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Abstract: The introduction of wood-boring insects to non-native areas can pose a significant threat
to global forest ecosystems. Aromia bungii and Massicus raddei, native to Asia including Korea
but potentially important in urban forestry worldwide, are severe trunk borers that have recently
infested host trees in urban landscapes of Korea. The signs of external injury can help identify
cerambycid-infested trees. However, assessing the internal condition of trees without causing
damage is challenging, which hinders the management of infested trees that are still alive. This
study evaluated the potential use of sonic tomography to assess injury characteristics in the woody
parts of trees, such as Prunus × yedoensis and Quercus palustris infested by A. bungii and M. raddei,
respectively. Among the 45 investigated trees, the number of holes on external parts was recorded by
visual examination. Sonic tomography images revealed decayed areas, allowing for a comparison
of internal damage between infested and non-infested trees. The internal status of trees infested by
the two cerambycid beetles differed from that of healthy trees. While some healthy trees exhibited
minimal internal damage, those that were not infested by beetles showed decayed areas, potentially
caused by non-biological factors such as frozen cracks. In conclusion, sonic tomography equipment
can potentially be used for non-invasive assessment of internal injuries caused by wood-boring
insects in urban trees.

Keywords: longhorn beetle; tree-boring insects; urban tree; tree health; PiCUS

1. Introduction

Wood-boring insects have become significant pests in forest ecosystems globally
when they have invaded non-native regions. Certain species, such as the Asian long-
horned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae), and emerald ash borer,
Agrilus planipennis (Coleoptera: Buprestidae), have posed a substantial threat to billions
of dollars’ worth of forest resources in North America [1–3] and Europe [4–6]. Other
wood-boring insects, such as the red neck longhorn beetle, Aromia bungii and oak longhorn
beetle, Massicus raddei, are recently recognized as serious trunk borers of broadleaved
trees [7,8]. Additionally, several clearwing moth borers, such as Synanthedon hector and Sphe-
codoptera sheni, are also infesting Prunus trees and Quercus trees, respectively [9,10]. Notably,
A. bungii is classified as a quarantine pest globally [11,12].

Aromia bungii, native to Korea, China, Mongolia, Taiwan, and other regions [13],
invaded Japan in 2012 [14]. Since the invasion, this has led to significant mortality among
host trees in various isolated regions of Japan [15,16]. Furthermore, A. bungii has expanded
its range to Europe [17,18]. This wood-boring insect targets a diverse range of trees
belonging to the Rosaceae family, with a particular preference for Prunus × yedoensis [19].
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The adult female of A. bungii lays eggs in the crevices of host trees, and hatched larvae
feed on the inner tissues of the host trees [20,21]. After 2 to 3 years, older larvae bore into
the sapwood and create a pupal chamber, where they then undergo pupation to spend
the winter [22]. The life cycle of the insect generally consists of one generation every
two years [20,22]. In native ranges, newly emerged adults are typically found in July and
August [21].

Massicus raddei has been prominently observed in oak forests, specifically Quercus
spp. forests not only in northeastern China [8,23] but also in Korea [24]. While M. raddei
has not yet been officially classified as an invasive species in non-native ranges [23], there
is a potential for invasion through the trade of wood materials, posing a threat to oak
species [8]. Adults of the insect are active from June to August and female adults lay their
eggs in weakened trees. Larvae feed beneath the bark and bore into xylem areas to create
pupal chambers [21].

In recent times, infestations of A. bungii and M. raddei in their host trees raised man-
agement issues in urban landscapes in Korea [24]. The larvae of these beetles, like other
wood-boring insects, feed on the interior part of trees, targeting the cambium, phloem, and
xylem, thereby disrupting the flow of nutrients and moisture [18,25]. Persistence of this
damage may cause the development of hollow spaces within the affected trees, leading
to their weakening and death [21,26]. The damage inflicted by cerambycid beetle larvae
can typically be identified through external characteristics, although there are various
wood borer species, such as Curculionidae (Coleoptera), Buprestidae (Coleoptera), and Cos-
sidae (Lepidoptera). These external characteristics include the presence of a substantial
amount of frass, sawdust-like wood materials, and resin exudation. Moreover, cerambycid
beetles usually create larger-sized holes associated with adult emergence. These distinc-
tive symptoms are easily noticeable by inspectors or managers, particularly in dead or
dying trees.

Traditionally, assessing internal injuries caused by wood-boring pests has necessitated
the cutting of trees [27,28]. This poses a challenge in predicting the internal condition of
trees that are infested but still living, such as protective trees, roadside trees and so on.
Because the internal status of trees affected by wood-boring insects is significant, various
methods have been employed to assess the internal status of trees, including the use of
increment borers and wood drilling resistance devices [29,30]. An increment borer is a tool
used to drill holes into the tree’s internal tissue to collect samples for inspection, but this
can cause damage to the sampled tree [30]. On the other hand, wood drilling resistance
devices can only assess areas in the line of insertion of the drill, and thus cannot provide
a comprehensive evaluation of damage. However, these conventional methods may not
be well-suited for detecting internal damage caused by wood-boring insects, particularly
cerambycid beetles, that create multiple galleries in various directions. Sonic tomography
(hereinafter abbreviated as ST) has recently emerged as a non-destructive method for
assessing the internal condition of trees. This technique measures the speed of sound
waves transmitted within the woody tissue to identify features such as decay and hollow
spaces [31–35]. While ST has primarily been used for diagnosing decay and the health state
of trees, no studies have investigated its potential applicability for detecting injuries caused
by wood-boring insects.

Therefore, this study was conducted to explore the internal damage status of roadside
trees, specifically, P. × yedoensis infested with A. bungii and Quercus palustris infested with
M. raddei, in urban landscapes using non-invasive ST imaging. Additionally, we analyzed
the correlation between external signs of infestation caused by cerambycid beetles and the
extent of interior damage based on ST.

2. Materials and Methods
2.1. Study Areas and Tree Species

This study was conducted in three different cities: Chuncheon-si, Wonju–si, and
Gapyeong-gun in the Republic of Korea. The selection of study trees was based on the
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presence of evidence of infestation by cerambycid beetles in P. × yedoensis and Q. palustris,
respectively. In Korea, P. × yedoensis is a native species and is abundant in both urban
and rural landscapes, while Q. palustris is an introduced species from North America
that has shown a rapid increase in prevalence as roadside and ornamental trees in recent
years. In 2022, P. × yedoensis accounted for 52% (16,768 trees), 18% (6377 trees), and 25%
(8890 trees) in Gapyeong-gun, Chuncheon-si, and Wonju-si, respectively [36–38]. Although
Q. palustris was not dominant, it was planted at a rate of 1% (601 trees) and 3% (1082 trees)
in Chuncheon-si and Wonju-si, respectively [37,38].

Between July 2022 and July 2023, fifty-six P. × yedoensis trees were investigated in the
three cities: Chuncheon-si (127.740351◦ E in longitude; 37.868148◦ N in latitude), Gapyeong-
gun (127.514813◦ E; 37.814210◦ N), and Wonju-si (127.944330◦ E; 37.338455◦ N). Addition-
ally, 40 Q. palustris trees were investigated in Wonju-si (127.922363◦ E; 37.333960◦ N). In
total, 96 trees were investigated, all of which were planted as roadside trees in all three cities.
The diameter at breast height (DBH, cm) was measured in all investigated trees.

2.2. Visual Investigation for External Part of Trees

In the studied areas, several adult beetles of A. bungii and M. raddei were found in
some roadside trees of P. yedoensis and Q. palustris, respectively (Figure 1a,e). For visual
investigation, each tree was examined based on external signs of infestation by cerambycid
beetles, specifically the number of holes, related to the activity of larvae or adults. In
general, most holes infested were concentration below 1.5 m in height of the investigated
trees and individual larvae were attacking areas of several square centimeters under the
bark. Thus, the number of holes was recorded for each tree from ground level to 1.5 m in
height at 0.5 m intervals. Additionally, emergence holes, formed during adult emergence
after the conclusion of larval activity, were counted per tree. Due to the low occurrence
of emergence holes or the absence of injury in some trees, emergence holes were assessed
comprehensively along with entrance holes. The number of injuries was counted in the
most severely damaged section out of the three sections at a height of 1.5 m from the base.
For example, if the damage was most severe at 40 cm, the number of injuries between 0
and 50 cm was counted. Each tree was visually examined for external signs of infestation
by cerambycid beetles. The number of entrance and emergence holes was caused by
larvae and adults, respectively. Larval entrance holes were examined associated with the
expulsion of frass (Figure 1b,f), indicative of damage likely caused by the most active larvae
(Figure 1c,g).

2.3. Sonic Tomography

To investigate the internal condition of trees and injuries caused by cerambycid bee-
tles, we used the PiCUS® Sonic Tomograph 3 (hereinafter abbreviated as PiCUS3; Argus
electronic GmbH, Rostock, Germany). The operating principle of this device involves the
generation of a sound at a specific point on the tree trunk or woody part and the measure-
ment of the time it takes for the sound to travel to a receiver placed at another point [39,40].
Each ST scan was sequentially numbered, starting with measurement point #1 placed on
the north-facing side of each investigated tree. The height at which ST measurements were
taken varied for each tree. In general, it was not feasible to standardize the measurement
height due to the large variation in attack heights by cerambycid beetles in the studied trees.
Thus, all ST scans in each tree were conducted at different heights where injuries caused by
cerambycid beetles were concentrated (Table 1). The tomography-measured heights (TH,
cm) and circumference at those heights (CH, cm) for all cross-sections were recorded.
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(c) an adult emergence hole and (d) sawdust on the ground. (e) Massicus raddei adult and (f) infes-
tation symptoms of larval frass with woody fibers on the trunk of Quercus palustris; (g) an adult 
emergence hole and (h) sawdust on the ground. 
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Figure 1. External characteristics of infestation by two cerambycid beetles. (a) Aromia bungii adult
and (b) infestation symptoms of larval frass with woody fibers on the trunk of Prunus × yedoensis;
(c) an adult emergence hole and (d) sawdust on the ground. (e) Massicus raddei adult and (f) infestation
symptoms of larval frass with woody fibers on the trunk of Quercus palustris; (g) an adult emergence
hole and (h) sawdust on the ground.

Table 1. Summary of the characteristics of the investigated trees, such as diameter at breast height
(DBH), tomography-measured height (TH), and circumference at tomography-measured height (CH).
TH and CH indicate the height at which entrance and emergence holes made by cerambycid beetles
were concentrated.

Tree Species Group n DBH
(cm, Mean ± s.d.)

TH
(cm, Mean ± s.d.)

CH
(cm, Mean ± s.d.)

Prunus × yedoensis Infested 30 37.1 ± 10.7 48.6 ± 26.5 133.5 ± 36.8
Non-infested 26 30.0 ± 8.5 46.4 ± 14.5 99.0 ± 27.0

Quercus palustris Infested 15 22.3 ± 3.6 41.5 ± 15.7 95.9 ± 23.2
Non-infested 25 21.1 ± 4.6 29.6 ± 18.5 89.3 ± 37.3

The internal condition of the tree based on ST was analyzed using Q74 ver. 74.02.003.1
software. Based on the speed of the sonic wave, a visual display of the internal condition of
the assessed trees was generated using five colors: black and brown indicated solid wood,
i.e., non-damaged areas; green indicated areas to be assessed in relation to the overall
damage; and violet and blue indicated damaged areas, i.e., hollowed or decayed areas [41].
The ST results were categorized into four levels according to the severity of injury: none
(0%); low (1%–20%); moderate (21%–50%); and severe (51%–100%). A total of 96 ST images
was acquired: 30 A. bungii-infested P. × yedoensis and 26 non-infested P. × yedoensis; 15 M.
raddei-infested Q. palustris and 25 non-infested Q. palustris.

For one infested tree of each tree species, P. × yedoensis in Gapyeong-gun and
Q. palustris in Wonju-si, we compared ST and actual cross-sections. In 2022, we obtained
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ST scans and actual cross-sectional photographs for each P. × yedoensis and Q. palustris.
Initially, we measured the ST scan where infestations were concentrated before the tree
was cut down by local government tree managers. Subsequently, we took cross-sectional
photographs at the same height as that of the ST scan. However, we confirmed some
differences between the ST results and the actual cross-section, particularly in P. × ye-
doensis, which were presumed to be due to height differences and sensor placements. In
April 2024, we acquired an additional ST scan and an actual cross-sectional photograph of
P. × yedoensis in Gapyeong-gun that was also damaged by A. bungii. Therefore, unlike
other ST scan results, the additional ST scan result for P. × yedoensis obtained in 2024 was
excluded in the data analyses.

2.4. Data Analysis

The non-solid wood areas were considered as the basis for calculating internal injury
rates. The correlation between visual investigation (i.e., the number of entrance and
emergence holes) and ST findings (i.e., the rate of damaged area) was assessed by calculating
Spearman’s correlation coefficient. Due to the low number or absence of adult emergence
holes in the measured trees, these holes were combined with larval entrance holes for the
correlation analysis.

The proportion of internal damaged area based on ST results was categorized into
five severity classes according to the number of holes (entrance and emergence holes)
identified during the visual investigation. The number of holes—entrance, emergence, and
both—identified during the visual investigation was converted into natural logarithms
(LNs) to classify damage levels incrementally by 1 as follows: 0 (normal), 0.1 to 1.0 (low),
1.1 to 2.0 (moderate), 2.1 to 3.0 (high), and 3.1 to 4.0 (very high).

Principal component analysis (PCA) was performed to explore the relationships among
the variables acquired from visual investigation, sonic tomography, and tree characteristics
for both Prunus × yedoensis and Quercus palustris. PCA is a dimensionality reduction tech-
nique that transforms the original variables into a set of uncorrelated principal components
(PCs) while preserving the maximum amount of variance in the data. Due to the small
sample sizes in the low and very high severity classes, some groups were combined for the
PCA, resulting in three severity classes: N–L (normal to low), M (moderate), and H–VH
(high to very high).

Due to the non-normal distribution of variables, an independent sample Wilcoxon test
was used to assess differences in the internal condition of trees based on the presence or
absence of infestation caused by cerambycid beetles.

All statistical analyses were conducted using the program R, ver. 4.3.1 [42]. The
normality of distribution of variables was assessed using the ‘shapiro.test’ function and
non-parametric comparative analysis was conducted using the ‘wilcox.test’ function. Cor-
relation analysis was performed using the ‘cor.test’ function. PCA was conducted using
the ‘prcomp’ function and the PCA biplot was drawn using the ‘ggbiplot’ function in the
‘ggbiplot’ package. For correlation coefficients between variables and principal components,
we acquired coordinates of individual trees using the ‘get_pca_ind’ function in the ‘factoex-
tra’ package, and then correlation coefficients with probability were calculated using the
‘rcorr(as.matrix)’ function in the ‘Hmisc’ package.

3. Results
3.1. Infestation Characteristics

The external characteristics of A. bungii-infested P. × yedoensis and M. raddei-infested
Q. palustris exhibited similar patterns. The average number (± standard deviation) of larval
entrance holes in all samples was 8.5 (±5.8, n = 30), while adult emergence holes were
observed only in five trees with relatively lower numbers (2.0 ± 2.5, n = 5). In Q. palustris,
the average number of entrance and emergence holes was 7.5 (±4.4, n = 15) and 1.4 (±2.1,
n = 5), respectively.
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3.2. Relationship between Visual Investigations and ST

For both tree species, moderate positive correlations were observed between visual
investigations and internal injury rates based on ST results (Figure 2). For larval entrance
holes, correlation coefficients were significantly positively correlated with internal injury
rates (P. × yedoensis, r = 0.70, p < 0.001; Q. palustris, r = 0.58, p = 0.022) (Figure 2a,d).
Similarly, adult emergence holes showed positive correlations in both tree species, although
correlation coefficients were somewhat decreased (P. × yedoensis, r = 0.40, p = 0.02; Q.
palustris, r = 0.65, p = 0.009) (Figure 2b,e). Both infested tree species, total infestation,
combining larval entrance holes and adult emergence holes, was exhibited higher in
positive correlation coefficients with internal injury rates (P. × yedoensis, r = 0.70, p < 0.001;
Q. palustris, r = 0.68, p = 0.005) (Figure 2c,f).
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Figure 2. Correlations between the number of holes based on visual investigation and the damage
rates based on sonic tomography: (a–c) measurement of Prunus × yedoensis infested by Aromia bungii;
(d–f) measurement of Quercus palustris infested by Massicus raddei. (a,d) number of entrance holes
against damage rates; (b,e) number of emergence holes against damage rates; and (c,f) number of
entrance and emergence holes against damage rates. Dashed lines indicate linear regression lines.

As a result of visual investigation, both P. × yedoensis and Q. palustris showed similar
patterns in terms of their internal state ratios. The more the number of holes increased,
the more the ratio of internal damage also increased. Particularly in the damage grade of
level 4, the solid wood area decreased to less than 50%, and the damaged area increased
(Figure 3).

The principal component analysis (PCA) revealed that the eigenvalue (proportion of
variance) of PC1 for P. × yedoensis PC1 was 4.580 (57.2%), followed by PC2 (eigenvalue
1.490, proportion of variance 18.6%), PC3 (eigenvalue 0.720, proportion of variance 9%), and
PC4 (eigenvalue 0.641, proportion of variance 8%) (Table 2). For Q. palustris, the eigenvalue
of PC1 was 4.752 with a proportion of variance of 59.4%, followed by PC2 (eigenvalue
1.109, proportion of variance 13.9%), PC3 (eigenvalue 0.901, proportion of variance 11.3%),
and PC4 (eigenvalue 0.535, proportion of variance 6.7%) (Table 3). For both species, more
than 70% of the total variance was explained by PC1 and PC2.
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Figure 3. The proportion of tomogram areas in three categories (solid wood, green, and damaged)
in relation to the number of entrance and emergence holes caused by cerambycid beetle larvae in
(a) Prunus × yedoensis (n = 30) and (b) Quercus palustris (n = 15). Damage level categories based on
the natural logarithm-transformed number of holes are as follows: low (0.1 to 1.0), moderate (1.1 to
2.0), high (2.1 to 3.0), and very high (3.1 to 4.0).

Table 2. A result of PCA for Prunus × yedoensis showing eigenvalues, proportion of variance, and
variable loadings for the first four principal components (PC1 to PC4) and correlation coefficients
between variables, i.e., visual investigation, sonic tomography, and tree characteristics, and first
four principal components (PC1 to PC4). Asterisks indicate statistical significance of correlations:
* p < 0.05, ** p < 0.01, *** p < 0.001.

PC1 PC2 PC3 PC4

Eigenvalue 4.5796 1.4901 0.7198 0.6414
Proportion of variance (%) 57.24 18.63 9.00 8.02

Visual investigation
Larval entrance holes −0.90 *** −0.12 0.12 −0.24
Adult emergence holes −0.70 *** 0.23 0.57 *** 0.25
Entrance and emergence holes −0.94 *** −0.02 0.27 * −0.11

Sonic tomography
Solid wood 0.92 *** 0.21 0.25 −0.17
Green −0.72 *** −0.34 ** −0.18 −0.50 ***
Damaged −0.85 *** −0.12 −0.24 0.42 **

Tree characteristics
DBH −0.52 *** 0.67 *** −0.39 ** 0.06
Tree height −0.19 0.90 *** 0.02 −0.24

Table 3. A result of PCA for Quercus palustris showing eigenvalues, proportion of variance, and
variable loadings for the first four principal components (PC1 to PC4) and correlation coefficients
between variables, i.e., visual investigation, sonic tomography, and tree characteristics, and first
four principal components (PC1 to PC4). Asterisks indicate statistical significance of correlations:
** p < 0.01, *** p < 0.001.

PC1 PC2 PC3 PC4

Eigenvalue 4.7524 1.1090 0.9014 0.5354
Proportion of variance (%) 59.41 13.86 11.27 6.69
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Table 3. Cont.

PC1 PC2 PC3 PC4

Visual investigation
Larval entrance holes −0.93 *** −0.02 −0.02 0.00
Adult emergence holes −0.77 *** −0.14 −0.28 −0.42 **
Entrance and emergence holes −0.96 *** −0.02 −0.06 −0.11

Sonic tomography
Solid wood 0.95 *** −0.01 −0.03 −0.25
Green −0.81 *** −0.20 −0.10 −0.13
Damaged −0.85 *** 0.14 0.10 0.44 **

Tree characteristics
DBH −0.29 0.70 *** 0.60 *** −0.27
Tree height 0.08 −0.74 *** −0.67 *** 0.04

The PCA biplots allowed for visual assessment of the influence of each variable
on the principal components and the distribution of individual samples (Figure 4). In
P. × yedoensis, some variables were showed strongly negative correlations with principal
components: entrance hole (r = −0.90), emergence hole (r = −0.70), entrance and emergence
hole (r = −0.94), green (r = −0.72), and damaged rates (r = −0.85) against PC1 (Figure 3a,
Table 2). Similarly, some variables for Quercus palustris, such as entrance hole (r = −0.93),
emergence hole (r = −0.77), entrance and emergence hole (r = −0.96), green (r = −0.81),
and damaged rates (r = −0.85), showed strongly negative correlations with PC1 (Figure 3b,
Table 3). Against PC2, tree characteristics for both tree species were positively or negatively
correlated at 95 % significant level (Tables 2 and 3).
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Figure 4. PCA biplots displaying the first two principal components (PC1 and PC2) for different
tree health assessment methods applied to (a) Prunus × yedoensis and (b) Quercus palustris. Arrows
represent the loadings of the original variables, i.e., visual investigation, sonic tomography, and
tree data, on the principal components, while points represent individual trees, colored by their
damage levels. The damage level was basically classified by the LN-transformed number of holes,
such as 0 (normal), 0.1 to 1.0 (low), 1.1 to 2.0 (moderate), 2.1 to 3.0 (high), and 3.1 to 4.0 (very
high), but three groups, i.e., N-L (normal-low), M (moderate), and H-VH (high-very high), were
represented in biplot because number of trees for normal and very high groups were too low to
represent. Abbreviations: EH—larval entrance holes; AH—adult emergence holes; EAH—entrance
and emergence holes; S—solid wood; G—green; D—damaged; DBH—diameter at breath height;
TH—tree height.

Tomograms of individual trees from each species facilitated the detection of borer
galleries, suggesting their potential to accurately depict cross-sectional conditions (Figure 5).
A single gallery caused by cerambycid larvae appeared as a green area in the tomograms
due to their higher sound velocity compared to healthy tissue. Clustering of multiple
galleries expanded the affected area, resulting in blue or violet colors on the tomograms.
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However, tomograms depicting internal injuries (Figure 5b,d) tended to overestimate the
extent compared to cross-sectional images without defects (Figure 5a,c).
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Figure 5. Comparison of the sonic tomograms and the cross-sections of dead trees. (a) Dead
P. × yedoensis infested by Aromia bungii and (b) its sonic tomogram; (c) dead Q. palustris infested
by M. raddei and (d) its sonic tomogram. The numbers indicate the position of the sensor, with #1
facing north. Different colors indicate wood decay severities: black and brown indicate solid wood
(non-damaged areas); green is assessed in relation to the overall damage; and violet and blue indicate
damaged areas (hollowed or decayed areas).

3.3. Comparison of Tomograms between Infested and Non-Infested Trees

The internal injured area based on tomograms was significantly higher in infested
trees compared to non-infested trees (P. × yedoensis, w = 610, p < 0.001; Q. palustris, w = 357,
p < 0.001). Among the thirty P. × yedoensis trees infested by A. bungii, most infested trees
showed low severity levels, although some trees were highly injured (Figures 6 and A3).
Three trees infested by A. bungii exhibited obvious external symptoms of infestation,
but internal injury rates were not observed (Figure A3b). Similarly, among the fifteen
Q. palustris trees infested by M. raddei, most trees showed low severity levels, while some
trees were highly injured, exhibiting external signs such as sawdust-like woody fibers with
larval frass on the ground (Figures 7 and A4).
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with visual images of the area indicated by the red arrow (right panels). Yellow circles on the right 
panels indicate entrance or emergence holes caused by Aromia bungii: (a) weakly infested but 0% in 
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Figure 6. Representative examples of tomography of measured Prunus × yedoensis trees (left panel)
with visual images of the area indicated by the red arrow (right panels). Yellow circles on the right
panels indicate entrance or emergence holes caused by Aromia bungii: (a) weakly infested but 0% in
injury rates in tomogram; (b) moderately infested and 19% in injury rate in tomogram; (c) severely
infested and 26% in injury rate in tomogram; (d) severely infested in the past and 85% in injury rate in
tomogram. The red numbers in left panels indicate the positions of sensors. Different colors indicate
wood decay severities: black and brown indicate solid wood (non-damaged areas); green is assessed
in relation to the overall damage; and violet and blue indicate damaged areas (hollowed or decayed
areas). To see all four directions of the photographs, refer to Figure A3.
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To the best of our knowledge, this study is the first to use ST to report that trees 
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Figure 7. Representative examples of tomography of measured Quercus palustris tree (left panel)
with visual images of the area indicated by the red arrow (right panels). Yellow circles on the right
panels indicate entrance or emergence holes caused by Massicus raddei: (a) weakly infested and
4% in injury rates in tomogram; (b) moderately infested and 25% in injury rate in tomogram; and
(c) severely infested and 66% in injury rate in tomogram. The red numbers in left panels indicate the
positions of sensors. Different colors indicate wood decay severities: black and brown indicate solid
wood (non-damaged areas); green is assessed in relation to the overall damage; and violet and blue
indicate damaged areas (hollowed or decayed areas). To see all four directions of the photographs,
refer to Figure A4.

4. Discussion
4.1. Usefulness of ST in Diagnosing Wood Decay in Borer-Infested Trees

To the best of our knowledge, this study is the first to use ST to report that trees
infested by cerambycid beetles in both P. × yedoensis and Q. palustris exhibit higher in-
ternal decay, particularly in trees with accumulated infestations. A moderate positive
correlation was observed between the visual inspection, i.e., external signs of infestation by
two cerambycid beetle species (A. bungii and M. raddei), and the sonic tomography, which
measures internal injury rates. This suggests that these external signs of borer infestation
can serve as the severity indicators of internal damage caused by borers. In some trees,
however, diagnosing tree health solely based on the number of holes on the tree trunk exter-
nally may underestimate the extent of internal infestation rates. In other words, some trees
showing high levels of infestation on visual examination did not exhibit severe internal
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decay. We speculate that this discrepancy between visual examination and internal decay
may be partly due to larval development stages. Specifically, young larvae of both ceram-
bycid beetle species may attack the cambium areas of host trees after hatching, whereas
more developed larvae drill into sapwood or heartwood areas, causing tree decay. These
findings suggest that external symptoms observed in cerambycid beetle-infested trees may
not necessarily indicate severe internal woody injuries.

The tomography results for infestation-accumulated trees mimic those caused by
wood-decaying fungi [32,33,35,43]. Based on these observations, it is speculated that cer-
ambycid beetle larvae may serve as vectors for wood decay fungi, transporting them from
the bark to woody areas. Several borers, such as Anoplophora glabripennis, Glischrochilus
quadripunctatus, and Rhizophagus spp., are known vectors of tree pathogenic fungi [44–46].
In addition, cerambycid larvae generally consume plant diets that are poor in available
nutrients but rich in cellulose, hemicellulose, and lignin. Consequently, transient or sym-
biotic microorganisms are known for synthesizing many important enzymes to digest in
the insect gut systems [47]. Some wood decay fungi associated with these microorganisms
in or on bodies of cerambycid larvae could be transported by larval activities, such as
feeding and defecation. Considering the ecological characteristics of the two investigated
cerambycid beetle species mentioned earlier, larvae of both A. bungii and M. raddei may
act as potential vectors of wood decay fungi. After growing for some period, larvae of
both species bore into woody parts and repeatedly move between woody parts and bark to
extract sawdust-like woody fibers with frass. This process may facilitate the simultaneous
invasion of wood decay fungi into the woody parts, gradually inducing the process of
decay in addition to physical damage in the woody parts. Therefore, our tomography
results in cerambycid beetle-infested trees may be similar with those of decayed trees.
However, further research is required for an in-depth characterization of the relationship
between internal damage in trees and wood-boring insects, as well as their interactions
with wood-decaying fungi.

4.2. Limitation of ST Diagnosing Wood Decay in Borer-Infested Trees

Our results suggest that tree diagnostic equipment using sonic tomography, specifically
PiCUS3, can be used for the non-invasive analysis of the internal condition of trees affected
by wood-boring insects, although this device has some limitations. Aromia bungii-infested
trees in the early stage showed external signs of infestation, but there was no internal
injury based on sonic tomographs. This may be attributed to a combination of device
limitations and the complex ecological characteristics of cerambycid beetles. Ensuring
appropriate placement of sensor and precise measurement of the distance between sensors
is crucial for the accuracy of tomography. In fact, capturing the true shape of measured trees
largely depends on adequate triangulation based on sensor placement and distance [48].
Moreover, in the case of long-horned beetles, the extent and areas of injury inflicted, as
well as the particle size of the sawdust-like woody fibers with frass, may vary depending
on the developmental stage of the larvae [20,22,49]. The position of larvae in trees also
varies with the developmental stage [18,20,50]. In A. bungii, young larvae in the first
year of hatching are under the bark and typically feed on cambiums, while ≥1-year-old
larvae bore into woody parts for their overwintering [24]. However, sonic tomographs
mainly detect decay in woody parts rather than in bark areas [51]. Therefore, trees showing
external symptoms of infestation, especially caused by young larvae, may not have internal
injuries. These findings highlighted that there are the limitations in sonic tomography
when assessing early-stage infestations. While sonic tomography is valuable for detecting
advanced internal damage, as evidenced by the correlation between external holes and
internal damage rates in our study, it may not be sensitive enough to identify the initial
stage of cerambycid larval activities confined to the bark and cambium layers. For accurate
assessment and timely management of wood-boring insect infestations in urban trees,
therefore, a comprehensive approach would be needed, combining visual inspection and
sonic tomography by considering the life cycle of pests.
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The comparison between the trees’ cross-sectional and tomographic images showed
similarities, although there were some limitations in obtaining the actual cross-sections
of investigated trees that were measured by ST. However, tomographic images did not
exactly match the actual cross-sections of the trees. This difference may be attributed
to the device characteristics, as the ST findings can vary based on the position of the
sensor [46]. Therefore, diagnosing internal injury of a tree caused by borer insects with
wood decay fungi using ST equipment would only be possible when the damage has
progressed significantly. In the early stages of infestation, diagnosing the extent of damage
through external symptoms may be more efficient.

4.3. Importance of Cerambycid Beetles in Urban Trees and Wood Trade Worldwide

In general, many cerambycid beetle species are known to be agricultural and forestry
pests, with some species posing significant economic and environmental threats, partic-
ularly when they are invasive alien species [52,53]. However, a lot of trees have been
planted along roadsides in urban landscapes. Recently, some cerambycid beetle species
have become invasive alien pests, such as A. bungii in Japan [14–16] and Europe [17,18], A.
glabripennis in north America [1], Anoplophora horsfieldii in Korea [54], and so on. Although
M. raddei is known to be a native species in Korea [24] and China [8,23], and is sometimes
a threat to forestry in native ranges [55], it could also be a potential invasive alien pest of
urban landscapes in non-native ranges in future. Because M. raddei is a pest of broadleaved
deciduous trees in native ranges, trees in urban landscapes may be under threat. In fact,
the planting of Q. palustris has rapidly increased in urban areas of Korea in recent times,
and M. raddei-infected trees were newly found in other cities in 2023 [24].

5. Conclusions and Prospects

This study provided valuable new evidence regarding evaluation of the internal
status of trees infested by two cerambycid beetle species. Conventional damage detection
methods, such as increment borers and wood drilling resistance devices, inevitably cause
physical damage to trees similar to that of wood-boring insects. However, ST can potentially
be used for non-invasive assessment of internal injuries caused by wood-boring insects, in
addition to wood decay and cracks in urban trees. These results suggest that evaluating
the internal condition using ST equipment could be beneficial for the management of
trees, especially protected, ornamental, and roadside trees. Nonetheless, further research
will be necessary, encompassing various host trees for the studied cerambycid beetles,
because their infestation characteristics may differ according to host tree species. In fact, A.
bungii attacks various trees belonging to genus Prunus, while M. raddei attacks a variety of
broadleaved deciduous trees. However, wood decay may depend on the developmental
stage of the insects and their host tree condition. The early stage of infestation may not be
detected by ST because young cerambycid larvae are too small to impact on tree health. On
the other hand, more developed larvae may carry various microorganisms on or in their
bodies that affect wood decay. Consequently, more ST sampling of cerambycid-infested
trees, considering the developmental stages of the insects and a variety of host tree species,
would be helpful to understand the infestation mechanism of these insects in trees.
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Figure A1. Results of tomograms of Prunus × yedoensis trees infested by Aromia bungii larvae. The
red numbers in the image indicate the positions of the sensors. Different colors indicate wood decay
severities: black and brown indicate solid wood (non-damaged areas); green is assessed in relation
to the overall damage; and violet and blue indicate damaged areas (hollowed or decayed areas).
Numbers in parenthesis indicate individual tree measured sonic tomograms.
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red numbers in the image indicate the positions of the sensors. Different colors indicate wood decay
severities: black and brown indicate solid wood (non-damaged areas); green is assessed in relation
to the overall damage; and violet and blue indicate damaged areas (hollowed or decayed areas).
Numbers in parenthesis indicate individual tree measured sonic tomograms.
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Figure A3. Representative examples of tomography of measured Prunus × yedoensis tree (left panel)
with visual images from four directions (right 4 panels): (a) non-infested tree; (b) weakly infested
but 0% in injury rates in tomogram; (c) moderately infested and 19% in injury rate in tomogram;
(d) severely infested and 26% in injury rate in tomogram; (e) severely infested in the past and 85%
in injury rate in tomogram. The red numbers in left panels indicate the positions of the sensors.
Different colors indicate wood decay severities: black and brown indicate solid wood (non-damaged
areas); green is assessed in relation to the overall damage; and violet and blue indicate damaged
areas (hollowed or decayed areas).
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Figure A4. Representative examples of tomography of measured Quercus palustris tree (left panel)
with visual images from four directions (right 4 panels): (a) non-infested tree; (b) weakly infested
and 4% in injury rates in tomogram; (c) moderately infested and 25% in injury rate in tomogram; and
(d) severely infested and 66% in injury rate in tomogram. The red numbers in left panels indicate the
positions of the sensors. Different colors indicate wood decay severities: black and brown indicate
solid wood (non-damaged areas); green is assessed in relation to the overall damage; and violet and
blue indicate damaged areas (hollowed or decayed areas).
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