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Abstract: Counting the number of trees and obtaining information on tree crowns have always
played important roles in the efficient and high-precision monitoring of forest resources. However,
determining how to obtain the above information at a low cost and with high accuracy has always
been a topic of great concern. Using deep learning methods to segment individual tree crowns in
mixed broadleaf forests is a cost-effective approach to forest resource assessment. Existing crown
segmentation algorithms primarily focus on discrete trees, with limited research on mixed broadleaf
forests. The lack of datasets has resulted in poor segmentation performance, and occlusions in
broadleaf forest images hinder accurate segmentation. To address these challenges, this study
proposes a supervised segmentation method, SegcaNet, which can efficiently extract tree crowns
from UAV images under natural light conditions. A dataset for dense mixed broadleaf forest crown
segmentation is produced, containing 18,000 single-tree crown images and 1200 mixed broadleaf
forest images. SegcaNet achieves superior segmentation results by incorporating a convolutional
attention mechanism and a memory module. The experimental results indicate that SegcaNet’s mIoU
values surpass those of traditional algorithms. Compared with FCN, Deeplabv3, and MemoryNetV2,
SegcaNet’s mIoU is increased by 4.8%, 4.33%, and 2.13%, respectively. Additionally, it reduces
instances of incorrect segmentation and over-segmentation.

Keywords: crown segmentation; algorithm for mixed forest; convolutional attention mechanism;
MemoryNetV2 algorithm

1. Introduction
1.1. Research Significance and Background

Surveying forest resources and information simply and efficiently has always been
crucial for smart forestry. Forest management aims to maximize ecological benefits while
maintaining forest ecology [1,2].

This study focuses on how to inventory forest resources in a cost-effective manner.
Compared with point cloud and ground data acquisition, UAV data acquisition is less
expensive. The number of trees can be counted by using deep learning algorithms to
segment individual tree crowns in UAV images. Combined with flight parameters such as
geographic location and flight altitude, this method can provide strong support for forest
resource investigations.

Many forests are geographically remote with a complex topography, making it difficult
and expensive to collect relevant information through manual surveys [3]. Therefore, the
image data captured by UAVs are of great significance to forest resource assessment.
In recent years, UAV remote sensing has achieved remarkable results in mapping tree
information [4,5]. Specifically, UAVs can quickly and inexpensively acquire data such as
the tree location and crown width [6], which can be used to operate and manage forests
more effectively [7].
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For forest resource assessment, the core objective is to survey forest resources at the
lowest cost while achieving the highest economic and ecological benefits [8,9]. Parameters
such as the number of trees, species, and vegetation closure are crucial for forest resource
assessment [10,11]. Orthophoto maps based on UAV photography are an essential method
for obtaining these parameters. Compared with point cloud data obtained using LiDAR and
high-altitude remote sensing images, using UAVs to capture images is more convenient,
and their processing is less costly. The first step in extracting crown information from
UAV images involves identifying distinct features. However, challenges such as tree
shading and differences between the background and target pose significant obstacles to
accurate segmentation.

1.2. Research Status of Crown Segmentation Using Machine Learning and Deep Learning

Optical image data include satellite images and UAV images, which are used for dif-
ferent purposes based on their scales. Satellite images cover larger areas and are commonly
used to distinguish forest land from non-forest land. In contrast, UAV images have a
smaller scale but contain more detailed texture information, making them ideal for the
recognition and segmentation of individual trees.

The traditional individual tree segmentation algorithm [12] is divided into two steps:
the center point of the tree contour is identified, and then the tree contour is delineated
based on this center point. Numerous segmentation algorithms have been developed based
on this approach.

Kestur [13] applied the watershed algorithm and the principle of distance transfor-
mation to extract tree crown information based on the traditional method. Wang [14]
utilized the maximum suppression and distance transformation methods to detect the
center point of a tree outline and then used the watershed algorithm to extract the crown
boundary. Jing [15] processed an image using Gaussian filtering and then extracted the
crown information using the watershed algorithm after obtaining a binary image.

Traditional segmentation algorithms are often applied to scenarios with low crown
cover, but they are not effective in cases with high crown cover. Wu [16] used Fast R-CNN
to detect apple tree crowns and then segmented them using the U-Net network, achieving
a precision of 91.1% and a recall of 94.1%. Zhang [17] improved the feature fusion method
in Mask R-CNN and introduced boundary-weighted loss in the loss function to segment
different tree species. Xue [18] applied an improved DeepLabv3 [19] for citrus tree crown
segmentation, achieving a faster inference speed and smaller parameter counts with the
lightweight MobileNetV3 network. Yan [20] annotated tree crowns in WorldView3 high-
resolution images and utilized multiple CNN models for recognition, achieving an accuracy
of 82.7%.

Facing the challenges of obtaining datasets for tree crown segmentation, Weinstein [21]
proposed a semi-supervised deep learning approach. This method helps mitigate the lack
of research data in the field of tree crown detection. Braga [22] developed a method for
creating datasets by using manually extracted tree crowns as samples. These samples are
randomly placed in the background of high-resolution satellite images, allowing for the
large-scale batch production of datasets.

At present, most datasets used for crown segmentation focus on single-tree segmenta-
tion, and there is a lack of data for mixed broadleaf forest segmentation. In dense mixed
broadleaf forests, segmentation inaccuracies caused by crown overlap have been persistent
challenges. The research on segmentation algorithms for dense broadleaf forests remains
insufficient [23,24].

1.3. Primary Research Focus

To perform effective segmentation, appropriate methods are needed to distinguish the
boundaries of different tree crowns. Existing segmentation methods can be categorized
into threshold [25], color, and learning-based segmentation methods [26].
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Threshold- and color-based segmentation methods, such as the watershed algorithm,
perform segmentation by setting a threshold, measuring the distance between the starting
point and surrounding pixels. Previous studies have shown that color is a more efficient
feature for differentiating between plants and backgrounds in images [27].

Vegetation can be distinguished from non-vegetation by examining the pixel differ-
ences between color channels. Better results are often achieved by using multiple color
spaces and selecting the optimal pairings among them [28–30]. This method is suitable
for images where the background is differentiated from the target. However, it performs
poorly on more complex images.

Learning-based supervised and unsupervised segmentation methods can address
the shortcomings of threshold- and color-based methods, handling a variety of complex
conditions. Unsupervised learning segmentation methods can segment trees without
labeled data but often face challenges with image tilt, variable lighting, and other complex
scenarios. Supervised learning methods require a large amount of labeled data for training.
However, there is a lack of public datasets for crown segmentation in mixed forests.

To address the shortcomings of supervised learning methods, we developed a crown
image segmentation algorithm with high accuracy and strong generalization. This algo-
rithm was designed to extract crown information from UAV-captured images of mixed
broadleaf forests. Additionally, we created a dataset specifically for crown segmentation in
mixed broadleaf forests. The specific contributions of this study are as follows:

(1) A dataset is created for crown segmentation, containing approximately 18,000 single-
tree crown images and 1200 mixed forest images.

(2) A semantic segmentation network, SegcaNet, is proposed for segmenting crowns
based on convolutional attention and memory mechanisms.

Pre-training has been proven to accelerate model convergence and improve perfor-
mance. When building our model, we incorporated the concept of pre-training. In the first
stage, single-tree images were used for pre-training to capture local features and eliminate
interference from the background and other factors. In the second stage, global images were
used for training to acquire global features and enhance the model’s actual performance.
During data processing, we cropped the images taken by drones into a specified size,
selected high-quality images for annotation, and obtained 18,000 single-tree canopy images
and 1200 densely mixed broadleaf forest images.

2. Materials and Methods
2.1. Research Area and Equipment

The experimental location is a mixed broadleaf forest area in Xishan, Yunnan (latitude
25◦07′ N and Longitude 102◦62′ E). Xishan in Yunnan Province has a subtropical plateau
monsoon climate and a good ecological environment, which is suitable for broadleaf forest
growth. The data collection area is flat and has a simple topography; its location is shown
in Figure 1.

A DJI M300RTK(DJI Company, Guangdong, China), equipped with a DJI H20T four-
sensor spectral camera, was used to collect data. The DJI H20T includes four types of cameras,
including wide-angle and zoom cameras operating in the 400–700 nm wavelength range.

The flight started at 2 p.m., maintaining an altitude of 130 m and a speed of 5 m/s.
The forward overlap was 80%, and the lateral overlap was 75%. To maximize the quality
and clarity of the captured images, the data were collected in clear and windless weather,
covering many areas of the mixed broadleaf forest. The equipment is shown in Figure 2.
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Figure 2. (a) UAV DJI-M300RTK; (b) DJI-Zenmuse H20T spectral camera.

2.2. Datasets and Image Preprocessing Methods

Images of mixed forests obtained using UAVs under natural conditions often exhibit
highly covered crowns. Due to the flight angle, natural conditions, and tree growth
state, the crowns can appear tilted. Therefore, it is necessary to preprocess the im-
ages. We selected high-quality images from a large collection as benchmark images and
labeled them.

Figure 3 shows some of the datasets and labels used for training. Due to the mixed
forest region, complex background content, high pixel similarity, and blurred crown edges,
segmentation can easily lead to confusion. After labeling the images, two sets of data were
used for training. The contours of individual tree crowns (about 18,000) were extracted from
the labeled data. These individual tree crowns were fused into images with dimensions of
960 × 960 and used for pre-training.
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Figure 3. Selected broadleaf forest images taken by UAV: (a) original image; (b) labeled image.

Based on the pre-training, the global images were used for model training. The
background information of the global mixed forest images is complex, and the background
pixels have a high similarity to the crown pixels, which may have caused interference in
training. However, these global images also contain global semantic information.

The small regions that include only single-tree crowns contain less interference but
lack global semantic information. Based on these considerations, images containing only
single-tree crowns were used in the pre-training phase to learn the features of the tree
crowns. In the second phase, the global images of the mixed forest were used for training.

In mixed forests, although the canopies of different tree species tend to be occluded,
resulting in a complex pattern of crown shapes, the crowns still tend to favor specific shapes.
In addition, the color and crown boundaries of different tree species are also important
features for distinguishing trees in a mixed forest region.

3. Research Methods
3.1. Overall Workflow

The tree crown segmentation algorithm includes five parts: data preprocessing, dataset
allocation, network training, crown extraction, and accuracy evaluation. As shown in
Figure 4, the orthorectified image is first cropped and processed, from which high-quality
images are selected for labeling. A single-tree crown is extracted from the labeled images
and fused into a pre-training dataset. Using the pre-trained model, the global mixed forest
image is input into the SegcaNet network for training. The iteration with the optimal
parameters is selected to examine the training accuracy and results. The overall workflow
is shown in Figure 4.
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3.2. Introduction to SegcaNet Network Architecture

MemoryNetV2 [31,32] is a highly effective semantic segmentation network that en-
hances model segmentation by reducing the distance between the same classes through
a memory module and a cross-image information mining module. The memory module
stores the historical information of each category, and after aggregating this information
into the probability distribution, it can calculate the distance between instances of the same
class. SegcaNet is an improvement based on MemoryNetV2, which enhances the model by
using a convolutional attention mechanism and a partially looped feature pyramid.

As shown in Figure 5, after an image is fed into the backbone network, the gen-
erated feature vectors are processed in different branches, some of which are fed into
Cloformer [33] after ASPP [34], while others are fed into Cloformer through the memory
module and the cross-image information mining module. Finally, these two parts, together
with the feature vectors directly output from the backbone, are fused and fed into the
partially looped feature pyramid.
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3.3. Network Improvements

Improving the receptive field of the network and obtaining multi-scale feature vectors
are effective means of enhancing the network performance. Since the produced dataset
contains forest images at different scales, there is a potential dataset dispersion problem.
Relying solely on the MemoryNetV2 memory module may not allow for enough dataset-
level semantic distribution information to be collected, leading to poor segmentation in
the forest images at different scales. Therefore, the following modifications are made to
the network:

(1) In the original MemoryNetV2 network, the feature vectors output by the backbone
network are directly concatenated after passing through the dilated convolution
and memory modules. However, in complex broadleaf forest areas, there are many
trees with different scales, shapes, and features. The samples to be learned contain
a large number of complex samples, and the original features are not at sufficient
scales. The feature fusion is not sufficient for learning the more complex tree crowns.
By using Cloformer with the convolutional attention mechanism after the dilated
convolution and cross-image information mining modules, the feature extraction
ability is enhanced. The method of feature fusion is also changed, replacing the
original concatenation process with a partially looped feature pyramid. Compared
with the traditional top-down and bottom-up fusion methods, this bi-directional
propagation feature pyramid can better fuse global and local information.

(2) Cross-entropy is a loss function commonly used in deep learning [35]. According
to the different classes in the network, the cross-entropy loss function converts the
output into a probability between 0 and 1.

The cross-entropy loss function is defined as

Lcr = −pt log(pt)− (1 − pt) log(1 − pt) (1)

However, cross-entropy loss in the crown segmentation task reduces the boundary ac-
curacy of the crown. Additionally, due to the irregular and complex samples in the dataset,
the learning difficulty is increased. To address these issues, the Focal loss function [36] is
introduced into the loss function. This Focal loss function sets a dynamic scaling factor.
It increases the focus on complex samples, addressing the imbalance of easy and difficult
samples during single-stage training.

The specific definition of the loss function is as follows:

LFL = −αt(1 − pt)
γ log pt (2)

In the above loss function, the cross-entropy loss function is used to address the
imbalance of positive and negative samples, while the Focal loss function distinguishes
between simple and complex samples.

The final form of the focal loss function is as follows:{
LFL = −αt(1 − pt)

γ log pt y = 1
LFL = −αt(1 − pt)

γ log(1 − pt) y = 0
(3)

Based on the above considerations, we combined the Focal loss function and the
cross-entropy loss function by setting a weight factor. This approach addresses the sample
imbalance issue in the dataset.

The final loss function is defined as

Lloss = εLcr + (1 − ε)LFL (4)

In Formulas (1)–(4), pt represents the probability of the class, αt represents the dynamic
scaling factor, Lcr represents the cross-entropy loss function, LFL represents the Focal loss
function, and ε represents the weight factor. The range of ε and αt is between 0 and 1.
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3.4. Partial Looped Feature Pyramid

FPN [37] improves the segmentation accuracy of the network by constructing a multi-
scale pyramid structure to obtain multi-scale semantic information. In the network pro-
posed in this paper, the idea of the feature pyramid is utilized. The feature map extracted
from the backbone is input into the lateral layers, and a feature pyramid with partial loops
is used to pay more attention to the detailed parts of the semantic information. Then,
top-down fusion is performed on the lateral layers.

As shown in Figure 6, the construction of the feature pyramid mainly utilizes two sets
of information. One set contains the feature vector directly from the input of the backbone.
The other set contains the feature vector processed by the memory module and Cloformer.
The loops of the partially looped feature pyramid are located in the second and third layers
of the feature pyramid. In addition to the direct input from the backbone, these two layers
contain as much detailed information as possible, for which loop feature fusion can better
process the detailed information contained in the image.
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3.5. Cloformer

Usually, the following two aspects can be considered to improve the performance
of a segmentation network: one is the enhancement of the feature extraction capacity by
changing the backbone of the network, and the other is the improvement of the model’s
performance by enhancing its ability to mine contextual information. The attention mech-
anism selectively focuses on more important semantic information and allocates limited
computational resources to more valuable semantic regions. This can enhance the model
while keeping the number of parameters and network layers relatively small.

Cloformer introduces a convolutional attention module that combines the attention
mechanism with convolutional operations to better capture local information within the
image. By using shared weights and context-aware weights, it can better handle the
relationship between features at different locations in the image. The principle of the
convolutional attention module is shown in Figure 7.

The classic Transformer generates Q, K, V vectors after linear transformations [38], and
AttnConv adopts this same concept. As shown in Figure 7, the generated Q, K, V vectors
share the weights of the depthwise separable convolution after the linear transformations.
Q, K, V all utilize these shared weights to aggregate local information. The difference is
that Q and K, after aggregating local information, calculate the Hadamard product. The
Hadamard product is then processed through a fully connected layer and an activation
function to generate context-aware weights.

Q, K, V = FC(Input)
Q1, K1, V1 = DWconv(Q, K, V)

Attn = Tanh
(

FC(Swish(FC(Q1⊙K1)))√
d

) (5)

In Formula (5), FC and DWconv represent the fully connected layer and depthwise
separable convolution, respectively. Q, K, V represents the vectors after the linear trans-
formations, Q1, K1, V1 represents the vectors after the depthwise separable convolution,
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Q1 ⊙ K1 represents the Hadamard product of Q1, K1, Swish and Tanh represent the activa-
tion function, and d represents the number of channels of the token.
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Due to the use of depthwise separable convolution in the convolutional attention
module, the amount of computation is largely reduced. The difference between ConvFFN
and FFN is that the deep convolution after the activation function can efficiently aggregate
local information, allowing for direct downsampling without the need for additional
operations. The principle of ConvFFN is shown in Figure 8.
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3.6. Introduction to Backbone Structure

Many neural networks use ResNet, UNet [39,40], and other backbone networks as
their feature extraction networks and have achieved good results. However, with the
development of deep learning, there are numerous outstanding feature extraction networks
that have been validated on several public datasets.

To achieve the goals of forest management, it is essential to accurately separate tar-
gets in mixed broadleaf forest areas. The segmentation results are used as the basis for
forest operations and management. Unsatisfactory segmentation results can easily lead to
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incorrect decisions in forest management. In the network proposed in this paper, Swinbase-
Transformer [41], which has a strong feature extraction ability, is used as the backbone
network. This backbone network has a superior performance to other backbone networks.

3.7. Evaluation Metrics

The overall performance of the segmentation network can be evaluated using several
metrics, including recall (Re), precision (Pr), mean Intersection over Union (mIoU), and
balanced F-score (F1). These metrics are used to test the effectiveness of the model. The
calculation methods for each metric are as follows:

Re =
∑ TP

∑ TP + ∑ FN
× 100%

Pr = ∑ TP
∑ TP + ∑ FP

× 100%

F1 =
2 × Pr × Re

Pr + Re
× 100%

mIoU =
1

k + 1
× ∑

∑ TP
∑ TP + ∑ FN + ∑ FP

× 100%

(6)

In Formula (6), TP represents the number of pixels correctly segmented into the crown
region, TN represents the number of pixels correctly segmented into other regions, FP
represents the number of pixels incorrectly segmented into the crown region, and FN
represents the number of pixels incorrectly segmented into other regions. k + 1 represents
the number of categories; in this paper, k = 1.

4. Result
4.1. Comparative Experiment

To assess the model’s ability to segment tree crowns of varying densities, several com-
parative experiments were conducted. Table 1 compares FCN, Deeplabv3, MemoryNetV2,
and SegcaNet. The results show that SegcaNet outperforms the other models.

Table 1. Experimental results of different methods.

Segmentation
Methods Backbone Re(%) Pr(%) mIoU(%) F1(%)

Threshold Segmentation / / / / /
FCN Swin 89.26% 78.37% 77.56% 83.46%

Deeplabv3 Swin 92.31% 77.23% 78.03% 84.10%
MemoryNetv2 Swin 91.51% 84.44% 80.23% 87.83%

SegcaNet Swin 91.68% 85.27% 82.36% 88.35%

From the results in Table 1, it can be seen that the traditional segmentation algorithms,
such as the watershed algorithm, do not perform well. For the more complex situation of a
mixed broadleaf forest, it is difficult to differentiate the boundaries between the crowns.
When using the traditional watershed algorithm, the ground, grass, and other non-crown
areas are incorrectly labeled as crowns, and the boundaries between the segmented crowns
are not clear.

The deep learning-based image segmentation algorithm performs well. The FCN
algorithm replaces the fully connected layer with a fully convolutional layer. It upsamples
using inverse convolution for pixel-by-pixel classification. This approach relaxes the input
image size requirement. Compared with the watershed algorithm, FCN significantly
reduces erroneous segmentation. However, FCN mainly utilizes local information for
prediction, leading to local discontinuities in the segmentation results. The Pr and mIoU
achieved by FCN are 78.37% and 77.56%, respectively.

The DeepLabv3 model meets the basic requirements for crown segmentation, effec-
tively distinguishing most of the crowns. However, it is limited by its network architecture,
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which lacks sufficient shallow features and detailed semantic information. This limitation
leads to an inadequate recognition of crown edges and details. As a result, its Pr and mIoU
are 78.03% and 77.23%, respectively.

MemoryNetV2 achieves better results than FCN and Deeplabv3. The memory module
store historical information during training, while the cross-image information mining
module obtains more information, enabling the dynamic use of data. However, due to
the large number of images at different scales and under various natural conditions in the
dataset, MemoryNetV2 still occasionally misidentifies the background as a tree crown. Its
Pr and mIoU are 84.44% and 80.23%, respectively.

The SegcaNet segmentation network proposed in this paper introduces the convolu-
tional attention mechanism in Cloformer. This mechanism, which benefits from depthwise
separable convolution, effectively reduces the computational effort of the network while
ensuring excellent results. SegcaNet uses Swinbase as the backbone of the network and
utilizes approximately 18,000 single-tree crown images for pre-training. The resulting
weight files are then used to train the model. According to the experimental test data, the
model achieves excellent results, with Re, Pr, mIoU recall, and F1 scores of 91.68%, 85.27%,
82.36%, and 88.35%, respectively. Compared with the other models, SegcaNet can effec-
tively differentiate crown edges and details, and it can reduce the incorrect classification of
non-crown areas as crown areas.

As shown in Figure 9, the curve fluctuations during the iteration process of FCN and
MemoryNetV2 are relatively strong, while those of SegcaNet and Deeplabv3 are relatively
gentle. As the training proceeds, the total loss gradually decreases, indicating that the
network gradually learns the required features. Due to network differences, FCN and
MemoryNetV2 exhibit more fluctuations, but, after more than 120 epochs, all networks
tend to converge, and the loss approaches the minimum. Among all the compared networks,
SegcaNet demonstrates the best performance.
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A confusion matrix is an important tool for evaluating the performance of a classifi-
cation model. It compares the model’s predictions with the true labels and visualizes the
results as a matrix.

Figure 10 shows the confusion matrices for all the networks used in this study. These
values correspond to those in Table 1.

In the comparative experiment, we applied the network model to the test images to
evaluate its performance. The results are shown in Figure 11.
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4.2. Ablation Experiment

In this section, we describe the ablation experiments conducted on MemoryNetV2. We
compare the effects of using different modules while keeping all other parameters equal.
The results confirm the effectiveness of our proposed improvements.

From the results of the ablation experiments (Table 2), it can be seen that, with the
addition of Cloformer alone, the mIoU of the network improves by 1.13%. With the addition
of both Cloformer and dilated convolution, the mIoU improves by 1.65%. With the addition
of Cloformer, ASPP, and PC-FPN, the mIoU improves by 2.13%.

Table 2. Experimental effects using different modules.

Methods Re(%) Pr(%) mIoU(%) F1(%)

MemoryNetv2 91.51% 84.44% 80.23% 87.83%
MemoryNetv2 + Cl 90.26% 83.56% 81.36% 86.78%

MemoryNetv2 + Cl + ASPP 90.93% 84.98% 81.88% 87.85%
MemoryNetv2 + Cl + ASPP + PC-FPN 91.68% 85.27% 82.36% 88.35%

Cl, Cloformer; PC-FPN, partially looped feature pyramid; ASPP, dilated convolution.

5. Discussion

In this study, in order to segment individual tree crowns in mixed broadleaf forests, a
dataset for mixed broadleaf forests was created. Additionally, a network called SegcaNet
was proposed to quickly extract crowns from mixed broadleaf forests.

Although there are many studies on single-tree segmentation, many use traditional
algorithms and point cloud data for processing [42–44]. Some researchers have used Mask
R-CNN and other neural networks to segment individual tree crowns in high-resolution
images [45,46]. These methods have shown promising results in urban environments, but
their effectiveness decreases in dense forests [47].

Traditional segmentation algorithms cannot effectively handle broadleaf forest images
with complex backgrounds. Supervised learning methods are superior to traditional
algorithms, but they are limited by the network’s feature extraction capabilities, which can
result in discontinuous and incorrect segmentation.

The original MemoryNetV2 faces divergence issues due to dataset variability. Its memory
module cannot collect enough semantic information, resulting in poor segmentation performance.

SegcaNet improves the performance by introducing partially looped feature pyramids
and Cloformer based on the convolutional attention mechanism. The partially looped
feature pyramids improve the precision of segmenting crown edges by using more detailed
information for fusion. Cloformer uses depthwise separable convolution to construct a
convolutional attention mechanism, thereby focusing more computing resources on more
important areas of the image, reducing the amount of calculation and improving the
performance of the network. Comparative experiments and ablation studies confirmed the
effectiveness of these improvements.

The tree height, diameter at breast height (DBH), and species are essential parameters
in ground surveys. With these parameters, it is possible to calculate the biomass, carbon
storage, and timber volume, achieving the objective of forest resource assessment. However,
plot surveys require the measurement of every tree, which is labor-intensive and resource-
consuming. Additionally, due to their location and terrain, some forest areas are inaccessible
to ground survey personnel, making it difficult to evaluate these regions accurately.

The crown segmentation method for mixed broadleaf forests proposed in this paper
focuses on the inventory of forest resources. The algorithm can accurately identify crowns
in mixed broadleaf forest areas. By combining these data with specific parameters obtained
using UAVs, it is possible to estimate the crown width of a tree. This method offers valuable
support for conducting forest resource surveys.

Although the SegcaNet network proposed in this paper achieved excellent segmenta-
tion results, it still has some shortcomings. For example, in mixed broadleaf forests with
complex backgrounds and a high canopy density, weeds and shrub areas may still be
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misidentified as canopy areas. This issue could be mitigated through more high-quality
data preprocessing steps. Additionally, apart from the efficient and accurate segmentation
of the crown area in mixed broadleaf forests, this paper does not discuss its further appli-
cations. In future studies, we will consider how the segmented results can be used more
precisely for forest resource inventory and forest management planning.

6. Conclusions

This study proposes a mixed broadleaf forest canopy segmentation algorithm, Seg-
caNet, and creates a dataset for the segmentation of mixed broadleaf forests. This dataset
includes 1200 panoramic images and 18,000 single-tree crown images.

Compared to other networks, SegcaNet has the following advantages: (1) By introduc-
ing a partial looped feature pyramid, the algorithm pays more attention to the details of tree
crowns, reducing segmentation errors and over-segmentation in mixed broadleaf forests.
(2) The convolutional attention mechanism and memory mechanism address the dataset
divergence caused by images of different scales, improving the model’s performance.

Based on the experimental results, the following conclusions can be drawn: (1) Com-
pared to commonly used supervised learning methods such as FCN, Deeplabv3, and
MemoryNetV2, the proposed method achieves the best overall performance. The mIoU is
4.8% higher than FCN, 4.33% higher than Deeplabv3, and 2.13% higher than MemoryNetV2.
Additionally, the computational load of the network is reduced to some extent by using
depthwise separable convolution in the convolutional attention mechanism. (2) This study
also demonstrates the significant application potential of artificial intelligence in forest
resource surveys. The proposed algorithm can provide a reference for the application of
deep learning in forestry.
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