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Abstract: Tidal freshwater forests are usually located at or above the level of mean high water. Some
Louisiana coastal forests are below mean high water, especially bald cypress (Taxodium distichum
(L.) Rich.) forests because flooding has increased due to the combined effects of global sea level rise
and local subsidence. In addition, constructed channels from the coast inland act as conduits for
saltwater. As a result, saltwater intrusion affects the productivity of Louisiana’s coastal bald cypress
forests. To study the long-term effects of hydrology and salinity on the health of these systems, we
fitted dendrometer bands on selected trees to record basal area increment as a measure of growth in
permanent forest productivity plots established within six bald cypress stands. Three stands were
in freshwater sites with low salinity rooting zone groundwater (0.1–1.3 ppt), while the other three
had higher salinity rooting zone groundwater (0.2–4.9 ppt). Water level was logged continuously,
and salinity was measured monthly to quarterly on the surface and in groundwater wells. Higher
groundwater salinity levels were related to decreased bald cypress radial growth, while higher
freshwater flooding increased radial growth. With these data, coastal managers can model rates of
bald cypress forest change as a function of salinity and flooding.

Keywords: bald cypress; salinity; hydrology; radial growth; coastal forest; saltwater intrusion; basal
area increment

1. Introduction

Bald cypress (Taxodium distichum (L.) Rich.) typically inhabits the most flooded fresh-
water forest habitats in the southeastern USA. It is one of the most flood-tolerant tree
species, able to withstand prolonged deepwater flooding [1]. Inland bald cypress forests
exist in riverine floodplain settings and are subject to variations in rainfall and river flow,
making them susceptible to drought conditions. However, coastal bald cypress forests are
so close to sea level that under most drought conditions, the root zone remains saturated [2].
For these sites, the lack of surface flooding increases groundwater salinity through evapo-
transpiration. This is common in tidal freshwater forested wetlands occurring throughout
the coast of the southeastern USA, but especially common in coastal Louisiana, where the
transition zone from salt marsh to tidal freshwater forests is very susceptible to saltwater
intrusion [3]. Proximity to sea level also makes coastal bald cypress forests susceptible
to hurricane and storm surges, which push saltwater far inland. In the early years of
ecological research in Louisiana, bald cypress “ghost forests” (groups of dead trees) were
encountered at the transition zone between coastal marshes and freshwater forests [3]. It
was theorized that the trees died as a result of a saltwater surge from a strong hurricane.
It may have been that the hurricane was just the tipping point after many years of slow
encroachment by saltwater.

Saltwater intrusion affects freshwater wetlands near the coast of Louisiana. Sea-
level rise, a profusion of man-made canals for navigation and oil extraction access, and

Forests 2024, 15, 1258. https://doi.org/10.3390/f15071258 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f15071258
https://doi.org/10.3390/f15071258
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-5959-7054
https://orcid.org/0000-0002-6543-2627
https://orcid.org/0000-0003-2195-0729
https://doi.org/10.3390/f15071258
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f15071258?type=check_update&version=1


Forests 2024, 15, 1258 2 of 16

climate change-induced increases in storm surges from hurricanes and other wind-driven
surges have all contributed to increasing the intrusion of saltwater into surface water
and groundwater of Louisiana’s coastal wetlands, particularly bald cypress forests [1,4,5].
Tidal freshwater forests, including bald cypress swamps, are usually located at or above
the level of mean high water [6]. In coastal Louisiana, some bald cypress forests exist
below mean high water because these forests were established prior to the current levels
of global sea level rise and local subsidence. This exacerbates the likelihood of saltwater
intrusion as the elevation of the forest floor falls below the elevation necessary to maintain
a freshwater head. Sustained freshwater input from precipitation and/or riverine input
would be needed to keep salinity from rising in Louisiana’s coastal forests. The construction
of levees along the Mississippi River has limited the source of river water, thus Louisiana’s
tidal freshwater forests are dependent on precipitation [7].

Another result of the construction of Mississippi River levees is that a once reliable
source of nutrients and sediments is no longer available to bald cypress forests in the
deltaic floodplain [8,9]. Nutrients from the river water increase primary productivity, while
sediment input counteracts subsidence rates of the swamp surface soils. The absence
of nutrient input would tend to lower productivity from previous levels, while lack of
sedimentation is more complicated. In an environment of rising sea level coupled with
subsidence, lack of allochthonous sediment input shifts to increasing dependence on
autochthonous organic soil buildup originating from forest primary productivity [9], which
suffers from that lack of nutrient input. A lower soil surface elevation implies deeper
levels of flooding, which is not normally a problem for flood-tolerant bald cypress if the
floodwater is fresh but potentially lethal when the floodwater is increasingly salty.

Interactions between hydrology and salinity drive the growth and productivity of tide-
influenced bald cypress forests in coastal Louisiana. In this study, we report tree growth
from 2008 to 2016 in Louisiana bald cypress forest plots to investigate how hydrology and
salinity in salt affected sites in Louisiana affect seasonal, annual, and inter-annual individual
tree basal area increment. We hypothesized that tree growth is lower with different inter-
annual patterns in salinity impacted sites than tree growth in fresher water sites.

2. Methods
2.1. Site Selection

Six sites were selected in coastal Louisiana between August 2004 and May 2006
in forested wetlands dominated by bald cypress (Figure 1). Other tree species present
on all sites were water tupelo (Nyssa aquatica L.), ash (Fraxinus spp.), red maple (Acer
rubrum L.), Chinese tallow (Triadica sebifera (L.) Small), and Wax myrtle (Morella cerifera
(L.) Small). All six sites exhibit a tidal signature and are considered tidal freshwater
forested wetlands (Figure 2). Three of the sites are predominantly freshwater, with mean
annual salinity < 0.6 ppt. The freshwater sites all have a buffer zone of multiple hectares of
contiguous forest. These freshwater sites will be referred to as Fresh sites. Three of the sites
were chosen in areas experiencing saltwater intrusion, with mean annual salinity > 1.4 ppt.
These three sites are all adjacent to thinning forests transitioning to marsh and will be
referred to as Salt sites. All six sites have altered hydrology. The forests are situated
amongst a complex system of interconnected bayous and canals. In some cases, these flow
paths create longer and slower paths of flow to and from the coast, while in other cases,
there is a more direct path to the coast that connects the forests to saltwater [7,10].

The Bayou Teche site (BT—Fresh) is near Atchafalaya Bay and has water levels affected
by the Atchafalaya River (Figure 1) via the Gulf Intracoastal Waterway (GIWW) [11,12].
The Atchafalaya River is a distributary of the Mississippi River that mimics the flow season
of the Mississippi River. These two rivers have similar flows because the Atchafalaya River
is controlled by the Old River Control Structure (Figure 1), which supplies a nearly constant
percentage of the Mississippi River flow into the Atchafalaya River [13]. The Mandalay site
(MA—Salt) is also somewhat affected by the Atchafalaya River, but it is farther away along
the GIWW and south of the GIWW, closer to coastal influence. Four sites, two Fresh (Bayou
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Chevrieul [BC] and Jean Lafitte [JL]), and two Salt (Treasure Island [TI] and Fleming [FL])
are in upper Barataria Bay, totally cut off from riverine input by levees along the length
of the Mississippi River to the east and Bayou Lafourche to the west. Freshwater input to
these sites is solely from local precipitation.
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BC = Bayou Chevrieul, TI = Treasure Island, JL = Jean Lafitte, and FL = Fleming. Circles = fresh-
water sites. Triangles = saltwater sites. Top inset of USA states: TX = Texas, LA = Louisiana,
MS = Mississippi, AL = Alabama, and FL = Florida. Map source: USGS National Hydrography
Dataset. Available at https://www.usgs.gov/national-hydrography/national-hydrography-dataset
(accessed 15 April 2023).
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Figure 2. (a) 31-day hydrographs recorded by water level pressure sondes with hourly water levels
of six study sites during the month of July 2010, (b) direction and velocity of wind (Meteorological
station WBAN:53915 New Iberia, LA, USA) during maximum sustained wind speed for the day (e.g.,
an arrow pointing straight up represents wind coming directly from the south). The circle highlights
strong sustained winds > 10 km/h for two days from the southeast, which resulted in high water
levels at all sites depicted in Figure 2a. BT = Bayou Teche, JL = Jean Lafitte, BC = Bayou Chevrieul,
MA = Mandalay, TI = Treasure Island, and FL = Fleming.



Forests 2024, 15, 1258 5 of 16

All six sites are adjacent to a natural or constructed berm. Two Fresh sites (BT, JL)
are adjacent to high levees, separating them from canals that are pumped to drain water
levels to elevations we surveyed and determined to be below sea level and approximately
2 m below the average water elevation within the forest plots at both sites. Two sites
(BC—Fresh, FL—Salt) have the most natural hydrology. The BC site has a natural berm
with openings to allow freshwater flow. The FL site is located behind a spoil bank of a
dredged channel but is fully tidal because a breach in the spoil bank allowed a tidal creek
to form.

2.2. Forest Plots

Forest plots were installed as described in a previous publication [5]. The sites were
established using paired, rectangular plots 20 × 25-m encompassing a combined area of
1000 m2 (0.1 ha) per site, except the BT site, which only had one 20 × 25-m plot (0.05 ha).
In each site except BT, we installed a pressure sonde water level recorder between the
pairs of plots, which takes an hourly reading, and four salinity wells for manual salinity
measurement during each site visit. Site BT had the pressure sonde installed next to the
single plot and only had three salinity wells. Height and diameter at breast height (dbh)
were measured for all trees in each plot, and the results were published in a previous
publication [5]. Stainless steel dendrometer bands were installed on at least ten codominant
bald cypress trees per plot (20 per site) above any swell in the tree stem. Dendrometer
bands exhibit the expansion of tree trunks as incremental circumference growth and are
an effective measure of very small incremental growth [14]. Individual bald cypress trees
were chosen to represent a range of sizes at each site to compensate for differences in
trunk growth rate according to the initial dbh. The sites were visited monthly from August
2004 through March 2011 and quarterly from June 2011 through September 2016. During
these sampling visits, the water level recorder was downloaded, salinity was measured in
each of the four wells, as well as a random surface location in the plot and in the adjacent
water body/canal, and each tree band was measured to the nearest 0.25 millimeter (mm).
In order to sample the groundwater salinity, each well (approximately 61 cm deep) was
pumped out and allowed to recharge before measuring instantaneous salinity using a YSI30
meter (YSI Inc., Columbus, OH, USA). Hourly water level data were recorded using an
Infinity USA model #138 pressure water level data logger (Infinities, Port Orange, FL, USA).
Dendrometer band readings were recorded as increments of the circumference, which
were converted to individual tree basal area increments (BAI) in square centimeters (cm2).
Growth in circumference (C) for each time period (t) was converted to incremental growth
of the tree trunk’s basal area (BA) by using the calculation for the area of a circle:

BAIt = BAt − BAt−1, where BA = π r2, and r = C/(2π)

2.3. Statistical Analyses

The most complete data with the least missing values were for the years 2008–2016, so
statistical analyses were run on this 9-year period. To equalize disparate sampling dates,
growth rates were converted to BAI/day for monthly and seasonal analyses; then, we calcu-
lated the mean daily BAI of each individual banded bald cypress tree per site. The four sea-
sons were defined as January–March, April–June, July–September, and October–December.
For annual growth rates, we calculated the annual BAI from the January dendrometer
band reading to the following year’s January dendrometer band reading for each tree,
then calculated the mean annual BAI of all trees per site. To analyze differences between
monthly growth rates, we ran a 2-way ANOVA in PROC GLM with the dependent variable
monthly BAI and independent variables Type (Salt, Fresh) and Month. To analyze differ-
ences between years, a 2-way ANOVA in PROC GLM was used with dependent variable
annual BAI and independent variables Year, Site, Site × Year, Season, and Season × Year.
The water level data were converted to the average ground level at the base of the banded
trees, then the calculation of the percent time flooded above the base of the trees was used
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for analysis. We ran a regression model in PROC REG with dependent variable total 9-year
BAI and independent variables 9-year mean Salinity, total 9-year Percent Flooded, and
Salinity × Percent Flooded to ascertain the effect of flooding and salinity on tree growth.
Finally, to analyze the effect of flooding on salinity, a regression model in PROC REG was
used with the dependent variable Salinity and independent variables Type (Salt, Fresh)
and Percent Flooded.

The level of significance for all tests was α = 0.05. All statistical analyses were per-
formed using SAS Version 15.1 (SAS 2018).

3. Results
3.1. Salinity

Mean groundwater salinity per site for the entire study period justified the a priori
designations as three Fresh sites and three Salt sites (Figures 3, 4b, and 5b). The mini-
mum, maximum, and mode salinity per site were all significantly higher at the Salt sites
(p < 0.0001) (Figure 3). The major difference was the maximum extremes. Maximum salinity
at Fresh sites never rose above 1.3 ppt, while Salt sites all peaked higher (3.8–4.9 ppt). Salt
sites averaged 1.6–1.9 ppt, while Fresh sites means were all near 0.5 ppt (Figure 4b). Mean
annual salinity varied slightly from year to year at Salt sites between 1.5–2.0 ppt, while
Fresh sites remained nearly the same at 0.5 ppt (Figure 5b). Surface water within the forest
site and surface water of nearby waterway salinity was always < 0.5 ppt at both Salt and
Fresh sites.
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Figure 3. Salinity measured during the period 2008–2016: summary statistics showing mode (rectan-
gles) plus maximum and minimum values (vertical bars) at six study sites in Louisiana. TI = Treasure
Island, FL = Fleming, MA = Mandalay, BC = Bayou Chevrieul, BT = Bayou Teche, and JL = Jean Lafitte.
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Figure 4. Flooding, salinity, and tree growth for six study sites in Louisiana (a) 9-year mean annual
individual tree basal area increment (BAI) ± 1 SE, letters above the bars represent significant difference
between sites from a 2-way ANOVA with dependent variable annual BAI and independent variable
Site, (b) 9-year mean salinity ± 1 SE, (c) total percent time flooded above tree base. TI = Treasure Island,
FL = Fleming, MA = Mandalay, BC = Bayou Chevrieul, BT = Bayou Teche, and JL = Jean Lafitte.
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Figure 5. Annual means for six study sites in Louisiana (Salt = 3 sites, Fresh = 3 sites) (a) individual
tree basal area increment (BAI) ± 1 SE (Salt = 60 bald cypress trees, Fresh = 44 bald cypress trees),
letters above the bars represent significant differences between years for the combined Salt and Fresh
pairings from a 2-way ANOVA with dependent variable annual BAI and independent variable Year,
(b) salinity; (c) percent flooded.
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3.2. Hydrology

Water levels at all six sites are affected by coastal tides, which at times can be strongly
wind-driven (Figure 2). A hurricane may cause a sharp peak in the hydrographs of specific
sites in its path, but a frequent occurrence is strong winds sustained for multiple days from
the south or southeast, raising water levels at all six sites (Figure 2). The Salt sites exhibited
coastal and tidal influence in their flooding rates, with total flooding above tree bases for
the entire study period between 40 and 60% of the 9-year period (Figure 4c). The Fresh
sites were more dissimilar. Two Fresh sites (BT and JL) were almost permanently flooded
(>95% of the time) throughout the study period. The BC Fresh site had the lowest percent
flooding among the Fresh sites at <40%. Pooled Salt and Fresh sites had similar temporal
sensitivity patterns when comparing annual differences in percent flooding (Figure 5c).
However, the mean percent flooding for the three Salt sites ranged from 20 to 80%, while
Fresh sites were more flooded, ranging between 60 and 85%. The years preceding these
analyses (2004–2007) were drier, with less percent flooding, and may have contributed to
lower water levels (and higher salinities) at the beginning of this study (Figure 5b,c).

3.3. Radial Growth

We include the initial forest structural characteristics of each site to put the growth
environment of the banded bald cypress trees into perspective (Table 1). The Fresh sites
generally had taller trees, and the plots had higher tree density with greater basal area than
the Salt sites. There was no significant difference (p < 0.05) between Salt and Fresh sites for
the mean initial dbh of the trees chosen for dendrometer bands.

Table 1. Summary statistics for forest structure of six bald cypress (Taxodium distichum (L.) Rich.)
forest sites in Louisiana (modified from [5]). * diameter at breast height.

Banded
Forest Plot Structure Bald cypress

Mean Forest Height Mean dbh * Mean Basal Area Total Tree Density Mean dbh *

(m) (cm) (m2/ha) (ind/ha) (cm)

Fresh
Jean Lafitte (JL) 24.9 ± 0.6 29.9 ± 1.3 70.61 860 37.7 ± 2.1

Bayou Teche (BT) 17.0 ± 1.3 30.9 ± 2.5 53.35 600 38.1 ± 3.8
Bayou Chevreuil (BC) 23.5 ± 0.3 26.3 ± 1.1 56.19 890 36.2 ± 1.4

Salt
Mandalay (MA) 19.1 ± 0.8 34.5 ± 4.2 26.85 220 44.1 ± 3.7

Fleming (FL) 18.9 ± 0.6 27.9 ± 1.4 36.06 520 33.5 ± 1.9
Treasure Island (TI) 16.9 ± 0.6 23.3 ± 1.1 36.89 750 29.3 ± 1.2

We did not use the first 6–8 months of the dendrometer band readings to allow the
bands to tighten and begin to smoothly track the growth of each tree, so the analyses
in this study began in the year 2007 after the last site was installed in 2006. The 9-year
radial growth from the period 2007–2015 was significantly higher at Fresh sites (Table 2,
Figure 4a). There were significant differences between mean annual BAI among years and
for Type (Salt, Fresh) by year interactions (p < 0.0001) (Table 2, Figure 5a). The highest
radial growth rate was >25 cm2/year for Fresh sites in the year 2013, while the lowest rate
was <5 cm2/year for Salt sites in 2011. The highest significant growth rate for all six sites
combined occurred in 2009, while the lowest significant growth for all six sites combined
was in 2011 (p < 0.0001) (Figure 5a). The annual pattern of radial growth is exhibited in
Figure 6. The trees initiate growth in April, followed by rapid growth peaking in June,
steadily declining growth until December, then negative growth (shrinking) from January
to March (Figure 6). While both Fresh and Salt sites showed significant differences in
growth among seasons, Fresh sites grew faster in the growing season and shrank more
in March (p < 0.0001) (Table 2, Figure 6). There was no significant interactive effect of
Season × Year (p = 0.4246).
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Table 2. Main effects of year, site, season, and interactions for annual basal area increments (BAI)
of bald cypress (n = 104 trees) for six sites in coastal Louisiana over 9 years from a 2-way ANOVA
with dependent variable annual BAI and independent variables Year, Site, Site × Year, Season, and
Season × Year.

Log (BAI + 1)

Source of Variation d.f. F-Value Pr > F

Model 80, 874 8.93 <0.0001
Year 8, 874 6.73 <0.0001
Site 5, 874 81.45 <0.0001

Site × Year 40, 874 3.16 <0.0001
Season 3, 874 15.52 <0.0001

Season × Year 24, 874 1.03 0.4246
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Figure 6. 9-year mean daily individual tree basal area increment (BAI) ± 1 SE. Salt = 3 sites and
60 bald cypress trees. Fresh = 3 sites and 44 bald cypress trees.

Regression analyses showed significant effects of percent time of duration of flooding
and salinity level on BAI (Table 3, Figure 7). As salinity increased, BAI decreased (r2 = 0.653,
p < 0.0001) (Figure 7a). As percent flooding increased, BAI increased (r2 = 0.491, p = 0.0108)
(Figure 7b). There was also a significant interactive effect of salinity and percent flooding on
BAI (p = 0.0389) (Table 3). The effect of percent flooding on salinity is significant (p = 0.0304)
by Type (Salt and Fresh) (Table 4, Figure 8). The regression model indicates equal and
parallel slopes by Type: as flooding increases, salinity decreases (r2 = 0.962, p < 0.0001)
(Figure 8).
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Table 3. Regression analysis for BAI of bald cypress (n = 104 trees) with Percent Flooded and Salinity
as predictors for six sites in coastal Louisiana over 9 years from a model with dependent variable
total 9-year BAI and independent variables 9-year mean Salinity, total 9-year Percent Flooded, and
Salinity × Percent Flooded.

Log (BAI + 1)

Source of Variation d.f. F-Value Pr > F

Model 3, 41 10.50 <0.0001
Salinity 1, 41 10.38 0.0025

Percent Flooded 1, 41 0.43 0.5163
Salinity × Percent

Flooded 1, 41 4.55 0.0389
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Figure 7. Relationships for (a) salinity (ppt ± 1 SE) and (b) percent flooded with mean annual basal
area increment (BAI, cm2/yr ± 1 SE) of bald cypress trees (Salt = 60 trees, Fresh = 44 trees) at six
study sites in Louisiana (Salt = 3 sites, Fresh = 3 sites). Each point equals annual means for three
sites combined.
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Table 4. Results of a regression model with dependent variable mean annual Salinity and independent
variables Type (Salt, Fresh) and Total Percent Flooded per site.

Mean Salinity

Source of Variation d.f. F-Value Pr > F

Model 2, 15 188.56 <0.0001
Type (Salt, Fresh) 1, 15 149.69 <0.0001
Percent Flooded 1, 15 5.72 0.0304
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4. Discussion

Tree growth of bald cypress in coastal Louisiana reflects the response of tidal freshwater
trees to environments of coastal salinity and flooding and is poised to change in the future
with predicted increases in coastal salinification.

4.1. Salinity Effects

Maximum, minimum, and modal values of salinity have a wide range at the Salt
sites (up to 5 ppt) while maintaining long-term stable salinity closer to 2 ppt. Bald cypress
has been shown repeatedly in lab and field studies to be salt tolerant to low salinity
around 2 ppt [4,7,15–17]. In a greenhouse study, bald cypress seedlings exhibited reduced
stomatal conductance while being shallowly flooded with water with salinities of 2–7 ppt
but recovered within three weeks [18]. In another short-term experiment, bald cypress
seedlings were watered daily with salt water (6 ppt) or once a week with fresh water (to
simulate drought) and compared to controls watered daily with freshwater [19]. The salt
and drought treatments showed similar results of survival with reduced diameter growth
but increased wood density and greater resistance to xylem cavitation. Embolism resistance
was also reported for upland conifer seedlings surviving a drought experiment [20]. Bald
cypress seedlings from parent trees growing in salty sites have been shown to have more
salt tolerance than seedlings from parent trees from freshwater sites, indicating genetic
selection for salt tolerance [15,16]. Sapflow and water use were lower in mature bald cypress
individuals in salty sites than in trees in fresher water sites, presumably due to shifts in
individual-tree osmotic balance and water-use strategy to extend survival time [21]. It is
clear that bald cypress seedlings, as well as mature trees, tolerate low levels of salinity. The
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bald cypress forests in the three Salt sites in this study in coastal Louisiana show resilience
by persisting for years with chronic salinity close to 2 ppt. However, closer to the coasts
and with higher salinity, there are ghost forests of dead bald cypress that have already
succumbed to saltwater intrusion [3,22,23]. As sea level and storm frequency/intensity
increase, the bald cypress forests within the sites in this study may reduce growth rates
even further and even exceed their salt tolerance to eventual mortality.

4.2. Flooding Effects

Long-term studies of tree rings (fifty to hundreds of years) indicate that freshwater
flooding is positively correlated with the growth of bald cypress [24–28]. In a detailed
study of frequently flooded sites, the depth of annual flooding was positively correlated
with growth that year but negatively correlated with growth in the following year [25].
Delayed effects are difficult to analyze in shorter-duration studies where the variation
in annual flooding is not frequent enough to show such correlations. This study also
shows a positive relationship between flooding and bald cypress growth, not only in deep
freshwater swamps but also in salt-affected sites (Figure 7). Flooding increases radial
growth rates of bald cypress in Fresh and Salt Sites.

The JL and BT sites in this study have the highest percentage of flooding and also ex-
hibit high radial bald cypress growth. Another study showed that tree growth in freshwater
bald cypress forests was not reduced, and healthy growth was maintained despite stagnant
standing water conditions [24]. They hypothesized that rainwater put a higher downward
pressure on the below-water soil surface, perhaps forcing more oxygenated water into the
porewater and alleviating hypoxic conditions. The JL and BT sites are perched at least 2 m
above the surface water on the opposite side of the levees at both sites. The JL and BT
sites may have a constant downward flow of water into the porewater and under the levee,
seeking the level of the surface water 2 m lower on the other side. This elevation difference
may also contribute to the downward movement of the ground surface, leading to more
rapid subsidence and, consequently, increased flooding.

4.3. Radial Growth Patterns

The pattern of tree growth during the growing season and shrinkage in the winter
dictated by annual rhythms of temperature and sunlight inherent to coastal Louisiana
is also a common characteristic of temperate and subtropical trees, which exhibit clear
annual growth rings, with cellular growth during summer followed by lignification and
dehydration of the woody cells as photosynthesis and sap flow slow in the winter [29–31]. In
addition, flooding and salinity affect the magnitude of annual radial growth rates, and along
with annual variations in temperature, solar radiation, and other meteorological parameters,
result in tree growth responses to environmental change over the years [32]. Another factor
affecting an individual tree’s growth is the forest environment in which the tree is growing.
Bald cypress is in the intermediate range on a scale of shade tolerance [33,34]. The openness
of the canopy, as affected by the density of trees in a forest stand, affects individual trees by
controlling the competition between trees for access to sunlight and nutrients, especially
in bald cypress forests where salinity may be a factor causing declining health or death of
older trees [35]. For example, the MA site (Salt) in this study has a relatively high rate of
growth compared to the other two Salt sites (TI and FL) (Figure 4a). The MA site also has
the lowest tree density at 220 trees/ha (Table 1). Within the context of a salt-affected site,
individual trees at the MA site may have an advantage in the competition for resources
(space, nutrients, light) as there are fewer trees with which to compete. This may partially
offset the negative effect of salinity, which lowers growth, as we show here. The annual
BAI differences reported here are affected by salinity levels and flooding rates and the
interaction between salinity and flooding.
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5. Conclusions

Salinity as low as modal values of 1.6–1.7 ppt lowers the growth rates of bald cypress
in coastal Louisiana, while increased freshwater flooding increases bald cypress growth
rates. The effect of high salinity coastal water flooding on bald cypress forests during
hurricanes and other large tidal surges would imply that more flooding would increase the
salinity of the sites. This occurs during the infrequent high salinity spikes experienced by
the Salt sites. However, the overall significant effect of flooding lowering salinity at both
Salt and Fresh sites suggests that salinity is controlled more often by the frequent input of
freshwater from precipitation to dilute the groundwater salinity at the sites. This highlights
the importance of climate change and increasingly extreme year-to-year differences in
sustained precipitation to dilute groundwater salinity and the frequency of hurricanes to
increase salinity through tidal surges. What salinity level is needed and for how long to
result in the transition of a healthy bald cypress forest to a stand of dead trees in coastal
Louisiana? Continuous monitoring of the sites in this study into the future can assist coastal
managers in predicting these parameters. Long-term studies can produce sufficient data to
support accurate modeling. The results of this study illustrate that complex interactions
between hydrology and salinity drive the growth and productivity of tide-influenced bald
cypress forests in coastal Louisiana. All data are available in From et al. [36].
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