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Abstract: As global biodiversity hotspots, wild fruit forests play key ecological functions, providing
essential ecosystem services such as carbon storage, soil retention, and water conservation, and
support food chains and biodiversity conservation through key species. Climate change, with rising
temperatures and altered precipitation patterns, threatens wild fruit forests by reducing the habitats
and numbers of key species, potentially turning these ecosystems from carbon sinks to sources and
diminishing overall biodiversity and ecosystem services. However, research on how these changes
affect important species’ habitats and carbon dynamics remains insufficient. To address this, we
analysed habitat suitability for three important species (Prunus armeniaca L., Malus sieversii, and
Prunus ledebouriana (Schltdl.) Y.Y.Yao with the aim of informing conservation strategies. We used
biomod2 to integrate environmental and species data using six methods, encompassing 12 models.
We predicted overlapping geographical distributions of three species, analysing their ecological
niches and environmental interactions using global datasets to understand their adaptations. This
analysis revealed ecological niche shifts and reductions in resource utilisation in both current and
future scenarios. Their distribution centres will move poleward under the influence of bioclimatic
factors and human activities. In conclusion, protecting P. armeniaca, M. sieversii, and P. ledebouriana is
essential for the conservation and overall health of wild fruit forest ecosystems. This study provides
new insights into climate change, habitat loss, informing conservation and resilience strategies.

Keywords: climate change; ensemble model; habitat loss; Prunus armeniaca L.; Malus sieversii; Prunus
ledebouriana (Schltdl.) Y.Y.Yao

1. Introduction

The Earth is currently undergoing its sixth mass extinction, primarily driven by habitat
fragmentation due to degradation and loss, with climate change being a major factor [1–3].
The Intergovernmental Panel on Climate Change (IPCC) reports a significant increase
of 1.1 ◦C in average global surface temperature from 2011 to 2020 compared with pre-
industrial levels [4]. This increase, which is linked to escalating greenhouse gas emissions
from human activities, has exacerbated global warming. The combined effects of global
warming and other stressors significantly impact terrestrial ecosystems, altering their
structure and function and causing shifts in species habitats and distributions [5,6]. Habitat
fragmentation further disrupts interspecies interactions, increases vulnerability, and leads
to widespread extinction and extirpation [7–9].

Vegetation is crucial as both an indicator and component of climate response, with
species survival depending on genetic diversity, adaptability to environmental changes,
and migration to suitable climates [10,11]. Species in fragmented or rare habitats face
higher risks of migration difficulties or extinction [12,13]. Climate is a key determinant of
species distribution, and changes in distribution patterns are clear indicators of climate
shifts [14,15]. The complex relationships among climate change, human disturbances, and
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biodiversity conservation present a multifaceted challenge [16,17]. Forests cover a third of
the Earth’s land area and are vital for global carbon sequestration, holding 56% of terrestrial
ecosystem carbon [18]. Trees absorb significant carbon dioxide through photosynthesis
and store it in biomass, litter, deadwood, and soil organic matter. Natural forests, unlike
simpler artificial forests, are more effective in biodiversity conservation and provide key
ecosystem services, such as carbon storage, soil retention, and water conservation [19].

The wild fruit forest region, identified as one of the key biodiversity hotspots world-
wide, has garnered widespread academic attention owing to its abundant biological re-
sources and unique ecosystem structure. These forests, which have survived geological
changes and climatic variation since the Tertiary Period, serve as sanctuaries for ther-
mophilic mesophytic broadleaf trees. Their existence is a result of their unique geological
history and local climate conditions of warmth and humidity, in contrast to early desert
climates [20,21]. However, climate change, overgrazing, tourism, and unsustainable har-
vesting have severely affected these habitats, causing a drastic reduction in their area
and number [22,23]. Key species such as Prunus armeniaca L., Malus sieversii, and Prunus
ledebouriana (Schltdl.) Y.Y.Yao, all Tertiary relicts, are the dominant species in these wild
fruit forests [24–28]. M. sieversii, the ancestor of modern apples, is native to the Tianshan
Mountains, including the regions within China, Kazakhstan, and Kyrgyzstan [20]. P. ar-
meniaca, from the Rosaceae family, has played a crucial role in the history of cultivated
apricots and is prominent in Xinjiang’s wild fruit forests [20,26]. P. ledebouriana, also in the
Rosaceae family, now exists only in relict distributions in Kazakhstan and Xinjiang, China,
with notable fossilisation in Europe [29–31]. The loss of habitats for these three keystone
species will directly result in a reduction in biodiversity in the wild fruit forests, which,
in turn, will have a negative impact on ecosystem functions and stability. It also affects
the continuation of breeding and conservation programs. Understanding the potential
overlapping geographical distributions of these species, along with their ecological niche
dynamics and conservation area planning, is essential for their utilisation and protection
against habitat loss due to climate change.

Species Distribution Models (SDMs) are crucial for predicting how climate change
affects important species by integrating environmental data and species occurrences to
forecast their potential geographic distributions [32–37]. Common SDMs, such as the
maximum entropy model (Maxent), CLIMEX, generalised linear model (GLM), and genetic
algorithm for rule-set prediction (GARP), are widely used to predict the distribution of im-
portant species, weeds, biocontrol agents, disease vectors, and pathogens [38,39]. Biomod,
an R-based SDM platform developed in 2003 and now updated to biomod2 [40], provides a
range of algorithms, including artificial neural networks (ANNs), classification tree analysis
(CTA), flexible discriminant analysis (FDA), generalized additive models (GAMs), gradi-
ent boosting machines (GBMs), generalized linear models (GLMs), multivariate adaptive
regression splines (MARSs), maximum entropy (MAXENT), MAXNET, random forest
(RF), species range envelope (SRE), and eXtreme Gradient Boosting (XGBOOST) [41], for
predicting species distributions, while ensemble models (EMs) are increasingly favoured
for their ability to separate signal from noise in individual SDMs, avoid exposing vul-
nerabilities to species limitations, enhancing the reliability of geographical distribution
predictions [42–46]. The ‘ecospat’ package effectively integrates environmental principal
component analysis (PCA-env) to streamline ecological niche dynamic analysis. This in-
tegration ensures a more coherent and efficient workflow [47,48]. Introduced in 2014, the
COUE (centroid shift, overlap, unfilling, and expansion) framework has gained widespread
application in examining the dynamics of species’ ecological niches. This approach is
notably applied in research focused on Ambrosia artemisiifolia L., commonly known as
common ragweed, and Agastache rugosa, a significant cash crop [49–51].

Our hypotheses focused on the direct impacts of climate change, specifically, the effects
of rising temperatures and altered precipitation patterns on the habitats of three important
species: P. armeniaca, M. sieversii, and P. ledebouriana. We predicted that increasing global
temperatures and more frequent extreme climatic events will significantly reduce suitable
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habitats for these species, compress their ecological niches, and decrease the area and biodi-
versity of wild fruit forests. To predict the future geographic distribution of these important
species, we employed SDMs, integrating existing distribution data with future climate
projections to estimate likely survival areas. We chose climatic factors—temperature, pre-
cipitation, and seasonal variation—and non-climatic factors like soil type and topography
to define current ecological niches and project how future climate changes might alter
species distributions. Our methodology included the following: (1) selecting high-precision
individual models for each species in biomod2 after simulation testing; (2) EM application
to forecast possible distribution zones and intersecting areas in both current and future
climate conditions, specifically targeting the 2050s and 2090s periods; (3) analysis of eco-
logical niche overlap and dynamics among these species, particularly between native and
habitat loss areas; (4) identifying environmental variables that significantly impact their
potential distributions; and (5) using the Marxan model to identify priority conservation
areas and suitable growth environments. The study primarily aimed to provide a scientific
basis for conserving wild populations and germplasm resources of these species.

2. Methods
2.1. Data on the Geographical Spread of Target Species

Our research gathered worldwide location records for three important species, P. ar-
meniaca, M. sieversii, and P. ledebouriana. We analysed these data using a comprehensive
checklist of SDMs [52]. Initially, we searched online databases for the geographical distri-
bution data of these species. Specifically, for P. armeniaca, M. sieversii, and P. ledebouriana,
we obtained 110, 484, and 19 records from the Global Biodiversity Information Facility
(http://www.gbif.org/, accessed 28 July 2023), and 11, 7, and 10 records from the Chinese
Virtual Herbarium (http://www.cvh.ac.cn, accessed 28 July 2023), respectively. In addition,
21, 25, and 17 records were sourced from the literature [24–28]. We excluded distribution
records that were assigned to capital cities or based on the centroids of provinces. Further-
more, we included records from the Center for Agriculture and Bioscience International
(https://www.cabi.org/, accessed 28 July 2023) and conducted country-based extrapola-
tion. In enhancing the precision of environmental variables, only one distribution point
was maintained per 10 × 10 km grid, employing ENMTools [53]. This process led to the
aggregation of 383 location records across the three species (275 for P. armeniaca, 79 for M.
sieversii, and 36 for P. ledebouriana), as shown in Figure 1.
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2.2. Environmental Variables

This study incorporated 39 environmental factors, including 19 bioclimatic, 3 topo-
graphic, and 17 soil factors (Table 1). From the Paleoclim database (http://www.paleoclim.
org, accessed 29 July 2023), we acquired raster files of 19 bioclimatic variables, each at a 5 ar-
cmin resolution. These variables, originating from detailed monthly records of temperature
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and precipitation, have formed a globally utilised dataset for ecological studies, spanning
from 1979 to 2013. For projections of future climates, specifically the periods 2041–2060
(the 2050s) and 2081–2100 (the 2090s), data were retrieved from the Worldclim2.1 database
(http://www.worldclim.org/, accessed 29 July 2023). Each of these periods included 19 cli-
mate factors named bio1–bio19 [54]. Future climate scenarios were selected from the sixth
phase of the International Coupled Model Intercomparison plan (CMIP6). This approach
differs from the typical concentration pathway (RCP) scenario used in CMIP5, which com-
bines different shared socioeconomic paths (SSPs) with RCPs, and incorporates aspects of
future socioeconomic development. We chose three combined scenarios, SSP1-2.6, SSP2-4.5,
and SSP5-8.5, representing low, medium, and high radiation forcing scenarios, respectively.
The spatial resolution of these data was 2.5 arcmin (~5 km). Soil-related parameters origi-
nated from the World Soil Database (HWSD), courtesy of the Science Data Center of Cold
and Arid Regions. Topographic information was sourced from a geospatial data cloud
(http://www.gscloud.cn/, accessed 29 July 2023). The prediction of suitable habitats was
based on the premise that soil and topographic conditions will remain unchanged for the
forthcoming 70 years [55].

The analysis of the 37 environmental factors (excluding soil and topographic factors)
employed Pearson correlation and the variance inflation factor (VIF) to assess their cor-
relation and significance. In the R language, we conducted Spearman’s correlation and
multicollinear VIF evaluations on the point interpolation data. Initially, we filtered out
factors showing correlations of <0.8 and VIF values of <10. VIF, also known as the recip-
rocal of tolerance, indicates the degree of multicollinearity, where VIF < 10 indicates no
multicollinearity, VIF > 10 < 100 indicates multicollinearity, and VIF > 100 indicates serious
interfactor multicollinearity. The filtered modelling factors are shown in Table 1.

Table 1. Participation modelling environment variables.

Environmental Factors Variable Name Work Unit P. armeniaca M. sieversii P. ledebouriana

Bioclimatic factors

Annual Mean Temperature ◦C
√ √

Mean Diurnal Range ◦C

Isothermality %
√ √

Temperature Seasonality ◦C
√

Max Temperature in Warmest Month ◦C

Min Temperature in Coldest Month ◦C

Temperature Annual Range ◦C

Mean Temperature in Wettest Quarter ◦C
√

Mean Temperature in Driest Quarter ◦C
√

Mean Temperature in Warmest Quarter ◦C

Mean Temperature in Coldest Quarter ◦C

Annual Precipitation mm

Precipitation in Wettest Month mm
√ √ √

Precipitation in Driest Month mm
√

Precipitation Seasonality %
√ √ √

Precipitation in Wettest Quarter mm

Precipitation in Driest Quarter mm

Precipitation in Warmest Quarter mm
√ √

Precipitation in Coldest Quarter mm
√ √

Topographic factors

elevation M
√ √ √

aspect A
√ √ √

slope S
√ √ √

http://www.worldclim.org/
http://www.gscloud.cn/
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Table 1. Cont.

Environmental Factors Variable Name Work Unit P. armeniaca M. sieversii P. ledebouriana

Soil factors

USDA Texture Class
√

Topsoil Effective Thickness cm

Topsoil Texture Class

Topsoil Reference Bulk Density g/cm3

Topsoil Silt Content %

Topsoil pH 0–14

Topsoil Organic Carbon %
√ √

Topsoil Gravel Content %
√

Topsoil Exchangeable Sodium Percentage %
√ √

Topsoil Electrical Conductivity of the Extract dS/m
√

Topsoil Clay Content %
√

Topsoil Cation Exchange Capacity of the Soil meq/100 g

Topsoil Cation Exchange Capacity of the Clay meq/100 g

Topsoil Calcium Carbonate Equivalent %
√ √

Topsoil Calcium Carbonate %

Topsoil Bulk Density g/cm3

Topsoil Base Saturation %
√ √

Human Human_foot
√ √ √

2.3. SDM Development and Accuracy Assessment

Our research involved modelling the present and anticipated future geographic distri-
butions of three important species (P. armeniaca, M. sieversii, and P. ledebouriana) utilising
global occurrence data alongside environmental variables. This process was facilitated
through the biomod2 package within R Studio [56]. In biomod2, we applied a suite of
12 distinct algorithms, specifically, ANN, CTA, FDA, GAM, GBM, GLM, MARS, MAX-
ENT, MAXNET, RF, XGBOOST, and SRE. For each of these species, a random selection
of 75% of their distribution records constituted the training dataset; the remaining 25%
formed the test dataset [57]. To increase the models’ reliability, we repeated this distribution
segmentation five times.

Additionally, we generated 1000 pseudo-absence points, repeating this step three
times to refine our models. Consequently, 360 models were developed. Through accuracy
assessment, we selected four models that consistently showed average values exceeding 0.9
for further analysis. These models included ANN, CTA, FDA, GAM, GBM, GLM, MARS,
MAXENT, MAXNET, RF, and XGBOOST.

We constructed an EM using 11 individual models, employing six integration methods:
EMmean, EMcv, EMci, EMmedian, EMca, and EMwmean. The EM was used to predict
the potential geographical distributions of P. armeniaca, M. sieversii, and P. ledebouriana. For
assessing the accuracy of the model, the true skill statistic (TSS) and area under the receiver
operating characteristic curve (ROC–AUC) were employed. The ROC curve compares the
false-positive rate (1 − specificity) to the true-positive rate (1 − omission rate) [58]. The
TSS metric, which measures the average omission error, is independent of the size of the
verification dataset and combines the benefits of the kappa statistic (occurrence, sensitivity,
and specificity) without frequency dependence [59]. Higher TSS and AUC values indicate
better model accuracy. In the suitability zoning phase, the biomod2 model results were
integrated into ArcGIS to produce raster data. The predicted suitability zones for the
three species were classified into four grades: high suitability (0.66–1), medium suitability
(0.33–0.66), low suitability (0.05–0.33), and unsuitable (0–0.05) [60].
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2.4. Geographical Distribution Migration and Overlaps

We employed the SDM tool, which was integrated into the ArcGIS software (version
10.4), to examine potential shifts in the geographical distributions of three important
species under various climate scenarios. Following the methodology outlined by Brown
(2014), we mapped the distribution of these species using the SDM tool (available at
http://www.sdmtoolbox.org, accessed on 1 September 2023). Our analysis focused on
the changes in their distributional centroids, which were assessed based on a suitability
threshold. Specifically, habitats with a probability of >0.3 were classified as ‘suitable’, while
those with a probability of 0.3 or less were considered ‘unsuitable’.

We employed the Centroid Changes (Lines) tool from the SDM Toolbox (v2.4) to
analyse the migration of potential geographic distribution centres using binarised rasters.
Initially, the rasters representing the geographic distributions of the three important species
were scaled by factors of 1, 2, and 4 using ArcGIS 10.4’s (Environmental Systems Research
Institute, lnc. RedLands, CA, USA) Raster Calculator. These scaled rasters were then
aggregated to delineate the overlapping distribution areas of the species. This step is crucial
for identifying regions in which multiple species converge, indicating a heightened invasive
risk. The identification of these common areas is vital for developing targeted conservation
strategies to protect ecosystems from the potential impacts of these important species.

2.5. Measurement of Ecological Niches

We quantitatively analysed the ecological niches of P. armeniaca, M. sieversii, and P.
ledebouriana across different periods and under various climatic conditions. Initially, we
compared the ecological niche dynamics between native areas and regions facing habitat
loss, utilising occurrence and bioclimatic data with the R Studio (Version 4.2.3, Molly
Hill, NJ, USA) ecospat package [61,62]. This approach utilised the PCA-env and COUE
methods to conduct a comprehensive analysis of the bioclimatic variables associated with
the species [48,49].

We then performed climate niche similarity tests between native areas and those
experiencing habitat loss, using the ecospat package with 1000 repetitions for each test [63].
A significant difference in ecological niche similarity values (p < 0.05) indicated ecological
niche dissimilarity.

Furthermore, using the ecospat package, we analysed and visualised the ecological
niches of the species, including computing the ecological niche overlap index, ‘D’. This
index ranged from 0 (no overlap) to 1 (complete overlap), representing the extent of
ecological niche overlap. We also used the ENMTool niche breadth module to calculate
ecological niche breadths based on current and future potential distribution data [64]. Here,
‘B1’ denotes the minimum and ‘B2’ denotes the maximum niche breadth.

2.6. Marxan Model Construction

The Marxan model, known for its effectiveness in identifying minimum-cost areas
for conservation planning [65,66], was used to identify priority conservation areas for P.
armeniaca, M. sieversii, and P. ledebouriana under current climatic conditions. Owing to con-
tinuous improvements, this model has become popular for land conservation planning. It
operates at a spatial resolution of 2 km2 using square planning units (PUs), each measuring
25,000 m in height and width. In ArcGIS, we used the ‘Zonal Statistics as Table’ tool to
aggregate species distribution data within each PU, which helped us construct a species
distribution matrix.

We set a conservation target that includes 30% of the total habitat area, applying a
species protection factor (SPF) of 100. A crucial aspect of the Marxan model is its boundary
length modifier (BLM), which was set at 25,000. The BLM acts as a correction parameter
for the perimeter of a conservation area [67]. By adjusting the BLM, we analysed the
balance between the cost, total boundary length, and area. Such an analysis is essential for
determining the equilibrium point that leads to a more efficient spatial distribution pattern

http://www.sdmtoolbox.org
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in conservation areas [68]. To ensure the reliability of our findings, the model was run over
100 iterations to determine the optimal configuration of the planning units.

3. Results
3.1. Model Precision Assessment

We assessed the accuracy of various models, including ANN, CTA, FDA, GAM, GBM,
GLM, MARS, MAXENT, MAXNET, RF, XGBOOST, and SRE, and the EM for P. armeniaca, M.
sieversii, and P. ledebouriana. For these species, the TSS values of the CTA, FDA, GAM, GBM,
GLM, MARS, MAXENT, MAXNET, RF, and XGBOOST models were >0.8, and their AUC
values were >0.9 (Figure 2). Consequently, 10 models with high accuracy were chosen to
construct EMs using six different integration methods: EMmean, EMcv, EMci, EMmedian,
EMca, and Emwmean.
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Figure 2. Evaluation indices of individual predictive models (AUC: area under the receiver operating
characteristic, TSS: true skill statistic, ANN: artificial neural network, CTA: classification tree analysis,
FDA: flexible discriminant analysis, GAM: generalised additive model, GBM: generalised boosting
model, GLM: generalised linear model, MARS: multivariate adaptive regression spline, MAXENT:
maximum entropy, MAXNET: Maxent’s network equivalent, RF: random forest, XGBOOST: eXtreme
gradient boosting, SRE: surface range envelope) for distribution of three plants, (A) Prunus armeniaca,
(B) Malus sieversii, and (C) Prunus ledebouriana.

The developed EMs demonstrated the highest accuracy in this assessment. For P.
armeniaca, M. sieversii, and P. ledebouriana, the TSS values of the EMs were 0.92, and the AUC
values were up to 0.98 (Figure 3). Hence, the EMs developed from singular high-precision
models significantly enhanced the fit accuracy while diminishing uncertainties in the fitting
process. This suggests a high reliability in the predicted potential geographic distributions
of the three important species, as inferred through the use of EMs.

3.2. Present Potential Geographic Spread

The EM projections of the current (1979–2013) potential geographic ranges for P. arme-
niaca, M. sieversii, and P. ledebouriana are shown in Figure 4. P. armeniaca and M. sieversii
share common distribution zones in Armenia, Azerbaijan, China, Iran, Italy, Kazakhstan,
Turkey, and Kyrgyzstan, while P. ledebouriana is primarily native and endemic to Kaza-
khstan. Notably, the shared areas in China, Kazakhstan, and Turkey represent 73.38% of
the total joint distribution for P. armeniaca and M. sieversii. China has the largest shared
area, at 8.76 × 106 ha, accounting for 37.32% of the total, followed by Kazakhstan (27%,
6.34 × 106 ha) and Turkey (9.05%, 2.12 × 106 ha) (Table 2). The largest global habitat suit-
ability area for P. ledebouriana is significantly concentrated in Kazakhstan (979.17 × 106 ha),
followed by the global habitat suitability areas for M. sieversii (468.20 × 106 ha) and P.
armeniaca (445.51 × 106 ha).
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P. armeniaca has a highly suitable habitat spread over 151.14 × 106 ha, predominantly
in Europe (Ukraine, Romania, Russia), Central Asia (Kazakhstan, Turkmenistan, Pakistan,
northwestern China), and North America (United States, southern Canada), with sparse
distribution in Oceania (Australia). Eastern Europe is the main area of the most suitable
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habitat for P. armeniaca, accounting for 70.4% of the total suitable area, followed by Central
Asia and North America with 21.89% and 0.44%, respectively (Table 3). For M. sieversii,
highly suitable habitats, covering 121.99 × 106 ha, are mainly in Central Asia (Mongolia,
Iran, Turkey, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, northwestern China),
Europe (Georgia, Spain), Africa (Morocco, Algeria, Swaziland), South America (Chile,
Argentina, Trinidad, and Tobago), and North America (United States, southern Canada).
The highly suitable habitat of M. sieversii is concentrated in Central Asia with 56.05%,
followed by North America (16.39%), Africa (10.32%), Europe (6.31%), and South America
(6.31%) (Table 4). For P. ledebouriana, highly suitable habitats span 468.86 × 106 ha, predom-
inantly in Europe (Azerbaijan, Ukraine, Russia, Romania, Bulgaria, Germany), Central Asia
(Kyrgyzstan, Kazakhstan, Iran, Turkey, northwestern China), and North America (United
States, southern Canada). The main habitat of P. ledebouriana is located in Europe, which
accounts for 60.51% of the total area, while Central Asia and North America account for
19.66% and 11.89%, respectively (Table 5).
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Figure 4. Current global geographical distributions of Prunus armeniaca, Malus sieversii, and Prunus
ledebouriana predicted using the EM. (A) Overlay zones, (B) P. armeniaca, (C) M. sieversii, and
(D) P. ledebouriana.

Table 2. Area of overlap under the current climate conditions.

Overlap Zone Area (×106 ha)

Armenia 1.64
Azerbaijan 1.67

China 8.76
Iran 1.55
Italy 0.28

Kazakhstan 6.34
Turkey 2.12

Kyrgystan 1.08
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Table 3. Global distribution of Prunus armeniaca under current climate scenarios (×106 ha).

Habitability Classification
Distribution Area

European Asian North American

Highly suitable habitat 106.41 33.09 0.68
Moderately suitable habitat 92.94 1225.11 12.42

Table 4. Global distribution of Malus sieversii under current climate scenarios (×106 ha).

Habitability Classification
Distribution Area

Asian European African North American South American

Highly suitable habitat 68.38 7.70 12.60 20.00 2.43
Moderately suitable habitat 86.71 18.29 29.45 143.95 20.60

Table 5. Global distribution of Prunus ledebouriana under current climate scenarios (×106 ha).

Habitability Classification
Distribution Area

Asian European North American

Highly suitable habitat 92.19 283.73 55.76
Moderately suitable habitat 138.84 199.58 118.79

3.3. Comparative Analysis of Ecological Niches

The geographic ranges of these three important species partially mirror their funda-
mental niches, defined as the array of environmental conditions allowing their survival.
The ecological niche dynamics of M. sieversii, P. armeniaca, and P. ledebouriana, based on a
comparison of the climate niche space between native and lost habitats, are presented in
Figure 5. Based on occurrence data and bioclimatic variables for native and habitat loss, the
ecological niche overlaps of P. armeniaca, M. sieversii, and P. ledebouriana revealed Schoener’s
D values of 0.83, 0.74, and 0.76, respectively, indicating that the ecological niche overlap is
relatively high between P. armeniaca, M. sieversii, and P. ledebouriana (Figure 5). The ecologi-
cal niches of P. armeniaca, M. sieversii, and P. ledebouriana in their extirpated habitats were
smaller than those in their native habitats. This indicates a decrease in resources that can be
jointly utilised in both the current and future periods. In terms of habitat loss, the ecological
niches of P. armeniaca, M. sieversii, and P. ledebouriana did not occupy all the ecological niches
of their native areas. The null hypothesis of the ecological niche equivalence of P. armeniaca,
M. sieversii, and P. ledebouriana based on the bioclimatic variables of the native and invasive
areas was not rejected (p = 0.1908, 0.9523, and 0.5238, respectively).

The niche widths of P. armeniaca, M. sieversii, and P. ledebouriana were calculated using
the ENMTools (Version 5.26) software package, focusing on various climate conditions. As
shown in Table 6, the B1 and B2 values of P. armeniaca, M. sieversii, and P. ledebouriana were
all >0.7 and >0.9, respectively. Hence, each period showed no marked distinction between
B1 and B2, suggesting that P. armeniaca, M. sieversii, and P. ledebouriana tend towards being
generalist species. Furthermore, B1 and B2 exhibited an upward trend in alternative climate
scenarios compared with the present period. This trend implies an expansion in the range
of resources utilised by these species in forthcoming climate conditions, demonstrating
their extensive distribution and robust environmental adaptability.
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Figure 5. Niche differences in Prunus armeniaca (A), Malus sieversii (B), and Prunus ledebouriana (C) in
the future.

Table 6. Niche widths for three important species.

Species Climate Scenario B1 (Minimum Ecotope) B2 (Maximum Ecotope Width)

P. armeniaca

Current 0.8560 0.9958
2050s_SSP126 0.8585 0.9959
2050s_SSP245 0.8563 0.9958
2050s_SSP585 0.8595 0.9960
2090s_SSP126 0.8580 0.9959
2090s_SSP245 0.8634 0.9961
2090s_SSP585 0.9035 0.9973

M. sieversii

Current 0.8569 0.9958
2050s_SSP126 0.8589 0.9959
2050s_SSP245 0.8582 0.9958
2050s_SSP585 0.8584 0.9958
2090s_SSP126 0.8609 0.9959
2090s_SSP245 0.8592 0.9959
2090s_SSP585 0.8631 0.9960

P. ledebouriana

Current 0.7766 0.9927
2050s_SSP126 0.8279 0.9943
2050s_SSP245 0.8254 0.9943
2050s_SSP585 0.8307 0.9944
2090s_SSP126 0.8294 0.9944
2090s_SSP245 0.8228 0.9942
2090s_SSP585 0.8248 0.9942

3.4. Projected Future Geographic Ranges

The potential global geographical distributions of P. armeniaca, M. sieversii, and P.
ledebouriana under SSP126, SSP245, and SSP585 during the 2050s and 2090s are shown in
Figures 6–8 and Table 7.
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Figure 6. Potential global geographical distribution of Prunus armeniaca in the 2050s and 2090s
predicted using the ensemble model (EM). The scenarios include SSP126, SSP245, and SSP585.

For P. armeniaca, the total area of suitable habitat is projected to decrease under most
future climate scenarios in the 2050s and 2090s. The most significant reduction occurs in the
2090s under the SSP585 scenario, with the suitable habitat area decreasing to 885 × 106 ha,
representing a 32.21% reduction from current conditions. Habitat losses are primarily noted
in Romania, Ukraine, southern Russia, and sporadically across Central Asia, although some
expansions are noted in Central Asia and southern Europe.
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Figure 7. Potential global geographical distribution of Malus sieversii in the 2050s and 2090s predicted
using the ensemble model (EM). The scenarios include SSP126, SSP245, and SSP585.

For M. sieversii, the total area of suitable habitat is projected to decrease under all
climate scenarios in the 2050s and 2090s compared with current conditions. The most
significant loss occurs in the 2090s under the SSP585 scenario, with the suitable habitat
area decreasing to 1389 × 106 ha, a 3.71% reduction. Habitat losses are mainly in Romania,
Ukraine, southern Russia, and sporadically in Central Asia, although some habitat expan-
sions are observed mainly in Central Asia, with a few in southern Europe. Other notable
reductions include the SSP126 scenario in the 2090s with a 3.34% reduction, followed by the
SSP245 scenario in the 2050s and the SSP126 scenario in the 2050s with smaller decreases.
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Figure 8. Potential global geographical distribution of Prunus ledebouriana in the 2050s and 2090s
predicted using the ensemble model (EM). The scenarios include SSP126, SSP245, and SSP585.

For P. ledebouriana, the total area of suitable habitat is expected to decrease under all
future climate scenarios in the 2050s and 2090s compared with current conditions. The
most significant loss is forecasted for the 2050s under the SSP585 scenario, with the suitable
habitat area reducing to 517.95 million ha, a 47.1% decrease. The primary habitat losses
are noted along the borders of Ukraine, Russia, and Georgia, with smaller affected areas in
Kazakhstan, Mongolia, and northwestern China. Some habitat expansions are observed
in Moldova and limited areas of southwestern Russia. Other significant reductions are
projected under the SSP126 scenario in the 2090s with a 46.68% decrease, the SSP585
scenario in the 2090s with a 45.13% decrease, and the SSP126 scenario in the 2050s with a
43.99% decrease.
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Table 7. Global area of distribution of three important species under future climate scenarios
(×106 ha).

Species Climate Scenario
Habitability Classification

None Low Medium High

P. armeniaca

2050S_SSP126 13,457.71 789.38 292.76 146.55
2090S_SSP126 13,373.77 866.98 306.78 138.88
2050S_SSP245 14,892.61 852.57 310.77 143.71
2090S_SSP245 13,439.94 8327.96 2829.22 130.75
2050S_SSP585 133,473.19 772.36 299.53 141.32
2090S_SSP585 13,770.01 637.67 188.58 59.29

M. sieversii

2050S_SSP126 13,265.7 968.32 331.62 120.76
2090S_SSP126 13,291.53 953.39 324.2 117.28
2050S_SSP245 13,271.8 953.73 339.99 120.88
2090S_SSP245 13,247.42 970.16 333.71 118.37
2050S_SSP585 13,264.87 962.12 339.66 119.75
2090S_SSP585 13,266.02 965.19 311.45 112.89

P. ledebouriana

2050S_SSP126 11,687.41 2423.91 319.06 229.28
2090S_SSP126 11,817.81 2346.51 292.17 229.9
2050S_SSP245 11,773.25 2347.44 323.24 242.47
2090S_SSP245 11,733.88 2385.73 302.2 264.59
2050S_SSP585 11,771.91 2396.54 297.01 220.94
2090S_SSP585 11,726.92 2422.26 275.45 261.78

Non: Unsuitable habitat; Low: Low suitability habitat; Medium: Moderate suitability habitat; High: High
suitability habitat.

3.5. Overlapping Geographical Distributions under Climate Change

In the future, the primary regions experiencing a loss of overlapping geographic distri-
bution areas for the three important species will mainly be located in Azerbaijan, Georgia,
Kazakhstan, Tajikistan, Kyrgyzstan, Iran, and northwestern China, as illustrated in Figure 9.
The area of lost overlapping geographic distributions for the three important species was
largest for the 2090s under the SSP245 scenario, followed by the 2050s under SSP126, 2050s
under SSP245, 2050s under SSP585, 2090s under SSP585, and 2090s under SSP126.

In the 2050s, under the SSP126 scenario, the greatest loss in overlapping geographic
distribution areas occurred in Iran, amounting to 108.8 × 104 ha, which represents 31.85%
of the total loss in overlapping geographic distribution. This was followed by Kazakhstan
(85 × 104 ha, 27.02%) and Georgia (72.25 × 104 ha, 22.97%). Under the SSP245 scenario,
Kazakhstan experienced the most significant loss, totalling 67.15 × 104 ha, accounting for
31.71% of the total loss in overlapping areas, followed by Iran (51 × 104 ha, 24.09%) and
Kyrgyzstan (46.75 × 104 ha, 22.08%). Under the SSP585 scenario, Iran again suffered the
most, with a loss of 54.4 × 104 ha, representing 34.04% of the total, followed by Kyrgyzstan
(47.6 × 104 ha, 29.78%) and Azerbaijan (45.05 × 104 ha, 28.19%).

In the 2090s, under the SSP126 scenario, Azerbaijan saw the most significant loss in
overlapping geographic distribution areas, with 54.4 × 104 ha lost, accounting for 87.67%
of the total loss. This was followed by Kyrgyzstan (38.25 × 104 ha, 61.64%) and Kazakhstan
(25.5 × 104 ha, 41.09%). Under the SSP245 scenario, the largest loss occurred in Kazakhstan,
with 124.95 × 104 ha, representing 31.68% of the total loss, followed by Iran (11.9 × 104 ha,
30.17%) and Kyrgyzstan (70.55 × 104 ha, 17.88%). Under the SSP585 scenario, Iran again
experienced the largest loss, with 50.15 × 104 ha, constituting 43.06% of the total, followed
by Kazakhstan (45.9 × 104 ha, 39.41%) and Azerbaijan (36.55 × 104 ha, 31.38%) (Table 8).
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Figure 9. Predicted overlapping geographic ranges of Prunus armeniaca, Malus sieversii, and Prunus
ledebouriana in the 2050s and 2090s under SSP126, SSP245, and SSP585.

Table 8. Future overlap zone shrinkage area (km2).

Period Climate
Scenario

Scenario Overlap Zone

Azerbaijan China Georgia Iran Kazakhstan Kyrgyzstan Tajikistan

2050s
SSP126 5270 −6800 7225 10,880 8500 5950 425
SSP245 4250 −680 1615 5100 6715 4675 −510
SSP585 4505 −1785 1785 5440 2380 4760 −1105

2090s
SSP126 5440 −5440 1615 −1615 2550 3825 −170
SSP245 6120 510 1445 11,900 12,495 7055 −85
SSP585 3655 −6035 1530 5015 4590 3060 −170

3.6. Centres of Potential Geographical Distributions

The potential geographic distribution centres of P. armeniaca, M. sieversii, and P. lede-
bouriana are shown in Figure 10. The centres of potential geographical distributions of P.
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armeniaca are Friuli-Venezia Giulia, Italy, under current climate scenarios; the centres of
potential geographical distributions of M. sieversii are Karaman, Turkey, under current cli-
mate scenarios; and the centres of potential geographical distributions of P. ledebouriana are
Vasvar, Vas, Hungary, under current climate scenarios. Under the three scenarios from the
present to the 2050s and 2090s, P. armeniaca showed an overall trend of moving northward
and from northeastern Europe to Central Asia. For M. sieversii, from the present to the
2050s and 2090s, the potential geographic distribution centres generally shifted northward
and northwestward in Europe, with the centre oscillating under the SSP245 scenario. For
P. ledebouriana, from the current period to the 2050s and 2090s, the potential geographic
distribution centres tended to move northward from northeastern Europe to Central Asia,
exhibiting a swaying trend in Central Asia. Overall, the potential geographic distribution
centres of these three important species predominantly trend northward under the three
scenarios projected for the 2050s and 2090s (Table 9).
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Table 9. The centres of potential geographical distributions of three important species.

Species Climate Scenario
Distribution Migration Distance

(km)Longitude Latitude

P. armeniaca

CURRENT 12.4456 46.2602 —
2050S_SSP126 41.9697 48.4101 2222.31
2090S_SSP126 41.9545 48.8085 44.28
2050S_SSP245 41.6546 48.2651 2200.56
2090S_SSP245 41.4184 48.4232 24.75
2050S_SSP585 40.4762 48.4232 2112.39
2090S_SSP585 39.8432 48.6712 54.11

M. sieversii

CURRENT 19.7714 35.2959 —
2050S_SSP126 18.9452 35.7089 87.70
2090S_SSP126 12.6646 37.1596 584.06
2050S_SSP245 18.1248 35.7124 155.98
2090S_SSP245 20.5975 35.7089 223.10
2050S_SSP585 13.4065 35.4970 576.89
2090S_SSP585 6.76638 38.8237 694.30

P. ledebouriana

CURRENT 16.9523 47.0332 —
2050S_SSP126 49.8891 49.7767 2428.95
2090S_SSP126 48.3927 49.4345 114.27
2050S_SSP245 48.8311 49.7373 2353.71
2090S_SSP245 48.7509 50.2956 62.30
2050S_SSP585 48.2766 49.5022 2316.27
2090S_SSP585 48.177 49.4657 8.25

3.7. Influence of Environmental Variables on Predicted Geographic Distributions

We utilised the EMca integrated model to evaluate the impact of each environmental
variable on the potential geographic distributions of P. armeniaca, M. sieversii, and P. lede-
bouriana, as detailed in Figure 11. The analysis revealed that for P. armeniaca, annual mean
temperature (Bio1), isothermality (Bio3), and precipitation in the wettest month (Bio13) had
the most significant cumulative contributions. For M. sieversii, the key bioclimatic variables
were precipitation in the wettest month (Bio13), driest month (Bio14), warmest quarter
(Bio18), and coldest quarter (Bio19). For P. ledebouriana, the major contributing variables for
P. ledebouriana were isothermality (Bio3), precipitation in the wettest month (Bio13), and
temperature seasonality (Bio4). These variables predominantly define the multidimensional
ecological niche of each species; however, other climatic, soil, and topographic factors play
smaller roles.
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3.8. Priority Protection Areas under Current Climate Conditions

The Marxan model was employed to identify priority conservation areas for the
three important species, with the findings imported into ArcGIS to develop a focused
conservation strategy. As depicted in Figure 12, these priority areas are predominantly
located in Armenia, Azerbaijan, China, Iran, Italy, Kazakhstan, Turkey, and Kyrgyzstan.
This distribution aligns with the highly suitable habitats for these species as forecasted
by the biomod2 model, affirming the precision of these predictions. Furthermore, these
crucial conservation zones cover a relatively small portion of the land, exhibiting a compact
distribution. This is beneficial for establishing specific conservation and management plans.
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4. Discussion
4.1. Influences of Environmental Data and Spatial Resolutions on SDM Efficacy

Beyond bioclimatic factors, a range of elements can affect the performance of SDMs [69],
including topographic features and human impacts [70,71], which play distinct roles in de-
termining species distributions. In this study, climate, soil, digital elevation model (DEM),
and habitat integrity index (HII) data were integrated into the SDMs to project the global
distribution patterns of the three important species, with a focus on prediction accuracy [51].
We utilised environmental data of varying resolutions. However, existing studies suggest
that increased spatial resolution does not necessarily enhance SDM predictive accuracy.
Therefore, to reduce uncertainties linked to disparate spatial resolutions in environmental
data, we normalised the resolution of all the environmental variables.

4.2. Importance of Predictions by EMs

Individual SDMs are often used to predict species colonisation and extinction; how-
ever, they can suffer from overfitting or inadequacy [72]. EMs, which combine multiple
SDM predictions, offer greater accuracy and reduced uncertainty, making them ideal for
forecasting the potential geographic distributions of important and endangered species un-
der various conditions, such as climate change and human impacts [34,35,73]. In this study,
11 individual SDMs (ANN, CTA, FDA, GAM, GBM, GLM, MARS, MAXENT, MAXNET,
RF, and XGBOOST) were used to create the EM. Despite the high TSS (>0.8) and AUC
(>0.9) values for the individual SDMs, the EM achieved even better scores (>0.92 and >0.98),
enhancing the prediction accuracy.

P. armeniaca, M. sieversii, and P. ledebouriana are vital for the stability and ecosystem
services of wild fruit forests, offering significant genetic resources and insights into plant
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evolution. However, their global geographical and niche overlaps remain unexplored.
Using the EM in biomod2, we predicted the global potential distribution and niche breadth
of these three important species under climate change conditions, evaluating future habitat
loss, overlap of lost and native areas, reserve planning, and key environmental variables in-
fluencing their distribution. This study provides a comprehensive approach for conserving
and utilising similar species globally.

4.3. Response of Spatial Distribution Patterns of Three Important Species to Climate Change

This century, most regions of the northern hemisphere are expected to experience the
effects of climate change. Under climate change, species may face three potential outcomes:
adapting in place, migrating to track shifting climates spatially or temporally, or facing
local extinction [74,75]. Predictions of the potential geographic distribution of vulnerable
species under climate change can serve as an early warning signal [76]. This change may
cause range dislocations and species turnover, threatening native flora and increasing the
risk of extinction [77]. The geographic ranges of M. sieversii, Juglans regia, Prunus armeniaca,
Crataegus chlorocarpa, Prunus cerasifera, and Sorbus tianschanica are expected to shrink owing
to climate change, leading to a decline in the diversity of wild fruit forests in the Xitianshan
Mountains [78]. Furthermore, studies indicate that the geographic range of M. sieversii has
declined owing to climate change, with nature reserves covering only a small fraction of
the remaining suitable areas [79]. A consequence of climate change is the shift of plant
communities to higher elevations [80–83] and new dimensions [84,85] to follow favourable
climate conditions. This inability to adapt threatens rare species, potentially leading to
population declines and eventual extinction [86]. Contrary to previous studies, our research
indicates that the geographic ranges of P. armeniaca, M. sieversii, and P. ledebouriana are
diminishing owing to climate change, with suitable habitats moving to higher latitudes,
thereby increasing the risk of extinction from habitat loss. Our findings corroborate the
hypothesis that climate change intensifies habitat loss for important species, enhance our
understanding of how global warming influences the geographic shifts of these species,
and offer a scientific foundation for devising future conservation strategies.

4.4. Environmental Factors Restricting the Distributions of P. armeniaca, M. sieversii, and
P. ledebouriana

Under current climatic conditions, the primary environmental factors affecting the
distribution of P. armeniaca, M. sieversii, and P. ledebouriana are temperature and precipita-
tion, followed by topographic factors; soil factors have the least impact on these species.
According to the EM model, suitable habitats for P. armeniaca, M. sieversii, and P. lede-
bouriana are mainly at altitudes of 1000–1400 m, which aligns with their actual living
conditions [24,26,27]. Although thermohydric conditions play a major role in the potential
global geographic distribution patterns of P. armeniaca, M. sieversii, and P. ledebouriana, the
constraints of topography and soil factors should not be overlooked. The contribution rates
of environmental factors indicate that a combination of factors, including temperature,
moisture, altitude, and slope, will jointly affect the potential geographic distributions of P.
armeniaca, M. sieversii, and P. Ledebouriana.

4.5. Priority Protection Areas for P. armeniaca, M. sieversii, and P. ledebouriana

Nature reserves are essential to safeguard natural resources and biodiversity. In
exploring systematic reserve zoning for P. armeniaca, M. sieversii, and P. ledebouriana, we
identified priority conservation areas in Armenia, Azerbaijan, China, Iran, Italy, Kazakhstan,
Turkey, and Kyrgyzstan. These countries offer ideal environments for these species largely
because of their unique geographical locations and climatic conditions. The regions, which
are mainly in temperate to semi-arid climate zones, consist of mountainous and plateau
terrains that foster diverse ecological environments [27,87]. This diversity allows species to
thrive at various altitudes and microclimates, matching their specific growth habits.
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The key growth factors in these areas include ample sunlight, a moderate climate,
and balanced moisture. The mountainous regions of Armenia and Azerbaijan offer varied
microclimates, whereas plateau areas in Western China and Central Asia provide essential
nutrients with unique soil types and textures. The semi-arid climates of Iran and Turkey
facilitate efficient water use, whereas the warm climates and good soil drainage of Italy and
Kyrgyzstan are beneficial for these species. These conditions not only align with the growth
habits of P. armeniaca, M. sieversii, and P. ledebouriana, but also support their biodiversity
and genetic diversity. Therefore, these regions are crucial for the growth and conservation
of these valuable species and offer significant opportunities for research and preservation.

Furthermore, while in situ conservation within these natural reserves is vital, the
importance of ex situ conservation efforts cannot be understated. Ex situ strategies, such as
the establishment of seed banks and living collections, play a crucial role in complement-
ing in situ measures by providing a ‘safety net’ against potential loss of genetic diversity
due to environmental or anthropogenic pressures [88,89]. This dual approach ensures
the preservation of a genetic reservoir for P. armeniaca, M. sieversii, and P. ledebouriana,
which can be crucial for restoration and research purposes under changing global condi-
tions. The integration of ex situ and in situ conservation strategies will therefore enhance
our capacity to maintain and recover these species in their natural habitats, while also
allowing for controlled scientific studies and breeding programs that can further support
their conservation.

4.6. Model Prediction Limitations

This study’s modelling and analysis present inherent limitations and challenges. First,
the field surveys lacked comprehensiveness, potentially skewing the species distribution
data away from typical patterns. This could introduce biases, with notably less thorough
surveys in remote and complex terrains compared with more accessible areas. Second, the
exclusion of biological factors as predictor variables limited the simulation to theoretical
ecological niches, rather than representing the species’ actual ecological niches [90,91].
Although the impact of human footprint was considered, urbanisation and deeper anthro-
pogenic influences, which are particularly significant in densely populated areas of Europe
and beyond, were not explicitly modelled. This oversight may affect the accuracy of our
predictions as urban expansion can alter local ecosystems, climate conditions, and species
interactions [92,93]. Extrapolating models to future environmental conditions beyond
current training data impacts prediction reliability [94]. Additionally, unmodelled fac-
tors such as migration capabilities, barriers, and evolutionary responses to environmental
changes could affect species distribution predictions [95]. Therefore, it is crucial to consider
these factors when applying predictions to field surveys and conservation efforts [96]. The
environmental variables for this study were sourced from the Paleoclim database, covering
the period 1979–2013. This range extends nearly a decade beyond the 1950–2000 period
available in the WorldClim database [52,74]. However, climate data for the most recent
decade remain absent. Consequently, it is essential to include the missing data in future
research to enhance the reliability and robustness of the predictions.

5. Conclusions

The potential geographical distributions of P. armeniaca, M. sieversii, and P. ledebouriana
are shaped by bioclimatic variables, the HII, soil attributes, and topography, with global
climate change significantly impacting their distribution and overlapping areas. Our EM
outperformed individual models such as ANN, CTA, FDA, GAM, GBM, GLM, MARS,
MAXENT, MAXNET, RF, and XGBOOST, showing that it is more reliable for predicting the
geographical distributions of these important species.

The EM predictions showed that these species are primarily distributed in Central
Asia and Europe and undergo ecological niche changes during invasion. Under climate
scenarios SSP126, SSP245, and SSP585, suitable habitats are projected to decrease by the
2050s and 2090s. In the 2050s, the overlapping geographic distribution areas will mainly be
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in Azerbaijan, China, Iran, Kazakhstan, and Georgia. By the 2090s, these areas are expected
to shift predominantly to China, Kazakhstan, Kyrgyzstan, and Georgia, with a general
trend of moving northward.

Bioclimatic variables and elevation are significant influencers of their distribution,
whereas the cumulative impact of topography and soil properties is low. The potential loss
of distribution areas for these species is a serious concern, threatening the genetic diversity
and adaptability of wild fruit forest ecosystems to environmental change.

In conclusion, the protection of P. armeniaca, M. sieversii, and P. ledebouriana extends
beyond biodiversity conservation, and is essential for ecosystem vitality, scientific advance-
ment, and economic resilience. A comprehensive conservation strategy that includes habitat
protection, natural reproduction support, and management plans is crucial. This approach,
guided by EMs and ecological studies, is the key to preserving biodiversity and ensuring
sustainable coexistence in the face of climate change, habitat loss, and carbon sequestration.
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