pre-built libraries.

Table 4. Optimizing algorithm parameter configuration.

Algorithms Parameters and
Parameter Values Value Meaning

Iterate

I = 0 The initial iteration count
Imax = 10,000 Upper limit of iterations

U = 0 Initial count of successive iterations without OF
improvement

Umax = 500 Upper limit of successive iterations without OF
improvement

SARL

I = 0 The initial iteration count
Imax = 10,000 Upper limit of iterations

state = 1 Starting position of the agent
statemax = 100 Farthest position of the agent

r1 = 150, r2 = 10, r3 = −1,
r4 = −1, r5 = 1 Reward and penalty values

RL

I = 0 The initial iteration count
Imax = 10,000 Upper limit of iterations

state1 = 1 Starting position of the agent1
state2 = 100 Starting position of the agent2

statemax1 = 100 Farthest position of the agent1
statemax2 = 1 Farthest position of the agent2

r1 = 200, r2 = 20, r3 = 10,
r4 = 1, r5 = −1, r6 = −50 Reward and penalty values

3. Results
3.1. RFI

To ascertain the effectiveness of RFI, replanting optimization experiments were con-
ducted on eight distinct FSSs. These FSSs encompassed both the optimal stands following
selective logging and the initial stands. The study compared the effects of different methods
for determining replanting locations in terms of the objective function and the number of
iterations. The findings are summarized in Figure 5.

Regarding the VOF, the RFI-based replanting location determination method (RBRLDM)
outperformed the basic MDGAM in achieving higher maximum VOFs across five FSSs
(P1 initial, P2 initial, P2 optimal, P3 optimal, and P4 initial). For one FSS (P4 optimal),
the maximum VOF was equal to that of MDGAM, while for two FSSs (P1 optimal and P3
initial), the maximum VOF equaled that achieved by MDGAM. Overall, RBRLDM yielded
superior VOFs compared to basic MDGAM.

As to the number of iterations, RBRLDM demonstrated significantly faster conver-
gence compared to basic MDGAM. Basic MDGAM was prone to “local optimization”
pitfalls. Notably, in the replanting optimization experiments of the P3 initial stand, ba-
sic MDGAM outperformed RBRLDM in terms of both the number of iterations and the
objective function.
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(a) P1 initial stand (b) P1 optimal stand after cutting

(c) P1 initial stand

(e) P1 initial stand

(g) P1 initial stand

(d) P1 optimal stand after cutting

(f) P1 optimal stand after cutting

(h) P1 optimal stand after cutting

Figure 5. Results of two replanting methods.

3.2. TCO

The TCO model achieves dual optimization of cutting and replanting by optimizing
replanting on the optimal FSS after selective logging. To validate its effectiveness, this study
initially optimized the FSS of four sample plots through selective logging. Subsequently, the
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top three FSS sets were ranked in descending order according to the VOF, and replanting
optimization was conducted on these sets based on RFIs.

Table 5 illustrates the results of TCO. In sample plot P1, the best replanting outcome
of FSSACA1st (the best FSS after cutting adjustment) was inferior to FSSACA2nd and
FSSACA3rd (second and third best FSS after cutting adjustment). Similar trends were
observed in P2. However, in P3, replanting optimization yielded the best outcome on
FSSACA1st, achieving optimal harvesting and replanting simultaneously, thereby fulfilling
the TCO model’s ultimate objective. The optimization result in P4 was sub-optimal, with
replanting optimization failing to achieve the best outcome on FSSACA1st and FSSACA2nd,
while FSSACA3rd achieved the desired result.

Overall, experimental results suggest that the TCO model, based on optimal FSS after
selective logging, may not always attain optimal results and exhibits certain limitations.

Table 5. The results of TCO.

P1

Initial VOF 0.3515 0.3515 0.3515
VOF

after Cutting
0.41211st 0.40092nd 0.39753rd

VOF
after Replanting

0.47373rd 0.48791st 0.48292nd

P2

Initial VOF 0.2814 0.2814 0.2814
VOF

after Cutting
0.40781st 0.39832nd 0.38773rd

VOF
after Replanting

0.47182nd 0.43483rd 0.47851st

P3

Initial VOF 0.3748 0.3748 0.3748
VOF

after Cutting
0.50471st 0.48872nd 0.47293rd

VOF
after Replanting

0.52931st 0.51862nd 0.49083rd

P4

Initial VOF 0.4812 0.4812 0.4812
VOF

after Cutting
0.56351st 0.55932nd 0.55373rd

VOF
after Replanting

0.48523rd 0.51572nd 0.57131st

3.3. Collaborative Optimization (CO)

This study conducted experiments on selective cutting and replanting collaborative
optimization (SCRCO) using SARL and MARL on four sample plots to compare the practi-
cal application of the CO and TCO models. As shown in Figure 6 and Table 6, both SARL
and MARL under the SCRCO model can solve the multi-objective SCRCO problem of FSS,
similar to the TCO model. Except for P3, SARL achieved better VOFs than TCO, with SARL
improving the FSS of all four sample plots more than TCO on average. The optimization
results of MARL in the four sample plots were better than those of TCO and SARL, with
MARL achieving a higher average improvement in FSS than the other two methods.

Table 6. Specific VOFs for each solution algorithm.

P1 P2 P3 P4 Average Lifting
Amplitude

Average
Lifting

Amplitude

Initial 0.3515 0.2814 0.3748 0.4812 0.3722
TCO 0.4879 0.4785 0.5293 0.5713 0.5168 38.83%

43.88%SCO 0.5426 0.5273 0.5196 0.5751 0.5412 45.38%
MCO 0.5444 0.5315 0.5297 0.5897 0.5488 47.44%
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Figure 6. Best optimization results for three optimization models.

3.4. Changes in Stand Structure Parameters

A single VOF cannot comprehensively assess the actual effect of the optimization
scheme. This study compared in detail the changes in stand structure indices for each
sample plot under each optimization scheme to obtain a more accurate and comprehensive
assessment of the optimization effect.

Figure 7 shows the optimization results of different FSS optimization schemes. The
spatial structure indicators of each stand were improved to varying degrees after the
combination of selective harvesting and replanting in different schemes. Overall, the gap
between the average angle index of the stand and the randomly distributed angle index
of 0.496 was slightly reduced, indicating a closer alignment with random distribution.
The canopy competition index of the stands was reduced, suggesting alleviated pressure
among trees. The mingling index of each sample site improved, particularly in P4, which
likely benefited from its initially weak mixing state. Additionally, the story index and open
comparison of each sample site increased, indicating an enriched vertical structure and
improved light transmittance. Overall, the optimization schemes effectively improved the
structure of all sample sites.

3.5. Algorithm Performance

This research compares the performance of each algorithm in terms of FSS optimization
degree and convergence speed. The FSS’s superiority or inferiority is measured by the VOF.
As shown in Table 6, the maximum VOF of MARL (0.5444, 0.5315, 0.5297, 0.5897, respec-
tively) was generally better than that of SARL (0.5426, 0.5273, 0.5196, 0.5751, respectively)
in the cutting-replanting combination experiments in the four sample plots.

Regarding the convergence speed, MARL outperformed SARL and the TCO scheme.
SARL is prone to “local optimization”, and the TCO scheme requires numerous iterations in
harvesting optimization, resulting in slower convergence. Overall, MARL exhibits superior
convergence speed and achieves better VOFs compared to SARL and the TCO scheme.
(Figures 8 and 9).
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Figure 7. Parameter changes.
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(a) P1 (b) P2

(c) P3 (d) P4

Figure 8. Number of iterations for the optimization algorithm.

(a) P1 (b) P2

(c) P3 (d) P4

Figure 9. Running time of the optimization algorithm.
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4. Discussion

Optimizing FSS is crucial for sustainable forest management, and developing a sci-
entific and efficient quantitative model for FSS and enhancing model-solving efficiency
are urgent challenges. Selective cutting and replanting are common measures for FSS
optimization. However, the TCO model faces limitations such as not flexible replanting
positions and difficulty in simultaneously optimizing selective cutting and replanting. To
address these issues, this study proposes a new optimization scheme, aiming to introduce a
multi-agent co-optimization strategy in RL to achieve the collaborative optimization of se-
lective cutting and replanting for FSS. Simulated optimization experiments were conducted
using data from four circular sample plots of Pinus yunnanensis plantation secondary forest
on the eastern slope of Cangshan Mountain in Dali City, Yunnan Province, China, to verify
the effectiveness and feasibility of this new scheme.

4.1. Superiority of RFI

The results of simulation optimization using different replanting location determina-
tion methods demonstrate that the RFI-based method can achieve better VOFs with fewer
replanting iterations. This highlights the practical superiority of the RFI-based method in
application schemes.

The basic MDGAM only considers the growth space of replanted trees in replanting
optimization, selecting the maximum “forest gap” as the optimal location for replanting
without considering other FSS indicators. In contrast, the RFI-based replanting optimiza-
tion comprehensively considers various factors affecting the growth of replanted trees,
including the relative coordinates of replanted trees and their neighbors, mingling de-
gree, effects of replanting species, and tree age represented by DBH size ratio, as well as
canopy competition index to account for tree crown and height effects. By incorporating
multiple stand structure indices into the objective function, the RFI-based method aims to
maximize VOF by improving the quality of as many stand structure indices as possible.
Therefore, the RFI offers a significant advantage in replanting optimization for enhancing
FSS optimization.

4.2. TCO and CO

In both P1 and P2, despite utilizing the optimal FSS adjusted after harvesting for
replanting optimization experiments, the best replanting outcomes were not achieved.
However, the FSSACA2nd and FSSACA3rd led to more substantial improvements in re-
planting optimization. This indicates that relying solely on the results from FSSACA1st
may not always yield the best overall optimization outcomes, suggesting the need for more
comprehensive optimization schemes. Conversely, in P3, replanting based on FSSACA1st
achieved double optimization by combining selective cutting and replanting, resulting in
the most optimal effect. This aligns with findings from other studies [17], emphasizing
the collaborative synergy between selective logging and replanting. In P4, replanting
optimization experiments based on FSS after FSSACA1st and FSSACA2nd did not yield
expected results, whereas FSSACA3rd achieved the best replanting optimization effect.
This further highlights the potential limitations of relying solely on FSSACA1st results,
emphasizing the need for more flexible consideration of alternative optimization paths.

In simulated co-optimization experiments across the four sample plots, SARL out-
performed the TCO model in terms of VOFs in all plots except P3. Moreover, the average
enhancement of FSS achieved by SARL was higher than that of the TCO model. Notably, the
optimization results of MARL across the sample plots were significantly superior to those of
TCO and SARL. MARL exhibited a greater enhancement of FSS compared to the other meth-
ods. This underscores the exceptional performance of MARL in cooperative optimization,
offering an effective approach for tackling complex FSS optimization problems.

Overall, relying solely on FSSACA1st results for replanting optimization may not
always lead to the best outcomes in FSS cutting and replanting optimization. The TCO
model may exhibit limitations in certain scenarios, necessitating the adoption of more
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comprehensive and flexible optimization schemes tailored to specific circumstances. SARL
and MARL demonstrate significant advantages over the TCO model in solving collaborative
FSS optimization problems, providing novel insights and methodologies for addressing
such challenges.

4.3. Changes in Stand Structure Parameters and Algorithm Performance

After the dual optimization of selective logging and replanting, several improve-
ments in the FSS were observed. These include the maintenance of tree diameter classes,
an increase in tree species diversity, closer adherence to a random distribution pattern,
improved spatial segregation of tree species, reduced competitive pressure among trees,
enriched vertical structure, and enhanced understory light conditions. Overall, under
the applied constraints, the FSS showed improvements compared to its pre-optimization
state, validating the efficacy of RL in addressing the multi-objective logging and replanting
co-optimization problem for FSS. Additionally, the study confirmed that the optimization
approach of selective logging followed by replanting, as seen in the TCO model, effectively
addresses such challenges, consistent with findings from previous research [17].

In terms of algorithm performance, the MARL optimization scheme consistently
yielded higher maximum VOFs compared to the TCO and SARL schemes, indicating
superior FSS optimization outcomes with the multi-agent approach. Furthermore, the
MARL algorithm required significantly fewer iterations to converge to the optimal solution
compared to SARL and TCO schemes, underscoring its faster convergence speed and
enhanced efficiency. SARL exhibited a tendency towards local optima, necessitating a
higher number of iterations to achieve desired results. Conversely, the TCO scheme demon-
strated a slower convergence speed overall, requiring more iterations to reach the optimal
solution. Regarding algorithmic time consumption, MARL performed comparably to SARL
and outperformed the TCO scheme, suggesting its ability to maintain high efficiency and
computational performance.

Overall, the MARL approach exhibits clear advantages over the TCO and SARL
schemes in solving the optimization problem of forest stand structure through cutting and
replanting combinations. Its faster convergence speed, superior FSS optimization outcomes,
and competitive computational efficiency highlight its effectiveness in addressing complex
optimization challenges in forestry management.

5. Conclusions

Although our previous study successfully applied SARL to the multi-objective op-
timization of FSS, it only considered single cutting measures and did not integrate the
synergistic effects of multiple regulatory measures in the model construction and solution
process. While SARL has advantages in solving single cutting optimization models, it is
less effective in addressing models that require the coordination of multiple measures.

This study introduces the RFI, which comprehensively considers various factors influ-
encing the growth of replanted trees, enhancing the accuracy and effectiveness of replanting
location determination. The RFI-based method demonstrates superior performance in op-
timizing FSS. Moreover, this research pioneers the application of MARL to collaborative
optimization of FSS cutting and replanting. By leveraging the collaborative strategy of
MARL, the study successfully achieves collaborative optimization of logging and replanting
in FSS. In comparison to TCO and SARL, MARL exhibits significant advantages in solving
this problem. The detailed comparison of experimental results quantitatively verifies the
superiority of MARL in collaborative optimization of stand structure cutting and replanting,
providing strong theoretical support for addressing stand structure optimization challenges
in actual forest management scenarios.

While this study successfully applied MARL to the multi-objective optimization of
stand structure, the experimental results may not fully reflect real-world forest conditions
due to the specific sample data and simulation settings used. Additionally, although
the optimization scheme based on MARL showed better results, there is still room for
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performance improvement. Based on the above research results and shortcomings, future
research can focus on the following aspects:

(1) To enhance the accuracy and efficiency of MARL decisions, it is essential to inte-
grate GIS (Geographic Information System) data and tools to obtain more detailed three-
dimensional spatial information and accurate canopy calculations. By combining GIS with
MARL, it is possible to construct constraints or objective functions that incorporate spatial
three-dimensional features. This integration ensures that MARL makes more informed and
precise decisions.

(2) Improving and optimizing the algorithms and techniques used in the stand struc-
ture optimization scheme based on MARL. Enhancing its performance and efficiency in
processing large-scale data and complex environments will improve its generalization
ability and practical applicability.

(3) Explore and design more flexible and integrated multi-dimensional optimization
strategies to balance various objectives and interests in forest management, achieving a
more comprehensive and sustainable optimization of stand structure. For instance, design
more efficient and appropriate methods for determining the felling and replanting trees.
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Appendix A

Appendix A.1. Algorithmic Pseudocode of TCO

The Algorithm A1 as follows:

Algorithm A1: TCO for MOFSS
Input : Set of retained trees after cutting g∗
Output : The optimal solution g and the corresponding value of objective function f (g)

1 Read the set of retained trees after cutting optimization g∗ ;
2 Set the initial number of replanting trees n = 1 ;
3 Construct spatial structure units and correct edges of sample plots ;
4 Obtain replanting locations based on RFI and construct the set of replanted trees replant_set ;
5 Calculate the initial value of objective function f (g∗) ;
6 while TRUE do
7 Select the first n replanting trees from the replanting set and construct a new set of retained trees g ;
8 Calculate the new value of objective function f (g) and judge whether it meets the constraints ;
9 if f (g) > f (g∗) and meet all constraints then

10 Save the current feasible solution g∗ = g, f (g∗) = f (g) ;
11 end if
12 else
13 if Current plant density > 3333 then
14 Output the optimal solution g and the corresponding value of objective function f (g)
15 end if
16 end if
17 Increase the number of replanting plants n
18 end while
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Appendix A.2. Algorithmic Pseudocode of SARL

The Algorithm A2 as follows:

Algorithm A2: SARL for MOFSS

1 Initialize states S, actions A, ϵ-greedy policy EPSILON, learning rate α, discount factor γ,
maximum episodes MAXEPISODES, and Q(s, a), where s ∈ S and a ∈ A. Set initial s
and a to 0.;

2 for episode = 1 to MAXEPISODES do
3 Initialize s;
4 if ACTION is cutting and replanting then
5 Choose a from s using policy derived from Q (ϵ-greedy);
6 Take action a, observe reward r, and next state s′;
7 end if
8 if S = NSTATES− 2 then
9 Set S1 to ’terminal’;

10 Set reward R to d;
11 end if
12 else Selective Cutting and Replanting;
13 Use R program to partition Voronoi diagram, calculate structural parameters, and

objective values of FSS after selective cutting and replanting;
14 if VOF > VOF* then
15 Set S1 to S + 1;
16 Set reward R to a;
17 Document selective cutting tree number and values of OF after selective cutting and

replanting;
18 end if
19 else if VOF = VOF* then
20 Set S1 to S;
21 Set reward R to b;
22 end if
23 else
24 Set reward R to c;
25 if S = 0 then
26 Set S1 to S;
27 end if
28 else Set S1 to S− 1;
29 ;
30 end if
31 ;
32 end for
33 else if S = NSTATES− 2 then
34 Set S1 to ’terminal’;
35 Set reward R to d;
36 end if
37 else Set S1 to S + 1;
38 Set reward R to c;
39 ;
40 ;
41 Q(s, a)← Q(s, a) + α[r + γ maxa′ Q(s′, a′)−Q(s, a)];
42 s← s′;
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Appendix A.3. Algorithmic Pseudocode of MARL

The Algorithm A3 as follows:

Algorithm A3: MARL for MOFSS
1 Initialize states S1, S2, actions A1, A2, ϵ-greedy policy EPSILON, learning rate α, discount factor γ, maximum

episodes MAXEPISODES, and Q1(s1, a1), Q2(s2, a2), where s1 ∈ S1, a1 ∈ A1, s2 ∈ S2 and a2 ∈ A2. Set initial
s1, a1, s2 and a2 to 0.;

2 for episode = 1 to MAXEPISODES do
3 Initialize s1 for Agent1 and initialize s2 for Agent2;
4 for Agent1 do
5 if ACTION1 is cutting then
6 Choose a1 from s1 using policy derived from Q1 (ϵ-greedy);
7 Take action a1, observe reward r1, and next state s1′ ;
8 end if
9 if S1 >= S2 then

10 Set S1 to ’terminal’;
11 Set reward R1 to d;
12 end if
13 else Selective Cutting;
14 Use R program to partition Voronoi diagram, calculate structural parameters, and objective values of FSS

after selective cutting;
15 if VOF1 > VOF* then
16 Set S1 to S + 1;
17 Set reward R1 to a;
18 Document selective cutting tree number and values of OF after selective cutting;
19 end if
20 else if VOF1 = VOF* then
21 Set S1 to S;
22 Set reward R1 to b;
23 end if
24 ;
25 Q1(s1, a1)← Q1(s1, a1) + α[r + γ maxa1′ Q1(s1′ , a1′)−Q1(s1, a1)];
26 s1← s1′ ;
27 end for
28 for Agent2 do
29 if ACTION2 is planting then
30 Choose a2 from s2 using policy derived from Q2 (ϵ-greedy);
31 Take action a2, observe reward r2, and next state s2′ ;
32 end if
33 if S1 >= S2 then
34 Set S2 to ’terminal’;
35 Set reward R2 to d2;
36 end if
37 else Replanting;
38 Use R program to partition Voronoi diagram, calculate structural parameters, and objective values of FSS

after replanting;
39 if VOFl<VOFm<VOFr or VOFl>VOFm>VOFr then
40 if max(VOFm l, VOFmr) > max(VOFl , VOFm , VOFr) then
41 Set S2 to S2− 1;
42 Set reward SmallR21 to a2;
43 end if
44 else
45 Set S2 to S2− 1;
46 Set reward SmallR22 to a2;
47 end if
48 end if
49 else if VOFl<VOFm and VOFm>VOFr then
50 if max(VOFm l, VOFmr) > max(VOFl , VOFm , VOFr) then
51 Set S2 to S2− 1;
52 Set reward SmallR21 to a2;
53 end if
54 else
55 Set S2 to S2− 2;
56 Set reward LargeR22 to a2;
57 end if
58 end if
59 else if VOFl>VOFm and VOFm<VOFr then
60 if max(VOFm l, VOFmr) > max(VOFl , VOFm , VOFr) then
61 Set S2 to S2 + 1;
62 Set reward SmallP2 to a2;
63 end if
64 else
65 Set S2 to S2 + 1;
66 Set reward LargeP2 to a2;
67 end if
68 end if
69 Document selective cutting tree number and values of OF after replanting;
70 ;
71 Q2(s2, a2)← Q2(s2, a2) + α[r + γ maxa2′ Q(s2′ , a2′)−Q2(s2, a2)];
72 s2← s2′ ;
73 end for
74 end for
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