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Abstract: The Leaf Area Index (LAI) plays a crucial role in assessing the health of forest ecosystems.
This study utilized ICESat-2/ATLAS as the primary information source, integrating 51 measured
sample datasets, and employed the Sequential Gaussian Conditional Simulation (SGCS) method to
derive surface grid information for the study area. The backscattering coefficient and texture feature
factor from Sentinel-1, as well as the spectral band and vegetation index factors from Sentinel-2, were
integrated. The random forest (RF), gradient-boosted regression tree (GBRT) model, and K-nearest
neighbor (KNN) method were employed to construct the LAI estimation model. The optimal model,
RF, was selected to conduct accuracy analysis of various remote sensing data combinations. The
spatial distribution map of Dendrocalamus giganteus in Xinping County was then generated using the
optimal combination model. The findings reveal the following: (1) Four key parameters—optimal
fitted segmented terrain height, interpolated terrain surface height, absolute mean canopy height, and
solar elevation angle—are significantly correlated. (2) The RF model constructed using a combination
of ICESat-2/ATLAS, Sentinel-1, and Sentinel-2 data achieved optimal accuracy, with a coefficient
of determination (R2) of 0.904, root mean square error (RMSE) of 0.384, mean absolute error (MAE)
of 0.319, overall estimation accuracy (P1) of 88.96%, and relative root mean square error (RRMSE)
of 11.04%. (3) The accuracy of LAI estimation using a combination of ICESat-2/ATLAS, Sentinel-1,
and Sentinel-2 remote sensing data showed slight improvement compared to using either ICESat-
2/ATLAS data combined with Sentinel-1 or Sentinel-2 data alone, with a significant enhancement
in LAI estimation accuracy compared to using ICESat-2/ATLAS data alone. (4) LAI values in
the study area ranged mainly from 2.29 to 2.51, averaging 2.4. Research indicates that employing
ICESat-2/ATLAS spaceborne LiDAR data for regional-scale LAI estimation presents clear advantages.
Incorporating SAR data and optical imagery and utilizing diverse data types for complementary
information significantly enhances the accuracy of LAI estimation, demonstrating the feasibility of
LAI inversion with multi-source remote sensing data. This approach offers an innovative framework
for utilizing multi-source remote sensing data for regional-scale LAI inversion, demonstrates a
methodology for integrating various remote sensing data, and serves as a reference for low-cost
high-precision regional-scale LAI estimation.

Keywords: ICESat-2/ATLAS; multi-source remote sensing data; Sequential Gaussian Conditional
Simulation; Leaf Area Index; inversion

1. Introduction

The Leaf Area Index (LAI) represents the total sum of single-sided leaf area per unit of
ground surface area, thus characterizing the size of the leaf area per unit area within an
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ecosystem. It serves as a crucial parameter for reflecting vegetation structural characteristics
and for simulating terrestrial ecological processes, water cycling, and biogeochemical
cycling. Given that leaf surfaces are primary sites for material and energy exchange,
important biophysical processes such as canopy interception, evapotranspiration, and
photosynthesis are closely associated with LAI [1]. The LAI is a dimensionless parameter,
exhibiting substantial variations across growth environments, plant species characteristics,
leaf shapes, and features. This parameter correlates with a multitude of factors such as
vegetation type, growth cycle, leaf inclination angle, leaf cluster characteristics, and non-
foliar biomass, being influenced by measurement techniques. Furthermore, it contributes
to assessing vegetation coverage and ecosystem health, thereby furnishing a scientific
foundation for ecological environmental management [2]. Hence, the scientific and efficient
acquisition of spatial distribution information regarding vegetation LAI on a large scale has
long been a focal point of research in forestry. Direct LAI measurement methods, capable
of achieving high measurement accuracy, are hindered by their time-consuming and costly
nature, and are limited to point scales. These inherent limitations make obtaining spatial
distribution information on large-scale LAI challenging, thereby hindering their practical
applications. In contrast to direct LAI measurement methods, indirect LAI measurement
methods are typically faster, more cost-effective, and have broader coverage. Moreover,
regular acquisition of remote sensing data allows for long-term LAI monitoring [3].

In recent years, owing to the rapid advancement in satellite remote sensing technology,
Light Detection and Ranging (LiDAR), microwave remote sensing, and optical remote
sensing have found extensive applications in the estimation of forest structural parameters.
The LIDAR operates by emitting laser pulses and measuring the time it takes for these
pulses to reflect back to the sensor from the target, a process known as time-of-flight. By
calculating the time-of-flight, three-dimensional images of the target were generated and
highly accurate data were obtained. Optical remote sensing data can furnish information
about the horizontal canopy structure, whereas microwave remote sensing and LiDAR
can provide data concerning the vertical forest structure. Although optical remote sensing
effectively mitigates the drawbacks of traditional techniques, it also possesses certain limi-
tations. Optical remote sensing, akin to microwave remote sensing, is vulnerable to terrain
effects, and may confront spectral signal saturation issues at the regional scale [4]. Airborne
LiDAR, as an advanced remote sensing technology, possesses the capability to acquire
vegetation structure information at various heights with high precision, thus facilitating
accurate LAI inversion. However, the high cost of equipment and data acquisition, coupled
with the collection of strip-shaped data primarily within a limited range, serve as limiting
factors to the widespread promotion and application of this technology [5]. Synthetic
Aperture Radar (SAR) possesses the advantage of being impervious to meteorological
conditions, facilitating the all-weather modeling of vegetation LAI. Nonetheless, the preci-
sion of models derived from this technology is subject to the influence of diverse factors,
encompassing sensor characteristics, canopy structure, and surface properties, thereby
partially constraining its extensive application [6].

Spaceborne LiDAR, as an innovative active sensing technology, integrates a variety of
existing techniques, thereby providing higher resolution and precision. It can accurately
capture surface structures and their changes, effectively addressing the issue of “saturation”
encountered in traditional optical imagery. Consequently, it enables the precise acquisi-
tion of detailed parameter information for the study subjects [7]. The spaceborne LiDAR
ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2)/ATLAS (Advanced Topographic Laser
Altimeter System), launched on 15 September 2018, inherited and developed the technical
advantages of ICESat (Ice, Cloud, and Land Elevation Satellite)/GLAS (Geoscience Laser
Altimetry System). Furthermore, ATLAS utilized single-photon detection technology, en-
abling it to provide higher ground vertical resolution and elevation measurement accuracy,
as well as offering a wider measurement range and improved resolution [8]. Spaceborne
LiDAR data from ICESat-2/ATLAS are currently extensively utilized in polar ice sheets,
sea ice, and forest vegetation, facilitating high-precision elevation measurements and data
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monitoring [9]. In forestry applications, these data are primarily utilized to monitor canopy
height at a regional scale, as well as to estimate and invert biomass and carbon storage [10].
With the continuous advancement of remote sensing technology, spaceborne LiDAR has
gradually found application in the efficient and large-scale retrieval of forest structural
parameters. However, despite these advancements, there exists limited research on estimat-
ing forest LAI utilizing spaceborne LiDAR, necessitating further exploration to evaluate the
effectiveness and accuracy of this technology in assessing forest LAI [11]. Considering the
substantial impact of complex terrain on the data quality of optical and microwave remote
sensing imagery, as well as the relatively discrete footprint of spaceborne LiDAR, the uncer-
tainty introduced by a single remote sensing data source in LAI estimation is considerable.
Consequently, scholars tend to integrate multiple remote sensing data sources to enhance
the accuracy of LAI estimation and effectively address the limitations of individual data
sources.

Dendrocalamus giganteus, renowned for its towering and sturdy culms as well as its di-
verse applications, has emerged as a significant economic crop in the Yunnan region, owing
to its exceptional environmental adaptability and rapid growth rate. In the southeastern
to southwestern regions of Yunnan, Dendrocalamus giganteus is extensively distributed,
with culms typically ranging in height from 20 to 30 m and diameters reaching 20 to 30
cm. Highly favored in interior design and decoration, it is commonly employed in the
manufacture of furniture, decorative items, and various construction materials. Due to its
robust material and substantial size, Dendrocalamus giganteus is also frequently employed as
a building material and in wickerwork, making it suitable for constructing large-scale struc-
tures and intricate weaving products. Furthermore, with the growing demand for green
and sustainable materials, Dendrocalamus giganteus is garnering increased attention due
to its capacity for carbon sequestration and environmentally friendly characteristics [12].
Therefore, promoting the development of the Dendrocalamus giganteus industry not only
contributes to increasing the income of local bamboo farmers and stimulating economic
growth, but also contributes to environmental protection and sustainable development.

Current research on the LAI predominantly centers on forests, with a paucity of studies
investigating bamboo forests, especially the LAI of Dendrocalamus giganteus. Hence, the
utilization of remote sensing technologies like ICESat-2/ATLAS to estimate the LAI of
Dendrocalamus giganteus shows promising potential [13]. Although many studies employ
remote sensing techniques to estimate vegetation LAI, the majority rely on a singular
remote sensing data source [14]. Studies that integrate ICESat-2/ATLAS with other remote
sensing data for regional-scale LAI estimation of Dendrocalamus giganteus are rare. In
this investigation, the Sequential Gaussian Conditional Simulation method was utilized,
amalgamating ICESat-2/ATLAS photon data with various remote sensing datasets. By
employing RF, GBRT, and KNN models, we crafted an optimal LAI estimation model and
delved into the optimal combination of multi-source remote sensing data for LAI inversion.
The effectiveness and feasibility of regional-scale LAI estimation for Dendrocalamus giganteus
in Xinping County were analyzed. This study presents a pivotal case study in advocating
for the sustainable development of bamboo forestry in China, and augments research
on quantifying carbon sequestration in both forests and bamboo forests. This endeavor
holds immense significance in advancing scientific and technological innovation within
bamboo forestry and enhancing the economic value of bamboo forests alongside their
environmental service functions.

2. Materials and Methods
2.1. Study Area

Yuxi City, located in Yunnan Province, encompasses Xinping County (Xinping Yi and
Dai Autonomous County), situated between 23◦38′ to 24◦26′ N and 101◦16′ to 102◦16′ E.
Situated in the southwestern region of Yunnan Province, Xinping County falls under the
administrative authority of Yuxi City, encompassing a total land area of 4223 km2, consti-
tuting 27.6% of Yuxi City’s entire territory. The Yuanjiang River traverses Xinping County
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along the Ailao Mountain range, demarcating the county into two distinct regions. Xinping
County boasts a plateau terrain characterized by elevated landscapes in the northwest
and lower elevations in the southeast. Damaoyan Peak, the primary summit of the Ailao
Mountain, stands as the highest elevation in the county, towering at 3165.9 m, while the
lowest point lies within the Nanhao Group, Mosha Town, at an elevation of 422 m. The
yearly mean temperature registers at 18.1 ◦C, accompanied by an annual precipitation
of 869 mm [15]. Figure 1 offers geographical location data for Xinping County. Dendro-
calamus giganteus exhibits wide distribution across Xinping County. Renowned for its
resilience to drought and barren conditions, it flourishes in warm climates, but is sensitive
to cold temperatures. Optimal growth conditions for Dendrocalamus giganteus necessitate
an average annual temperature of at least 17 ◦C, with an annual accumulated temperature
exceeding 5500 ◦C. Dendrocalamus giganteus holds dual significance as both an ornamental
and a distinctive material bamboo species. Dendrocalamus giganteus plays a pivotal role
in stimulating economic development and has become an integral component of local
livelihoods, thereby elevating the bamboo industry to a position of prominence within
Xinping County. Hence, precise and efficient estimation and analysis of Dendrocalamus
giganteus’ LAI are instrumental in fostering rural revitalization and optimizing agricultural
structural enhancements. Additionally, it serves as a catalyst for agricultural technological
innovation.
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Figure 1. Location of Xinping Yi and Dai Autonomous County. Note: The base map in this figure is
named “Administrative Map of Yunnan Province”, with the review number Yun S (2020) No. 102. It
was supervised by the Yunnan Provincial Department of Natural Resources and produced by the
Yunnan Provincial Map Institute. The same applies below.

2.2. Datasets and Preprocessing
2.2.1. Ground Survey Data Collection and Processing

For this study, drawing upon the results of the forest resource planning and design
survey conducted in Yunnan Province, 51 circular plots with a radius of 8.5 m were
established in Xinping County, Yuxi City, Yunnan Province, on 8 January 2024, as depicted
in Figure 1. In this study, we employed the Thousand Vision Star Matrix SR3 (Pro version)
differential positioning instrument (SR3, Pro version, Chengdu, Sichuan, China) to collect
the coordinates of the circular plots in a fixed solution state, thereby ensuring the accuracy
of the plot coordinates. Advanced hemispherical photography was employed in this study
to accurately capture LAI data measured in the field [16]. Nine shooting points were
uniformly selected within each plot to ensure the comprehensive coverage of various
vegetation. Subsequently, precise shooting was conducted at each point using a fisheye
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lens to ensure the capture of fisheye photos encompassing the canopy distribution areas.
Consequently, nine fisheye photos were obtained within each plot. To ensure measurement
accuracy, appropriate lighting conditions must be maintained within the selected plots.
During the shooting process, direct exposure to sunlight should be minimized to avoid
inaccuracies in reflecting the true condition of the samples. Subsequently, preprocessing
was performed on the fisheye photos from the 51 plots that met the standards. To ensure
the accuracy and consistency of the image data, the aspect ratio of all photos was initially
adjusted to the standard size of 3000 × 4000 pixels and uniformly converted to JPG format.
Subsequently, they were imported into CANEYE (CANEYE, version 6.495, INRA, Paris,
France), a hemispherical image analysis software developed based on MATLAB (MATLAB,
version R2018a, Natick, MA, USA) programming, where relevant parameters were adjusted
accordingly. Following analysis, the measured LAI values of the 51 Dendrocalamus giganteus
plots were determined. The descriptive statistical characteristics of the measured LAI in
the sample plots are depicted in Table 1.

Table 1. Descriptive statistics of measured LAI in effective sample plots.

Sample Size Minimum Value Maximum Value Mean Value Standard Deviation Variance

51 1.31 4.98 3.43 0.94 0.89

2.2.2. ICESat-2/ATLAS Data

The ICESat-2 is equipped with the Advanced Topographic Laser Altimetry System
(ATLAS), which employs the principle of photon round-trip time for ranging. ATLAS
utilizes single-photon detection technology to emit 532 nm green laser pulses at a frequency
of 10 kHz. Each laser pulse contains over 100 trillion photons. These pulses are split
into 3 pairs of 6 beams using a spectroscope, enabling the acquisition of photon point
cloud data with a diameter of approximately 17 m and an along-track distance of 0.7 m.
Each pair of beams consists of a strong beam and a weak beam, with an energy ratio of
approximately 4:1. The two beams are spaced approximately 90 m apart vertically, and the
separation between different pairs of beams along the orbit is about 3.3 km [17]. This study
employed Level-2 (ATL03) and Level-3A (ATL08) data products obtained from ICESat-
2/ATLAS. The ATL08 product is derived from ATL03 data using the DRAGANN (Gaussian
adaptive nearest neighbor) denoising algorithm and an improved Progressive Triangular
Irregular Network Densification (PTD) classification method, providing various parameter
information regarding the vegetation canopy and terrain [18]. Comprehensive descriptions
of the ICE-Sat-2 data products can be accessed at https://nsidc.org/data/ICESat-2/data-
sets (accessed on 15 January 2024). This study obtained all accessible ATL03 and ATL08
data products encompassing the study area from January 2022 to August 2023. The ATL03
data consist of 44 records, encompassing 132 orbits and 264 beams, whereas the ATL08
data comprise 44 records, covering 132 orbits and 264 beams. The ICESat-2/ATLAS data
utilized in this study are openly accessible for downloading from the Earthdata website
(https://search.earthdata.nasa.gov/, accessed on 15 January 2024).

2.2.3. Sentinel-1/-2 Data

Sentinel-1 is a high-resolution synthetic aperture radar (SAR) satellite. Sentinel-1A
was successfully launched on 3 April 2014, and Sentinel-1B followed suit on 25 April 2016.
Both satellites have a revisit period of 12 days and carry sensors based on C-band SAR
technology. Positioned 180 degrees apart on the same orbital plane, these two satellites
ensure optimal global coverage and facilitate data transmission. They provide data in
four polarization modes—Vertically Transmit, Vertically Receive (VV), Vertically Transmit,
Horizontally Receive (VH), Horizontally Transmit, Horizontally Receive (HH), and Hori-
zontally Transmit, Vertically Receive (HV)—with a resolution of 10 m [19]. With all-weather
imaging capabilities, Sentinel-2 satellites provide high-resolution and medium-resolution
measurement data for land, coastal, and ice areas. Sentinel-2 satellites are high-resolution
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multispectral imaging satellites, consisting of Sentinel-2A and Sentinel-2B. Each satellite
has a revisit period of 10 days, and the two satellites complement each other to achieve a
combined revisit period of 5 days. Sentinel-2A was successfully launched on 23 June 2015,
followed by the launch of Sentinel-2B on 7 March 2017. They are primarily used for global
land observation, covering land vegetation, soil, water resources, inland waterways, and
coastal areas. The Sentinel-2 satellite carries a Multi-Spectral Instrument (MSI), and orbits
at an altitude of 786 km. It covers 13 spectral bands with a swath width of 290 km. The spec-
tral range spans from visible light to near-infrared and short-wave infrared. Bands B2 (Blue,
458–523 nm), B3 (Green, 543–578 nm), B4 (Red, 650–680 nm), and B8 [Near Infrared (NIR),
785–899 nm] have a resolution of 10 m, while bands B5 (Vegetation Red Edge, 698–712 nm),
B6 (Vegetation Red Edge, 732–748 nm), B7 (Vegetation Red Edge, 773–793 nm), B8A (Vege-
tation Red Edge, 855–875 nm), B11 (SWIR, 1560–1660 nm), and B12 (SWIR, 2100–2300 nm)
have a resolution of 20 m, and bands B1 (Coastal Aerosol, 443–453 nm), B9 (Water Vapor,
940–960 nm), and B10 (SWIR-Cirrus, 1360–1390 nm) have a resolution of 60 m [20]. These
data provide valuable information on land vegetation growth, soil cover conditions, and
environmental aspects of inland and coastal areas [21]. This study obtained Sentinel-1/-2
images from October 2023, which are freely available for download through the Google
Earth Engine (GEE) platform (https://earthengine.google.com/, accessed on 15 January
2024).

3. Research Methods and Data Processing
3.1. Research Methodology

In this study, we initially employed the Sequential Gaussian Conditional Simulation
(SGCS) method, rooted in simple kriging, to interpolate the footprint parameters furnished
using ICESat-2/ATLAS, thus acquiring surface information. Following that, multiple
remote sensing images were harmonized with ICESat-2/ATLAS parameters to scrutinize
the correlation between each variable and LAI. Various combinations of remote sensing data
sources were subsequently utilized, leading to the development of LAI estimation models
using Random Forest (RF), Gradient-Boosting Regression Trees (GBRT), and K-Nearest
Neighbors (KNN) methods. The spatial distribution map of regional-scale Dendrocalamus
giganteus LAI is derived by employing the optimal remote sensing data combination model.
The technical approach of this study is delineated in Figure 2.
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In order to expedite model convergence, prior to conducting variance function analysis,
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Subsequently, the data structure of each variable undergoes a normality test, and variables
showing nonnormal distributions are subjected to cube root transformation to approximate
a normal distribution. This process facilitates the subsequent variance function analysis.
The calculation formula is as follows:

Y =
y − ymin

ymax − ymin
(1)

Note: Y represents the result of normalization processing; y represents the initial value;
ymin represents the minimum value of the initial data; and ymax represents the maximum
value of the initial data.

• Variance function

The Variance Function, often referred to as the semivariance function, plays a pivotal
role in kriging interpolation, serving as a fundamental analytical instrument in spatial statis-
tics. It characterizes the spatial distribution pattern of regionalized variables, and offers a
quantitative depiction of the spatial autocorrelation within geographic data. The experimen-
tal variogram derived from variogram computation requires fitting using methodologies
like the spherical model, exponential model, linear model, and Gaussian model to develop
its theoretical variogram function model, thus furnishing a theoretical underpinning for the
structural analysis of geoscientific variables and their spatial local estimation, specifically
kriging interpolation [22]. The structural attributes of its theoretical model are delineated
by four parameters: function type, nugget variance (C0), sill (C0 + C, where C represents
the partial sill), and range (a). The functional expression is provided below:

γ(h) =
1

2n(h)∑
n(h)
i = 1[Z(Xi)− Z(Xi + h)]2 (2)

Note: γ(h) represents the variogram function; h represents the sampling interval
between paired sample points; n(h) represents the total number of paired samples when
the spacing between sample points is h; and Z(Xi) and Z(Xi + h) represent the attribute
values of the regionalized variable at spatial locations Xi and Xi + h, respectively.

• Principle of Sequential Gaussian Conditional Simulation

Geostatistics plays a crucial role in the analysis of forest spatial structures and pa-
rameter estimation [23]. Sequential Gaussian Conditional Simulation, based on the Monte
Carlo method, is a spatial stochastic simulation technique that performs well in estimating
vegetation structural parameters over large regions [24]. Widely applied in geosciences,
geostatistics serves to quantify the uncertainty of regionalized attributes [25]. Sequential
Gaussian Conditional Simulation constructs Gaussian functions utilizing existing data, and
considers the values of the regional-scale random variable Z(x) as random realizations of
the normal distribution function F(x). At each simulation location xm, known data Z(xi)
(i = 1, 2, . . ., n) and previously simulated values Z(xj) (j = 1, 2, . . ., m − 1) are used to
derive the conditional cumulative probability density function F(x). Subsequently, spatial
predictions are generated through random simulation by employing the cumulative con-
ditional probability distribution [26]. The Kriging interpolation method, widely utilized
in forestry, is distinguished by its impartiality and minimal estimation error variance [27].
Nonetheless, minimizing error variance may induce a smoothing effect [28], potentially
leading to a biased estimation of global spatial variability. Thus, the primary application
of this method is for local estimation. In contrast to the Kriging interpolation method,
Sequential Gaussian Conditional Simulation employs the Monte Carlo method to derive
the probability density function based on the original data. The variance of simulated
values at any given point equals the variance of the Gaussian distribution of the original
data, thus circumventing the smoothing effect [29,30], an inherent trait of all minimum
mean squared error spatial estimators [31]. Sequential Gaussian Conditional Simulation
can preserve the overall spatial variation intensity and generate multiple equally probable



Forests 2024, 15, 1257 8 of 22

realizations at each unsampled spatial location, thereby quantifying the spatial uncertainty
of geographic attribute variation [32]. Since the collected data often fail to fully meet the
simulation requirements, it is necessary to first normalize them and subsequently achieve
the transformation of simulation results through inverse transformation [33].

3.1.2. LAI Estimation Model

• Random Forest

Random Forest (RF) represents an implementation of the Bagging method in ensemble
learning [34]. It comprises multiple decision trees, and is constructed by utilizing various
subsets of the training data and feature attributes. Upon inputting the training data into
the model, RF does not construct a single large decision tree using the entire training
dataset; rather, it builds multiple small decision trees from different subsets of data and
features, subsequently combining them into a more robust model. Each subset is created
by randomly selecting samples and features, with the aim of reducing the sensitivity of
decision trees to the training data and preventing overfitting [35]. Through combining
results from multiple decision trees, RF enhances model effectiveness, demonstrating high
accuracy, robustness against noise and outliers, and computational efficiency advantages.
However, it incurs significant memory usage and slower training speeds when dealing
with large numbers of trees or datasets. The RF model was constructed utilizing the
“randomForest” package within the R statistical program (RStudio, version 4.2.2, Boston,
MA, USA) for this study.

• Gradient-Boosting Regression Trees

Gradient-Boosting Regression Trees (GBRT) constitute a distinct ensemble method
divergent from random forests, distinguished by its focus on correction and enhancement.
By combining multiple decision trees [36], it constructs a more robust model. The GBRT
model serves as a function space optimization algorithm, capable of accommodating
intricate nonlinear relationships. After each iteration, GBRT generates a weak learner with
low accuracy; however, these learners are interdependent. The final ensemble achieves
higher accuracy by integrating these weak learners [37]. GBRT could handle diverse data
types, offering high predictive accuracy and robust anti-overfitting capabilities. However,
configuring its parameters was complex, incurring high computational costs and rendering
it unsuitable for real-time predictions. In this study, the GBRT model was implemented
through the utilization of the “gbm” package in the R statistical program (RStudio, version
4.2.2, Boston, MA, USA).

• K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm, commonly employed in machine learning,
operates on the principle of leveraging distance information to identify neighboring data
points, subsequently determining the classification of the data point based on the class
information of these neighbors. The KNN method, characterized by its simple structure,
enables the simultaneous estimation of all variables. In contrast to univariate predictions,
it better preserves the correlation and covariance structure among variables [38–40]. The
KNN algorithm offers intuitive and easy-to-implement advantages; however, its efficiency
and accuracy are constrained in large-scale high-dimensional datasets. In this study, we
constructed the KNN model using the “kknn” package in the R statistical program (RStudio,
version 4.2.2, Boston, MA, USA).

3.1.3. Evaluation of Model Accuracy

In this study, model accuracy is assessed utilizing the coefficient of determination (R2),
root mean square error (RMSE), mean absolute error (MAE), overall estimation accuracy
(P1), and relative root mean square error (RRMSE) [41]. A higher R2 and P1 value, closer
to 1, indicates a better fit between predicted and observed values, whereas lower RMSE,
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MAE, and RRMSE values, closer to 0, signify smaller errors in model estimation. The
formulations for these statistical metrics are as follows:

R2 = 1 − ∑n
i = 1(yi − ŷi)

2

∑n
i = 1(yi − y)2 (3)

RMSE =

√
∑n

i = 1(yi − ŷi)
2

n
(4)

MAE =
1
n∑n

i = 1|(yi − ŷi)| (5)

P1 =

(
1 − RMSE

y

)
× 100% (6)

RRMSE =
RMSE

1
n ∑n

i = 1(yi − y)2 (7)

Note: yi represents the observed value; ŷi denotes the estimated value; y represents the
mean of estimated values; and n is the sample size.

3.2. Data Processing
3.2.1. Data Processing of ICESat-2/ATLAS

The acquisition of ATLAS photon data is influenced by multiple factors, including
solar radiation, atmospheric scattering, terrain conditions, and sensor characteristics. In
this study, we utilized a noise reduction algorithm based on an improved version of
OPTICS to denoise ATL08 data within the study area, thereby effectively extracting the
necessary signal photons. Following denoising processing, the ATLAS data contained signal
photons, including those from vegetation canopies and surfaces. The denoised photon
cloud data underwent processing using the enhanced Progressive Triangular Irregular
Network Densification (PTD) method, resulting in the extraction of 21,080 valid footprints
within the study area. Subsequently, a parameter extraction module for ICESat-2/ATLAS
was developed using PyCharm IDL within a Python (Python, version 3.9, Amsterdam, The
Netherlands) environment. The final distribution of ATLAS footprints within the study
area is illustrated in Figure 3.
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3.2.2. Data Processing of Sentinel-1/-2

In this study, we downloaded and pre-processed Sentinel-1 data using the Google
Earth Engine (GEE) platform. The preprocessing steps included precise orbit correction,
thermal noise removal, radiometric calibration, multi-looking, speckle filtering, geocoding,
and decibel conversion. The spatial resolution was resampled to 15 m × 15 m. In ENVI
(ENVI, version 5.3, Boulder, CO, USA) software, the second-order texture analysis method
utilizing the Grey Level Co-occurrence Matrix (GLCM) was applied to generate texture
images. The analysis employed a window size of 5 × 5, a step size of 1, and 64 gray levels,
extracting eight pieces of texture feature information [42]. The study employed the Google
Earth Engine (GEE) platform for downloading and preprocessing Sentinel-2 data. This
process encompassed geographic registration, radiometric calibration, and atmospheric
correction of Level-1C data to derive surface reflectance values. The spatial resolution was
resampled to 15 m × 15 m. Subsequently, ENVI (ENVI, version 5.3, Boulder, CO, USA)
software was utilized to extract image feature parameters, including spectral bands and
vegetation indices.

3.2.3. Selection and Extraction of Feature Variables

• ICESat-2/ATLAS parameters

The ATL03 data product comprises geographic spatial location information for all
photon events, encompassing time, latitude, longitude, altitude, and corrections to the
geoid model. Each photon is indexed to concatenate all hierarchical data into a unified
structure. The ATLAS data exhibit two types of single-photon indexing: one segment
along-track distance, with each segment identified by a unique seven-digit number [43,44].
The ATL08 data product utilized in this study is generated via segment-based indexing.
Derived from segmented ATL03 products, ATL08 data products offer a range of canopy
and terrain-related indices. The ATL08 feature parameters employed in this study are listed
in Table 2.

Table 2. ICESat-2/ATLAS characteristic factors.

Variable Factor Name Meaning Describe

solar_elevation Solar elevation Solar angle above or below the plane tangent to the ellipsoid
surface at the laser spot.

h_mean_canopy_abs Absolute mean canopy height Mean of the individual absolute canopy heights within the
segment referenced above the WGS84 Ellipsoid.

h_te_best_fit Segment terrain height best fit The best-fit terrain elevation at the mid-point location of
each 100 m segment.

h_te_interp Interpolated Interpolated terrain surface height above the WGS84.

• Extraction of region-scale remote sensing data and feature variables

The optical remote sensing variables employed in this investigation comprised spec-
tral indices, vegetation indices, and texture features. Vegetation indices prove effective in
distinguishing vegetation from other land cover types, and serve as indicators reflecting
plant growth conditions, canopy coverage, and biomass. They have been extensively
applied in vegetation classification, environmental change monitoring, crop yield estima-
tion, and various other domains [45]. Texture features elucidate the spatial distribution of
brightness among neighboring pixels, thereby reflecting the appearance characteristics of
objects, encompassing attributes such as color, texture, and shape [46]. This study extracted
the backscattering coefficient and texture features from Sentinel-1 images (Table 3) and
obtained original single spectral bands and vegetation indices (Table 4) from Sentinel-2
images. The extracted feature variables are displayed in Table 5.
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Table 3. Calculation formula of the texture feature.

Texture Feature Parameter Equation Texture Feature
Parameter Equation

Mean (ME) ME =
n−1
∑

i,j = 0
iFi,j

Dissimilarity (DI) DI =
n−1
∑

i,j = 0
iFi,j

∣∣∣i − j
∣∣∣

Variance (VA) VA =
n−1
∑

i,j = 0
iFi,j

(
i, j − µi,j

)2 Entropy (EN) EN =
n−1
∑

i,j = 0
iFi,j

∣∣∣−ln Fi,j

∣∣∣
Homogeneity (HO) HO =

n−1
∑

i,j = 0
i

Fi,j

1 + (i − j)2
Second Moment (SM) SM =

n−1
∑

i,j = 0
iF2

i,j

Contrast (CO) CO =
n−1
∑

i,j = 0
iFi,j(i − j)2 Correlation (CR)

CR =
n−1
∑

i,j = 0
Fi,j

 (i − µi)
(

j − µj

)
√

VAiVAj


Note: i represents the number of rows in GLCM, and j represents the number of columns, Fi,j denotes the
normalized element values of row i and column j in the normalized co-occurrence matrix, and µi,j represents the
mean value of GLCM..

Table 4. Formula for calculating vegetation index.

Vegetation Index Name Calculation Formula

Normalized Difference Vegetation Index (NDVI) [47] NDVI = B8−B4
B8+B4

Difference Vegetation Index (DVI) [48] DVI = B8 − B4

Soil-Adjusted Vegetation Index (SAVI) [49] SAVI = (B8−B4)(1+L)
B8+B4+L

Optimized Soil-Adjusted Vegetation Index (OSAVI) [50] OSAVI = B8−B4
B8+B4+0.16

Enhanced Vegetation Index (EVI) [51] EVI = 2.5 × B8−B4
B8+6B4−7.5B2+1

Two-band Enhanced Vegetation Index (EVI2) [52] EVI2 = 2.5 B8−B4
B8+B4+1

Ratio Vegetation Index (RVI) [53] RVI = B8
B4

Modified Soil-Adjusted Vegetation Index (MSAVI) [54] MSAVI =
2B8+1−

√
(2B8+1)2−8(B8−B4)

2

Green Normalized Difference Vegetation Index (GNDVI) [55] GNDVI = B8−B3
B8+B3

Green Ratio Vegetation Index (GRVI) [56] GRVI = B3
B4

Renormalized Difference Vegetation Index (RDVI) [56] RDVI = B8−B4√
B8+B4

Infrared Difference Vegetation Index (IDVI) [57] IDVI = B8−B3
B8+B3

Note: B2: Bands2, Blue; B3: Bands3, Green; B4: Bands4, Red; B8: Bands8, Near Infrared (NIR). The value of L is
usually 0.5.

Table 5. Sentinel-1/2 variable factor extraction.

Data Source Variable Type Variable Name Variables Number

Sentinel-1 Backscatter coefficient VV, VH 2

Texture features
VV-ME, VV-VA, VV-HO, VV-CO, VV-DI, VV-EN,

VV-SM, VV-CR, VH-ME, VH-VA, VH-HO,
VH-CO, VH-DI, VH-EN, VH-SM, VH-CR,

16

Sentinel-2 Original single spectral bands B2, B3, B4, B5, B6, B7, B8, B8A 8

Vegetation Index NDVI, DVI, SAVI, OSAVI, EVI, EVI2, RVI,
MSAVI, GNDVI, GRVI, RDVI, IDVI 12

Note: VV: Co-polarization; VH: Cross-polarization; VV-XX: Eight texture features of VV generated by Sentinel-1
using GLCM; VH-XX: Eight texture features of VH generated by Sentinel-1 using GLCM; ME: Mean; VA: Variance;
HO: Homogeneity; CO: Contrast; DI: Dissimilarity; EN: Entropy; SM: Second Moment; CR: Correlation; B2:
Bands2, Blue; B3: Bands3, Green; B4: Bands4, Red; B5: Bands5, Vegetation Red Edge; B6: Bands6, Vegetation Red
Edge; B7: Bands7, Vegetation Red Edge; B8: Bands8, Near Infrared (NIR); B8A: Bands8A, Vegetation Red Edge.
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4. Results and Analysis
4.1. Sequential Gaussian Condition Simulation Effect
4.1.1. Choice of Variance Function Model

This study utilized the GS+9.0 software to fit linear, spherical, exponential, and Gaus-
sian models to the variogram functions, thereby selecting the optimal theoretical model. To
ensure the accuracy of the models, in this study, we selected the optimal model based on
criteria including the coefficient of determination (R2), residual sum of squares (RSS), and
the ratio of nugget variance to sill (variability).

The model parameters acquired via the GS+9.0 software are delineated in Table 6.
The findings delineate the following outcomes: (1) The spherical model for parameters
such as h_te_best_fit, h_te_interp, h_mean_canopy_abs, and solar_elevation demonstrated
the highest R2 and lowest RSS values, signifying optimal model performance. (2) The
variation in h_te_best_fit, h_te_interp, and h_mean_canopy_abs surpassed 75%, implying
a high degree of spatial autocorrelation for these variables, whereas the variability of
solar_elevation fell between 25% and 75%, denoting moderate spatial autocorrelation for
this factor. (3) h_te_best_fit manifested strong spatial autocorrelation within a radius of
27,500 m; h_te_interp showed strong spatial autocorrelation within a radius of 27,600 m;
h_mean_canopy_abs displayed strong spatial autocorrelation within a radius of 27,800 m;
and solar_elevation demonstrated moderate spatial autocorrelation within a radius of
13,000 m.

Table 6. Variation function analysis of characteristic factors.

Modeling Factors Model R2 RSS C0 C0 + C C0/C0 + C/% Range/m

h_te_best_fit Linear 0.482 3.720 1.115120 2.736242 0.592 52,262.12
Spherical 0.921 0.567 0.051000 2.397000 0.979 27,500.00

Exponential 0.870 1.000 0.001000 2.465000 1.000 33,300.00
Gaussian 0.914 0.618 0.314000 2.392000 0.869 22,516.66

h_te_interp Linear 0.482 3.720 1.115268 2.736374 0.592 52,262.12
Spherical 0.921 0.567 0.052000 2.398000 0.978 27,600.00

Exponential 0.870 1.000 0.001000 2.465000 1.000 33,300.00
Gaussian 0.914 0.618 0.319000 2.392000 0.867 22,516.66

h_mean_canopy_abs Linear 0.492 2.740 1.074694 2.495106 0.569 52,262.12
Spherical 0.925 0.406 0.163000 2.197000 0.926 27,800.00

Exponential 0.877 0.687 0.001000 2.249000 1.000 31,800.00
Gaussian 0.917 0.447 0.394000 2.192000 0.820 22,689.87

solar_elevation Linear 0.254 1.214000 1741.631 2302.117 0.243 52,262.12
Spherical 0.740 4.24100 710.0000 2151.000 0.670 13,000.00

Exponential 0.690 5.04300 259.0000 2152.000 0.880 11,700.00
Gaussian 0.732 4.35900 947.0000 2151.000 0.560 11,085.13

4.1.2. Sequential Gaussian Condition Simulation of LAI Model Spot Feature Factors

The LAI of Dendrocalamus giganteus underwent analysis through Sequential Gaussian
Conditional Simulation (SGCS), employing Geostatistics software for environmental sci-
ences (GS+, version 9.0, Plainwell, MI, USA) and ArcGIS (ArcGIS, version 10.8, Redlands,
CA, USA) software. Initially, a variogram analysis was performed utilizing Geostatistics
software for environmental sciences software to ascertain parameters such as the range
and nugget variance of the optimal variogram model. Subsequently, simple kriging in-
terpolation was executed, employing ArcGIS (ArcGIS, version 10.8, Redlands, CA, USA)
software, relying on the parameters derived from the optimal variogram model. Gaus-
sian geostatistical simulation (SGCS) analysis was subsequently conducted utilizing the
Gaussian geostatistical simulation tool [58]. Multiple simulation runs were established,
encompassing 1, 10, 25, 50, 75, and 100 iterations, aiming to ascertain the optimal number
of simulations [33]. Experimental results suggest that as the number of SGCS simulations
increases, the variance of Dendrocalamus giganteus LAI at the pixel level becomes more
pronounced. However, once the number of SGCS simulations reaches 25, the coefficient of
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variation begins to stabilize. Therefore, in this study, we decided to set the threshold for
the number of simulations at 25. The effect of SGCS is depicted in Figure 4.
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4.2. Variables Correlation Analysis

The study meticulously curated a comprehensive set of 84 model feature variables,
comprising 46 ICESat-2/ATLAS feature parameters, 2 backscatter coefficients, and 16 tex-
ture feature factors extracted from Sentinel-1 data, alongside 8 single spectral bands and
12 vegetation index factors derived from Sentinel-2 observations. The Pearson correlation
coefficient method was meticulously applied to identify variables significantly correlated
with Dendrocalamus giganteus LAI at significance levels of 0.01, 0.05, and 0.1, respectively.
The correlation matrix illustrating the significant correlations among variables is depicted
in Figure 5. As depicted in Table 7, the Pearson correlation coefficients between remote
sensing variables and LAI, at the 0.01 significance level, span from −0.384 to 0.367, en-
compassing VV_Mean and VV_Dissimilarity. At the 0.05 significance level, correlation
coefficients vary from −0.336 to 0.352, encompassing h_te_best_fit, VV, VV_SecondMoment,
VV_Homogeneity, VV_Entropy, VH_Mean, VH_Homogeneity, EVI, EVI2, IDVI, NDVI,
OSAVI, RDVI, RVI, and SAVI. At the 0.1 significance level, correlation coefficients range
from −0.236 to 0.271, including h_te_interp, solar_elevation, h_mean_canopy_abs, DVI,
and MSAVI.

4.3. Estimation Results of Dendrocalamus giganteus LAI Model

Utilizing data acquired from spaceborne lidar ICESat-2/ATLAS, synthetic aperture
radar Sentinel-1, and optical remote sensing imagery Sentinel-2, this investigation extracted
pertinent feature factors. Employing a Pearson correlation analysis, select variables with
high correlation were used as modeling factors. These variables encompass h_te_best_fit,
h_te_interp, h_mean_canopy_abs, solar_elevation, VV_Mean, VV_Dissimilarity, EVI2,
and NDVI. These factors, sourced from three distinct data reservoirs, were employed
to construct a predictive LAI model, employing methodologies such as random forest,
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gradient-boosting regression trees, and K-nearest neighbors. The accuracy of the model
was evaluated utilizing metrics such as coefficient of determination (R2), root mean square
error (RMSE), mean absolute error (MAE), overall estimation accuracy (P1), and relative
root mean square error (RRMSE), delineated in Figure 6.

Table 7. Feature parameter correlation data Table.

Data Source Parameters and Correlations

ICESat-2/ATLAS h_te_best_fit (0.298) **, h_te_interp (0.271) *, solar_elevation (−0.236) *, h_mean_canopy_abs (0.248) *

Sentinel-1 VV_Mean (0.367) ***, VV_Dissimilarity (−0.384) ***, VV (0.315) **, VV_SecondMoment (0.336) **,
VV_Homogeneity (0.324) **, VV_Entropy (−0.336) **, VH_Mean (0.329) **, VH_Homogeneity (0.352) **

Sentinel-2 EVI (0.319) **, EVI2 (0.343) **, NDVI (0.341) **, IDVI (0.341) **, OSAVI (0.341) **, RDVI (0.341) **, RVI
(0.31) **, SAVI (0.341) **, DVI (0.252) *, MSAVI (0.243) *

Note: *** denotes a significance level of 0.01, ** denotes a significance level of 0.05, * denotes a significance level
of 0.1
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relative root mean square error (RRMSE), delineated in Figure 6. 
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4.4. Estimation Results of Combined Models of Different Remote Sensing Data Sources
4.4.1. Single ICESat-2/ATLAS Data

To augment the depth of contrast among data source combinations, we have dis-
tinctly chosen four parameters—h_te_best_fit, h_te_interp, h_mean_canopy_abs, and
solar_elevation—from the ICESat-2/ATLAS dataset as modeling indicators, thereby de-
lineating a singular type of contrast in remote sensing data sources. The findings are
illustrated in Figure 7.
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4.4.2. Combination of Different Remote Sensing Data Sources

• Integration of ICESat-2/ATLAS and Sentinel-1 Data: The study opted for ICESat-
2/ATLAS parameters, encompassing h_te_best_fit, h_te_interp, solar_elevation, and
h_mean_canopy_abs, in conjunction with Sentinel-1 parameters VV_Mean and
VV_Dissimilarity, as indicators for modeling purposes. The model’s effects are de-
picted in Figure 8a–c.
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• Integration of ICESat-2/ATLAS and Sentinel-2 Data: The study selected parameters
from ICE-Sat-2/ATLAS, encompassing h_te_best_fit, h_te_interp, solar_elevation, and
h_mean_canopy_abs, in conjunction with Sentinel-2 parameters EVI2 and NDVI, to
serve as modeling indicators. The performance of the model is depicted in Figure 9a–c.
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4.4.3. Comparison of Model Effects

Models were separately established for single and multiple data sources based on
ICESat-2/ATLAS data, and were integrated with various remote sensing data sources.
Table 8 illustrates that the RF model, integrating ICESat-2/ATLAS, Sentinel-1, and Sentinel-
2 data, showcased the most superior performance, achieving R2, RMSE, MAE, P1, and
RRMSE values of 0.904, 0.384, 0.319, 88.96%, and 11.04%, correspondingly. Among the four
data combinations and three models, the RF model exhibited the optimal performance,
with the KNN model slightly trailing the RF model, and the GBRT model demonstrating
moderate performance. When comparing the RF models constructed using the combination
of ICESat-2/ATLAS, Sentinel-1, and Sentinel-2 data with the other three combinations,
the performance of the ICESat-2/ATLAS and Sentinel-2 data combination (R2 = 0.896,
RMSE = 0.402, MAE = 0.345, P1 = 88.42%, RRMSE = 11.58%) was slightly inferior to
that of the ICE-Sat-2/ATLAS, Sentinel-1, and Sentinel-2 data combination but superior to
that of the ICE-Sat-2/ATLAS and Sentinel-1 data combination (R2 = 0.887, RMSE = 0.384,
MAE = 0.301, P1 = 88.93%, RRMSE = 11.07%). Nevertheless, the RF model constructed
solely with ICESat-2/ATLAS data displayed the lowest performance, recording R2 of 0.862,
RMSE of 0.422, MAE of 0.364, P1 of 87.84%, and RRMSE of 12.16%. The study demonstrates
that the integration of ICESat-2/ATLAS data with other remote sensing datasets for LAI
estimation can effectively enhance the accuracy of LAI estimation. Additionally, the
combination with various auxiliary datasets also leads to minor fluctuations in model
accuracy.

4.5. Spatial Distribution of LAI of Dendrocalamus giganteus in Xinping County

This study employed ICESat-2/ATLAS spaceborne laser altimetry data in conjunc-
tion with other optical remote sensing data to estimate the spatial distribution of LAI
in Xinping County, employing Sequential Gaussian Conditional Simulation (SGCS) and
optimal models. Comparing four different combinations of data sources and employing
three machine learning methods, the analysis revealed that the Random Forest (RF) model,
utilizing ICESat-2/ATLAS in conjunction with Sentinel-1 and Sentinel-2, produced the
most accurate LAI estimations within the study area, as illustrated in Figure 10. This figure
unequivocally illustrates the spatial distribution of LAI in Dendrocalamus giganteus, demon-
strating notable disparities, characterized by an average of 2.4. LAI values predominantly
falling within the range of 2.29 to 2.51, wherein the elevated values are discernible, notably
in Gasa Town, Laochang Township, and Shuitang Town. Regions characterized by lower
LAI values exhibit a scattered and heterogeneous distribution devoid of a distinct and
recognizable pattern, possibly influenced by local climatic conditions, soil composition, or
other environmental variables.
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Table 8. Model accuracy of different data sources.

Parameter Category Model Parameters RF Model Accuracy GBRT Model Accuracy KNN Model Accuracy

ICESat-2/ATLAS,
Sentinel-1, Sentinel-2

h_te_best_fit, h_te_interp,
h_mean_canopy_abs,

solar_elevation, VV_Mean,
VV_Dissimilarity, EVI2,

NDVI

R2 = 0.904
RMSE = 0.384
MAE = 0.319
P1 = 88.96%

RRMSE = 11.04%

R2 = 0.719
RMSE = 0.522
MAE = 0.427
P1 = 84.99%

RRMSE = 15.01%

R2 = 0.734
RMSE = 0.510
MAE = 0.435
P1 = 85.31%

RRMSE = 14.69%

ICESat-2/ATLAS
h_te_best_fit, h_te_interp,

h_mean_canopy_abs,
solar_elevation

R2 = 0.862
RMSE = 0.422
MAE = 0.364
P1 = 87.84%

RRMSE = 12.16%

R2 = 0.565
RMSE = 0.612
MAE = 0.513
P1 = 82.39%

RRMSE = 17.61%

R2 = 0.650
RMSE = 0.577
MAE = 0.476
P1 = 83.40%

RRMSE = 16.60%

ICESat-2/ATLAS,
Sentinel-1

h_te_best_fit, h_te_interp,
solar_elevation,

h_mean_canopy_abs,
VV_Mean, VV_Dissimilarity

R2 = 0.887
RMSE = 0.384
MAE = 0.301
P1 = 88.93%

RRMSE = 11.07%

R2 = 0.618
RMSE = 0.591
MAE = 0.493
P1 = 82.99%

RRMSE = 17.01%

R2 = 0.720
RMSE = 0.524
MAE = 0.432
P1 = 84.93%

RRMSE = 15.07%

ICESat-2/ATLAS,
Sentinel-2

h_te_best_fit, h_te_interp,
h_mean_canopy_abs,

solar_elevation, EVI2, NDVI

R2 = 0.896
RMSE = 0.402
MAE = 0.345
P1 = 88.42%

RRMSE = 11.58%

R2 = 0.669
RMSE = 0.542
MAE = 0.434
P1 = 84.41%

RRMSE = 15.59%

R2 = 0.673
RMSE = 0.556
MAE = 0.461
P1 = 84.00%

RRMSE = 16.00%

Forests 2024, 15, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 10. Spatial distribution map of Dendrocalamus giganteus LAI in the study area. 

5. Discussion 
5.1. Selection of Feature Factors 

The accuracy of the inversion model and its results are, to a considerable extent, de-
termined by the selection and combination of feature variables [59]. This study employs 
advanced photon technology LiDAR data to acquire pixel-scale feature variables [9] and 
utilizes the Pearson correlation coefficient method to select parameters with the highest 
correlation for modeling purposes. When selecting regional-scale feature parameters in 
optical remote sensing, the “saturation effect” can significantly influence the data. Among 
these parameters, single-band reflectance is the most affected, followed by vegetation in-
dices, while texture features are the least affected [60,61]. Specifically, Remote sensing data 
varied in terms of spectral resolution, spatial resolution, and radiometric resolution, lead-
ing to differences in LAI light saturation. Additionally, the surface reflectance of vegeta-
tion exhibited varying responses when distinguishing vegetation characteristics. Topo-
graphic factors influence the distribution, composition, and growth rates of vegetation, 
affecting spectral reflectance [62]. Consequently, LAI light saturation changed with varia-
tions in species, species structure, elevation, slope, and aspect [63,64]. Spectral reflectance 
was typically insensitive to the LAI in dense or highly canopied forests, which reduced 
the accuracy of LAI estimation [65]. Davi et al. [66] discovered that when LAI values ex-
ceeded 3 to 5, the saturation of LAI and remote sensing spectral vegetation indices in-
creased. However, by applying different linear models for each year and species, this re-
lationship was enhanced (R2 = 0.82, RMSE = 0.86). When the number of auxiliary modeling 
parameters is controlled at 2, the precision of LAI estimation using the combination of 
ICESat-2/ATLAS with either Sentinel-1 or Sentinel-2 data exceeds that of using ICESat-
2/ATLAS data alone. Furthermore, the inclusion of SAR data in conjunction with ICESat-
2/ATLAS and Sentinel-2 data leads to additional enhancement in model precision. Conse-
quently, the incorporation of SAR data can facilitate the fusion of multiple data sources, 
mitigating spectral saturation issues and thereby improving model estimation accuracy 
[67]. 

5.2. Difference in Estimation Accuracy of Different Data Sources 
When estimating forest structural parameters, a variety of data sources can be inde-

pendently or jointly utilized for estimation. The accuracy of predictive models varies de-
pending on the different combinations of data, thereby influencing the estimation results. 
Currently, LAI estimation based on optical remote sensing data are widely utilized [6]. 
While single-source remote sensing data can effectively estimate vegetation structural 

Figure 10. Spatial distribution map of Dendrocalamus giganteus LAI in the study area.

5. Discussion
5.1. Selection of Feature Factors

The accuracy of the inversion model and its results are, to a considerable extent,
determined by the selection and combination of feature variables [59]. This study employs
advanced photon technology LiDAR data to acquire pixel-scale feature variables [9] and
utilizes the Pearson correlation coefficient method to select parameters with the highest
correlation for modeling purposes. When selecting regional-scale feature parameters in
optical remote sensing, the “saturation effect” can significantly influence the data. Among
these parameters, single-band reflectance is the most affected, followed by vegetation
indices, while texture features are the least affected [60,61]. Specifically, Remote sensing data
varied in terms of spectral resolution, spatial resolution, and radiometric resolution, leading
to differences in LAI light saturation. Additionally, the surface reflectance of vegetation
exhibited varying responses when distinguishing vegetation characteristics. Topographic
factors influence the distribution, composition, and growth rates of vegetation, affecting
spectral reflectance [62]. Consequently, LAI light saturation changed with variations in
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species, species structure, elevation, slope, and aspect [63,64]. Spectral reflectance was
typically insensitive to the LAI in dense or highly canopied forests, which reduced the
accuracy of LAI estimation [65]. Davi et al. [66] discovered that when LAI values exceeded
3 to 5, the saturation of LAI and remote sensing spectral vegetation indices increased.
However, by applying different linear models for each year and species, this relationship
was enhanced (R2 = 0.82, RMSE = 0.86). When the number of auxiliary modeling parameters
is controlled at 2, the precision of LAI estimation using the combination of ICESat-2/ATLAS
with either Sentinel-1 or Sentinel-2 data exceeds that of using ICESat-2/ATLAS data alone.
Furthermore, the inclusion of SAR data in conjunction with ICESat-2/ATLAS and Sentinel-2
data leads to additional enhancement in model precision. Consequently, the incorporation
of SAR data can facilitate the fusion of multiple data sources, mitigating spectral saturation
issues and thereby improving model estimation accuracy [67].

5.2. Difference in Estimation Accuracy of Different Data Sources

When estimating forest structural parameters, a variety of data sources can be in-
dependently or jointly utilized for estimation. The accuracy of predictive models varies
depending on the different combinations of data, thereby influencing the estimation results.
Currently, LAI estimation based on optical remote sensing data are widely utilized [6].
While single-source remote sensing data can effectively estimate vegetation structural pa-
rameters, further investigation is required to compare its accuracy with that of multi-source
remote sensing data estimation [64]. Yang et al. [68] demonstrated the precise estimation of
non-contiguous forest LAI through the integration of GLAS waveform data and Landsat
imagery as auxiliary datasets, thereby validating the utility of Landsat imagery in aiding
LAI estimation. Sentinel-2 exhibits comparable LAI estimation capabilities to Landsat
8, albeit with a slight performance advantage. However, when Sentinel-2 and Landsat
8 utilize similar spectral bands, their accuracies are comparable [69]. Optical imagery
provided detailed spectral information but was susceptible to light saturation effects. In
contrast, SAR could penetrate cloud cover and provide vegetation structure parameters
without being affected by light saturation. By combining SAR and optical imagery, the
complementary strengths of each data type were leveraged to enhance the accuracy of
vegetation structure parameter estimation [70,71]. Moghimi et al. [41] achieved optimal
forest above-ground biomass (AGB) estimation by integrating Sentinel-1 and Sentinel-2
data. It was found that this integrated approach outperformed the use of any single dataset.
The inclusion of Sentinel-2 data significantly enhanced the AGB estimation accuracy, under-
scoring the importance of remote sensing data fusion. Wang et al. [72] estimated grassland
LAI using Sentinel-1, Sentinel-2, and Landsat 8 data, both individually and in combination.
The results demonstrated that the LAI estimation accuracy achieved with the combined
data significantly surpassed that achieved with individual datasets, mirroring our findings.
However, they did not examine the accuracy of estimating LAI using various combinations
of data sources. In our study, combining ICESat-2/ATLAS, Sentinel-1, and Sentinel-2 data
resulted in a significant enhancement in LAI estimation accuracy compared to using only
ICESat-2/ATLAS data. Furthermore, models constructed using a combination of ICESat-
2/ATLAS data with either Sentinel-1 or Sentinel-2 data exhibited superior performance
compared to those relying solely on ICESat-2/ATLAS data.

5.3. The Future Expandability of Geostatistical Methods

Utilizing Sequential Gaussian Conditional Simulation methods can effectively leverage
ICESat-2 data for extrapolating LAI estimation results. Previous research on the inver-
sion of forest structural parameters using satellite LiDAR data have seen some scholars
combining optical remote sensing images to achieve scale extrapolation of the estimation
results, thereby obtaining a continuous distribution of forest structural parameter inversion
results. For instance, Narine et al. [10] employed ICESat-2 data in conjunction with Landsat
8 optical imagery to scale up AGB inversion outcomes across the entirety of the study area.
However, this approach necessitates a high level of predictive accuracy for the estimation
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model and encounters challenges including secondary transmission of prediction errors
and optical data saturation during the extrapolation process, consequently constraining
its applicability. In addressing these concerns, our study undertook a structural analysis
relying on the variogram function, conducting SGCS analysis on ATLAS footprint features
exhibiting high correlation. This process yielded continuous distributions of data attributes
across the study area, subsequently employed in RF to achieve a continuous estimation of
forest LAI within the research area. This study not only fully exploited ICESat-2 photon
data but also effectively circumvented the introduction of new errors and addressed the
optical saturation effect inherent in extrapolating LAI estimation results solely derived
from optical remote sensing data by integrating SAR data. Furthermore, this study ex-
clusively employed the SGCS method to interpolate the light spot eigenfactors crucial in
LAI modeling, without conducting comparisons with alternative geostatistical approaches.
Thus, further investigation is warranted to evaluate the effectiveness of other kriging inter-
polation techniques, such as synergistic kriging and pan-kriging, in interpolating the light
spot eigenvectors.

6. Conclusions

In this study, the geostatistical Variance Function and SGCS methods were employed
to extend the LAI estimation of Dendrocalamus giganteus from point to polygon in Xinping
County, thereby offering novel opportunities and methodologies for applying geostatistics
to large-scale forest and bamboo forest LAI estimation. Concurrently, ICESat-2/ATLAS,
Sentinel-1, and Sentinel-2 data were integrated for regional-scale LAI estimation. The high
vertical resolution of spaceborne lidar compensated for the weather dependency of optical
remote sensing images, while SAR’s all-weather capability addressed the spatial coverage
limitation of spaceborne lidar. This approach effectively enhanced the accuracy of LAI
estimation. This study’s results demonstrated the significant potential of satellite-borne
LiDAR data for LAI estimation. Furthermore, integrating optical remote sensing imagery
and SAR data addressed the limitations of individual techniques, thereby enhancing the
accuracy of LAI estimation. This approach introduced an innovative method for large-scale
LAI estimation utilizing a limited number of sample data points, and proposed a novel
framework for large-scale LAI estimation employing multi-source remote sensing data.

Future work could involve exploring other geostatistical methods to interpolate ICESat-
2/ATLAS data and integrate them with additional remote sensing datasets, thereby en-
hancing the accuracy of LAI estimation and producing a high-resolution large-scale LAI
spatial distribution map.
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