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Abstract: Vegetation, being a core component of ecosystems, is known to be influenced by natural
and anthropogenic factors. This study used the annual mean Normalized Difference Vegetation Index
(NDVI) as the vegetation greenness indicator. The variation in NDVI on Hainan Island was analyzed
using the Theil–Sen median trend analysis and Mann–Kendall test during 2000–2019. The influence
of natural and anthropogenic factors on the driving mechanism of the spatial pattern of NDVI was
explored by the Multiscale Weighted Regression (MGWR) model. Additionally, we employed the
Boosted Regression Tree (BRT) model to explore their contribution to NDVI. Then, the MGWR model
was utilized to predict future greenness patterns based on precipitation and temperature data from
different Shared Socioeconomic Pathway (SSP) scenarios for the period 2021–2100. The results showed
that: (1) the NDVI of Hainan Island forests significantly increased from 2000 to 2019, with an average
increase rate of 0.0026/year. (2) the R2 of the MGWR model was 0.93, which is more effective than
the OLS model (R2 = 0.42) in explaining the spatial relationship. The spatial regression coefficients
of the NDVI with temperature ranged from −10.05 to 0.8 (p < 0.05). Similarly, the coefficients of
Gross Domestic Product (GDP) with the NDVI varied between −5.98 and 3.28 (p < 0.05); (3) The
natural factors played the most dominant role in influencing vegetation activities as a result of
the relative contributions of 83.2% of forest NDVI changes (16.8% contributed by anthropogenic
activities). (4) under SSP119, SSP245, and SSP585 from 2021 to 2100, the NDVI is projected to have an
overall decreasing pattern under all scenarios. This study reveals the trend of greenness change and
the spatial relationship with natural and anthropogenic factors, which can guide the medium and
long-term dynamic monitoring and evaluation of tropical forests on Hainan Island.

Keywords: NDVI; tropical forests; MGWR model; BRT; anthropogenic activities; climate change;
driving factor

1. Introduction

The dynamics of forest greenness is an important indicator for material cycles and
energy flows in terrestrial ecosystems [1,2]. The drivers of vegetation greening/browning
can be categorized into either natural factors or human activities [3]. Climate change
significantly impacts regional vegetation dynamics, and extreme weather events greatly
affect vegetation greenness [4]. The trend in vegetation greenness is particularly important
for monitoring ecosystems and modeling the feedback mechanisms of vegetation to climate
change [5]. When describing the vegetation status, the Normalized Difference Vegetation
Index (NDVI) is an effective indicator for illustrating the spatiotemporal dynamics of
vegetation and its response to global change [6,7]. Compared with other vegetation indices,
NDVI values are constrained to the range of −1 to 1, which prevents the inconvenience
of dealing with excessively large or small data. The magnitude of the NDVI is usually
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employed to characterize vegetation status [8,9], and trend analysis of the NDVI can be
used to assess the long-term status of vegetation greenness. Time series NDVI acquired
through remote sensing exhibit a seasonal signal of vegetation growth, but traditional linear
methods cannot accurately analyze the spatial pattern of NDVI trends [10,11]. Currently,
non-parametric statistical trend analysis methods and trend testing methods such as Theil–
Sen median trend analysis and Mann–Kendall test were employed for NDVI change
analysis [12,13]. These methods do not require linearization of the trend and are not
affected by missing values or outliers [14]. The spatiotemporal evolution trends of the
NDVI can be accurately identified, and the drivers of vegetation change can be understood
using these methods.

The response of greenness patterns to natural and anthropogenic factors exhibits sig-
nificant regional differences [15–17]. The impact of anthropogenic activities on greenness
pattern changes is multifaceted and complex [18,19]. These effects are difficult to quantify
because of a lack of temporal gradient data that reflect the intensification of human activi-
ties [20,21]. Tropical forests cover 10% of the global land surface [22,23], and their diverse
species and complex structure significantly influence nutrient cycling, climate regulation,
and global carbon balance [24–28]. Previous studies have focused on connecting NDVI
with natural factors, ignoring the bias caused by different spatial locations and uncertainty
in climate data, which may affect our ability to accurately grasp the link between natural
factors (climate change) and the NDVI [29,30]. Additionally, anthropogenic activities such
as social development and urban expansion inevitably impact native grassland and forest
ecosystems [31,32]. In this paper, we utilized land use data from Hainan Island over the last
20 years to identify and extract stable forested areas, encompassing all forested lands during
this period. Moreover, it is essential to account for spatial autocorrelations and spatial
non-stationary relationships with natural factors and anthropogenic factors, exploring the
drivers for the spatiotemporal pattern of forest NDVI.

Existing studies on the driving mechanisms of greenness pattern variation tend to
overlook the non-stationary effects in the temporal dimension, which raises the question of
how to represent better the spatiotemporal response of NDVI trends to their driving fac-
tors [33–35]. Given the temporal and spatial changes, there exists a general spatiotemporal
heterogeneity in NDVI changes and changes in interaction effects [36]. The Geographically
Weighted Regression (GWR) method, rooted in the first law of geography, accounts for
the heterogeneous or non-stationary nature of spatial relationships [37]. It is widely em-
ployed to explore the primary drivers of regional NDVI trends [38,39]. GWR intuitively
captures non-stationary geographic relationships and can adjust spatial estimation pa-
rameters for various independent variables compared with ordinary least squares (OLS)
regression [40,41]. While GWR applies the same optimal bandwidth for each explana-
tory variable, different variables operate at varying scales. Multiscale Geographically
Weighted Regression (MGWR) models address this by adapting optimal bandwidths for
each variable, enhancing model performance, highlighting the importance of explanatory
variables [42], and better reflecting the spatial non-stationarity and scale effect of driving
factors [41]. This study employs nonlinear trend analysis and MGWR to assess the spatial
trend changes in forest NDVI amidst the spatial heterogeneity of natural factors on Hainan
Island, offering insights applicable to global tropical forest studies. Therefore, exploring
the spatial–temporal greenness pattern dynamics and their relationships with natural and
anthropogenic factors on Hainan Island is essential for better understanding the mecha-
nisms driving greenness pattern changes and can provide more detailed scientific support
for environmental sustainability and agricultural production management.

Natural and anthropogenic factors are expected to alter patterns of vegetation drasti-
cally [43,44]. However, the dominant controlling factors and degree of nonlinear influence
are not yet clear, particularly in tropical forests [45]. Boosted Regression Tree (BRT) is a
machine learning algorithm that utilizes multiple regression tree boosting techniques [46].
It is considered to be an effective method for identifying the importance of drivers [47].
This study utilized trend analysis, combined with modeling techniques such as MGWR
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in conjunction with BRT, to identify and quantify the contributions, nonlinear response
thresholds as well as the spatial heterogeneity of natural and anthropogenic factors to
NDVI on Hainan Island from 2000 to 2019. The objectives of this study were to (1) use
trend analysis to reveal the spatiotemporal variation trend in the greenness pattern during
2000–2019; (2) analyze the spatial heterogeneity in the dominant drivers that affect the
greenness pattern using MGWR; (3) identify the main controlling factors that influence
greenness pattern and nonlinear responses of the greenness pattern to the main natural
and anthropogenic factors based on BRT; (4) predict the spatial and temporal heterogeneity
in greenness patterns under different Shared Socioeconomic Pathway (SSP) scenarios.

2. Materials and Methods
2.1. Study Area

Hainan Island is the largest tropical region in China (between 18◦10′~20◦10′ N and
108◦37′~111◦03′ E) (Figure 1). It is located on the northern edge of the tropics with a
tropical island monsoon climate, characterized by a dry season from November to April
and a rainy season from May to October [48]. The annual average temperature ranges
from 22.5 to 25.6 ◦C, and the annual average precipitation ranges from 900 to 2500 mm.
The island’s terrain is low along the coast and rises towards the center, forming a domed
mountainous terrain with a gradient structure resembling a ring-shaped stratified landform.
The vegetation on Hainan Island primarily consists of forests, tropical rainforests, seasonal
rainforests, and montane rainforests found in the central and eastern regions. Deciduous
monsoon rainforests are prevalent in the western regions, while semi-evergreen monsoon
rainforests dominate the northern areas. Mangrove forests line the coastline, and other
regions host abundant tropical economic forests such as rubber plantations [49].
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Figure 1. Geographic location of Hainan Island (http://www.globallandcover.com (accessed on 8
May 2021)).

2.2. Data Sources and Pre-Processing
2.2.1. Dataset

NASA MOD13A3 NDVI data, with a spatial resolution of 1 km, were utilized in this
study (https://search.earthdata.nasa.gov/search (accessed on 21 May 2023)) [50]. We
compared three types of NDVI datasets: Moderate Resolution Imaging Spectroradiometer
(MODIS), Satellite Pour l’Observation de la Terre (SPOT), and Global Inventory Modeling
and Mapping Studies (GIMMS). These datasets showed similar general temporal trends,
though some variations were observed in the outliers. Regression analysis revealed a strong
correlation between MODIS NDVI and SPOT NDVI (R2 = 0.75, p < 0.01) (Figure 2). The
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correlation between MODIS NDVI and GIMMS NDVI was lower at R2 = 0.37 (p < 0.01).
Previous studies have indicated that GIMMS NDVI values tend to be higher compared with
other datasets [51]. MODIS NDVI serves as a widely adopted medium-resolution remote
sensing monitoring product. Data preprocessing involved using the MODIS Reprojection
Tool for batch mosaic, projection, band extraction, and format conversion. To mitigate the
influence of bare soil, water bodies, and sparse vegetation, areas with NDVI values below
0.1 were excluded from annual NDVI calculations using the Maximum Value Composite
(MVC) method [52]. The explanatory variables considered for NDVI analysis included
temperature (TEM), precipitation (PRE), Gross Domestic Product (GDP), population (POP),
photosynthetically active radiation (PAR), and soil moisture (SM) (Table 1).
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Table 1. Description of explanatory variables and data sources.

Datasets Time Spatial Source

POP 2000, 2005, 2010, 2015 1 km https://www.resdc.cn/
(accessed on 3 June 2023)

GDP 2000, 2005, 2010, 2015 1 km https://www.resdc.cn/
(accessed on 6 June 2023)

TEM 2000–2019 1 km https://www.geodata.cn/
(accessed on 12 May 2023)

PRE 2000–2019 1 km https://www.geodata.cn/
(accessed on 24 July 2023)

PAR 2000–2019 5 km https://data.tpdc.ac.cn/
(accessed on 16 May 2023)

SM 2000–2019 1 km https://data.tpdc.ac.cn/
(accessed on 5 June 2023)

Monthly precipitation and average temperature data from 2021 to 2100 were provided
by the Tibetan Plateau Science Data Center (https://data.tpdc.ac.cn/ (accessed on 1 July
2024)) with a 1 km spatial resolution. They were used to predict the spatial distribution
of NDVI under future climate scenarios. These data are derived from the global >100 km
climate model datasets released by the sixth phase of the Coupled Model Intercomparison
Project (CMIP6) and the global high-resolution climate datasets released by WorldClim.
They were downscaled in China using the delta spatial downscaling scheme. These data
utilize the latest SSP scenarios (SSP119, SSP245, SSP585) from the IPCC. This study used
the EC-Earth3 data for SSP119, SSP245, and SSP585 scenarios. Monthly precipitation
and average temperature data were first used to obtain annual precipitation and average

https://www.resdc.cn/
https://www.resdc.cn/
https://www.geodata.cn/
https://www.geodata.cn/
https://data.tpdc.ac.cn/
https://data.tpdc.ac.cn/
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temperature data, which were then synthesized into annual averages for 2021–2100. These
averages served as inputs for the MGWR predictive model.

2.2.2. Land Use Data

The land use dataset used in this study was obtained from GlobalLand30, a world-
wide land cover dataset with a 30-meter spatial resolution created in China (http://www.
globallandcover.com (accessed on 8 May 2021)). The total accuracy of GlobeLand30 is
greater than 83%. Following the extraction of Hainan Island’s land use data, forested
land was identified as the predominant land cover type. The total area of forested land
on Hainan Island has shown fluctuations over the past 20 years, initially expanding and
subsequently declining, reaching its peak in 2010.

2.2.3. Extraction of Forest NDVI

To obtain stable forested areas on Hainan Island for the last 20 years, forest extraction
was performed for the years 2000, 2010, and 2020 (Figure 3d). To ensure the NDVI values
included forested land during 2000–2019, only pixels classified as forest in all three years
(2000, 2010, and 2020) were included to ensure consistent NDVI values from 2000 to 2019.
Following extraction, the forest area accounted for 56.53% of the total land area. Compared
with 2000, Hainan Island’s Forest coverage decreased by 7.05% in 2010 and by 1.23% in
2020. Monthly forest NDVI data for Hainan Island from 2000 to 2019 were derived based
on the identified stable forested areas and MODIS NDVI data.
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2.3. Methodology
2.3.1. Mann–Kendall Test and Theil–Sen Median Trend Analysis

The Mann–Kendall test and Theil–Sen median trend analysis were employed in this
study to examine the trend of forest NDVI on Hainan Island over the past 20 years. The
Theil–Sen median trend analysis and Mann–Kendall test were used to analyze forest NDVI
on a grid-by-grid basis. The MK test, a nonparametric statistical test for time series data,

http://www.globallandcover.com
http://www.globallandcover.com
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assesses both the trend and detects abrupt changes in the time series [53]. The Theil–Sen
Median trend analysis is a robust non-parametric method for trend calculation, which is
less affected by outliers and extreme values and is commonly used for long-term time series
data trend analysis [54].

2.3.2. Moran’s I

For NDVI at a given pixel, there may be spatial interaction and diffusion with neigh-
boring pixels. Various methods exist to test spatial autocorrelation, with the Moran index
(Moran’s I) being one of the most commonly used. Moran’s I quantifies spatial correlation,
where values closer to 1 indicate a stronger positive spatial correlation between variables.
A value of 0 suggests no spatial correlation. In this study, the global Moran’s index was
used to measure the spatial autocorrelation of vegetation changes.

2.3.3. MGWR Model

The MGWR model was employed to analyze the drivers of forest NDVI variation and
to predict the greenness pattern under future scenarios on Hainan Island. MGWR extends
GWR by integrating it into a generalized additive model, which provides standard errors
for local parameter estimates [48]. This model allows the relationship between the response
and explanatory variables to vary spatially and across different scales, thereby adjusting for
overfitting inherent in uniform bandwidths and accommodating non-linear relationships.
The model expression is as follows [55,56]:

yi= βbw0(ui, vi) + ∑m
k=1 βbwk

(ui, vi)xik + εi (1)

where yi is the multi-year mean of NDVI, xik is the value of the independent variable,
which in this study are the multi-year mean values of natural factors and anthropogenic
factors, (ui, vi) is the coordinate of regression point i, and m is the number of sample points.
βbw0(ui, vi) is the constant term, βbwk

(ui, vi) is the regression coefficient of point i, and εi is
the random error.

2.3.4. BRT Model

The Boosted Regression Tree (BRT) method was employed to assess the relative
influence of different factors on NDVI changes on Hainan Island. The algorithm constructs
a large ensemble of small regression trees through recursive binary partitioning of the
predictor variable dataset, which is subsequently modeled using linear regression [46]. The
GBM package in R facilitated the BRT analysis to determine the relative contribution of
key climatic and anthropogenic factors to NDVI. In this study, annual mean NDVI data
served as the response variable, while annual mean values of PAR, PRE, TEM, SM, GDP,
and POP over the same period were used as explanatory variables. Seventy percent of the
spatial raster points were randomly selected as the training set for augmented regression
tree modeling, with the remaining thirty percent allocated for testing. The learning rate
was set at 0.05, tree complexity at 5, and bag fraction at 0.5.

3. Results
3.1. Spatiotemporal Pattern of NDVI
3.1.1. Temporal Pattern of NDVI

In this study, Theil–Sen median trend analysis and the Mann–Kendall test were
combined to reveal the NDVI change trends from 2000 to 2019, with a linear fit R² of 0.8223.
The multi-year average NDVI value for Hainan Island forests was 0.8261, fluctuating
between −0.0283 and 0.0222. The NDVI of forests on Hainan Island over the last 20 years
exhibited a significant increasing trend with a rate of 0.0026 per year (p < 0.01) (Figure 4).
Based on the Mann–Kendall test results, 2010 was identified as the mutation year for NDVI.
The R² values for 2000–2009 and 2010–2019 were 0.5717 and 0.4601, respectively, both lower
than the R² value of 0.8223 for the entire 2000–2019 period. Specifically, during the periods
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of 2000–2009 and 2010–2019, the NDVI of Hainan Island forests showed notable increases,
with rates of 0.0034 per year (p < 0.01) and 0.0017 per year (p < 0.05), respectively.
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3.1.2. Spatial Trends of NDVI in Forests on Hainan Island

Spatially, the NDVI of forests on Hainan Island ranged from 0.3 to 1.0 during 2000–
2019. In the central and western mountainous regions of the island, high NDVI values
predominated, typically exceeding 0.7 and covering 95.59% of the total forested area. Con-
versely, low NDVI values were predominantly found in the coastal forests, where values
were below 0.7 (Figure 5a). In contrast, the spatial pattern of temperature exhibited the
opposite trend, with average temperatures higher along the coast of Hainan Island com-
pared with the central mountainous areas (Figure 5b). The multi-year average precipitation
indicated that Hainan Island received annual precipitation exceeding 1000 mm, with a high
precipitation region in the northeast and lower precipitation in the southwest (Figure 5c).

The changes in forest NDVI on Hainan Island from 2000 to 2019 were heterogeneous.
As indicated in Table 2, approximately 64.42% of the areas exhibited a significant increase,
about 33.78% showed no significant change, and only 1.8% of locations experienced a dis-
cernible downward trend. Geographically, the NDVI of Hainan Island depicted substantial
increases over the past 20 years (Figure 6a), predominantly observed in the central and
western areas, contrasting with minimal changes in the south, east, and northeast regions
where the NDVI trends remained largely unchanged. Specifically, the southern region near
Sanya and the area north of Haikou exhibited the most pronounced decline in the Theil–Sen
median trend analysis of NDVI.

Table 2. Trend test of forest NDVI on Hainan Island from 2000 to 2019.

NDVI Change Pixels Proportion

Significant increase 12,302 64.42%
Significant decrease 344 1.80%

No significant change 6451 33.78%

3.2. Spatial Heterogeneity of NDVI
3.2.1. Spatial Autocorrelation Test of NDVI

Spatial autocorrelation analysis of forest NDVI on Hainan Island was conducted
using Moran’s Index, as depicted in Figure 6b (Moran’s I = 0.71, p < 0.01), indicating a
statistically significant positive spatial correlation of NDVI. The changes in NDVI were
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predominantly observed in the first and third quadrants, suggesting a high-high or low-low
spatial aggregation pattern, where areas with similar NDVI values exhibited clustered
spatial distributions.
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3.2.2. Comparative Analysis of the OLS, GWR and MGWR Models

The average NDVI from 2000 to 2019 was used as a predictor variable, where the mean
NDVI for May–October of each year represents the dry season, and the mean NDVI for the rest
of the months represents the rainy season. Correlations between NDVI and climatic and socio-
economic variables were explored using the OLS, GWR, and MGWR models. One prerequisite
for applying the GWR and MGWR models is the existence of spatial autocorrelation among
variables, while another is the inadequacy of the global OLS model in explaining spatial
heterogeneity among the variables. The spatial correlation of NDVI was assessed using
Moran’s Index, as shown in Figure 6b. According to the global regression model calculation
results under the OLS regression, GWR model, and MGWR model (Table 3), the R2 result was
primarily used to measure the model’s ability to explain the variability in these data, and the
closer the R2 was to 1, the stronger the model’s explanatory power was. Better data simulation
is achieved by the model with a lower Akaike Information Criterion score (AICc). According
to the model comparison results, the MGWR model had the lowest AICc value of 9286.789,
followed by the GWR model and the OLS model. The largest R2 was 0.929 for the MGWR,
representing an increase of 25.38% compared with GWR. In conclusion, in terms of fitting
efficacy, the MGWR model performed better than the GWR and OLS models (Figure 7).

Table 3. Comparison of the OLS, GWR, and MGWR models.

Models AICc R2 Adj. R2

OLS 28,194.124 0.423 0.423
GWR 10,616.473 0.906 0.887

MGWR 9286.789 0.929 0.909
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3.2.3. Spatial Impacts of NDVI on Natural and Anthropogenic Factors

NDVI was affected by natural and anthropogenic factors, and the MGWR model could
explain the local effect of NDVI with TEM, POP, SM, PRE, PAR, and GDP. The NDVI in forested
areas of Hainan Island was dominated by natural factors (Figure 8a), with TEM having the
greatest influence, affecting approximately 85.9% (Figure 8b) of the area. Anthropogenic
factors dominated less than 5% of the area. Additionally, the negative impact of each factor
on NDVI is greater than the positive impact (Figure 8c). TEM, in particular, has a negative
effect of 94.53%, followed by PRE with a negative effect of approximately 80.29%. Conversely,
PAR had the largest positive effect, contributing about 44.7%. The influence of natural and
anthropogenic factors on NDVI exhibited significant spatial heterogeneity (Figure 9). Natural
factors exhibit a gradual decrease in influence from the central mountainous area to the
surrounding regions. Specifically, the influence ranges for TEM, PRE, SM, and PAR were
−10.05 to 0.80, −8.02 to 3.59, −5.48 to 6.29, and -7.88 to 4.26, respectively. Notably, the
negative impacts of TEM and PRE are much greater than their positive impacts. In contrast,
anthropogenic factors display a different distribution pattern, with higher influence observed
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in the surrounding areas and lower influence in the central mountainous area. The influence
values of POP and GDP range from −3.18 to 2.71 and −5.98 to 3.82, respectively.
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3.3. Nonlinear Response of Greenness Pattern to Driving Factors and Thresholds

The BRT model employed the nonlinear response of vegetation greening to natural and
anthropogenic variables. The total annual TEM (45.50%), SM (21.95%), and GDP (9.78%)
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were identified as the three most important driving factors affecting vegetation greening
(Figure 10). Nonlinear dependency plots generated by the BRT model illustrated the
nonlinear relationships between vegetation greenness and the selected variables (Figure 11).
Overall, there was a negative correlation between changes in vegetation greenness and
the explanation factors, indicating that as these factors increase, NDVI values decrease.
Temperatures below 20 ◦C and above 24.5 ◦C had minimal impact on NDVI. NDVI values
decreased between 20 ◦C and 24.5 ◦C due to rising temperatures. Precipitation significantly
increased NDVI when below 1300 mm; however, NDVI growth was suppressed with
precipitation above 1300 mm. Soil moisture above 0.55 mm had a notable negative effect on
NDVI. NDVI exhibited a decreasing trend as PAR increased, plateauing once PAR reached
96 µmol·m−1s−1. Population size significantly influenced NDVI up to 1000 people per km²;
beyond this threshold, the population density did not affect NDVI. NDVI was unaffected
by further increases in GDP per capita beyond 2000 yuan/km2.
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3.4. Projected NDVI under Three SSP-RCP Scenarios

The predicted spatial distribution of NDVI values provided valuable insights into how
vegetation growth may be affected under different future climate scenarios (Figure 12).
NDVI shows a declining pattern under all scenarios (SSP119, SSP245 and SSP585). Under
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the sustainable scenario (SSP119), climate-induced changes in vegetation growth were
negligible on average (<1%). The NDVI value under SSP245 also showed a slight decrease
(1.31%) during the 2021–2100 period. Scenarios with much higher CO2 emissions and
warming rates (SSP585) exhibit a greater decrease in NDVI (13.64%). Additionally, under
the SSP119, SSP245, and SSP585 scenarios, the proportions of areas with a decrease in NDVI
were 55.8%, 58.6%, and 87.8%, respectively. Furthermore, we analyzed the distribution of
NDVI changes by dividing the changes under future climate scenarios into six intervals. In
the interval where NDVI decreases by more than 0.13, the proportions for SSP119, SSP245,
and SSP585 are 4.5%, 9.6%, and 43.6%, respectively. Conversely, in the interval where
NDVI increases by more than 0.12, the proportions for SSP119, SSP245, and SSP585 are
3.7%, 9.4%, and 3.0%, respectively. For the spatiotemporal distribution of NDVI changes,
the spatial distribution patterns of NDVI under the SSP119 and SSP245 climate scenarios
show no significant differences. Compared with the sustainable development scenario
(SSP119), the NDVI decreases slightly in the central mountainous region and increases in
the northern region under the moderate stress scenario (SSP245). When comparing the
high-stress scenario (SSP585) with SSP119, the NDVI shows a significant decrease in all
forested areas except the central mountainous region.
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Figure 12. Projected NDVI under three SSP-RCP scenarios. (a–c) the NDVI distribution under
the SSP119, SSP245, and SSP585 scenarios, respectively; (d) the comparison of predicted NDVI
under different scenarios; (e) the spatial distribution of the difference in NDVI under future climate
scenarios, which is the predicted future NDVI minus the current NDVI; (f–h) the predicted NDVI
changes under the SSP119, SSP245, and SSP585 scenarios, respectively.
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4. Discussion
4.1. Dynamics of Greenness Pattern in the Forests of Hainan Island

The trend in NDVI of forest vegetation provides valuable insights for future regional
ecological development. Analyzing the NDVI trend of tropical forests on Hainan Island
from 2000 to 2019 reveals an overall increase (Figure 4). Research by Guo et al. (2021)
and Luo et al. (2021) indicates that most forested areas maintained NDVI values above
0.7, indicating robust vegetation [49,57]. The rate of NDVI change was notably higher
in the first decade compared with the subsequent decade, possibly influenced by the
forestry policies implemented on Hainan Island. Since 2000, several provincial-level
nature reserves have been established, coinciding with Hainan Island’s designation as
an international tourism hub in 2010. Increased human activities have been identified
as significant factors influencing forest NDVI [49], which consequently led to the NDVI
mutation in 2010. The central region of Hainan Island features dense coverage of tropical
rainforest, tropical monsoon forest, and mixed evergreen-deciduous broad-leaved forest,
as per its geographical distribution. The establishment of the Rainforest National Park
has helped maintain the continuity and integrity of these vegetation types, resulting in
consistently high NDVI values in this central area [58,59]. Conversely, forest NDVI in the
coastal areas of Hainan Island tends to be lower because of the diverse land use types
(Figure 5a), particularly extensive arable land and fragmented forested areas [60,61], which
collectively diminish the functionality of the forest ecosystem.

4.2. Response of Greenness Pattern to Natural Factors

At present, many studies have discovered climate changes directly determine the phys-
iological activities of vegetation growth [62]. Vegetation greening trends were obvious in
China, but the major natural drivers of vegetation development varied by region [63–65].
The interpretative ability of MGWR is superior to GWR, and it can reflect the impact scales
of various variables. It is effective to study the driving relationships between NDVI and
various influencing factors [66]. The spatial heterogeneity and diverse influence factors result
in significant variations in their contributions to NDVI [41,63]. Currently, the MGWR model
is widely used to explore the spatial heterogeneity of vegetation and ecological environment
quality responses to influencing factors [42,67–69]. However, most studies either use MGWR
alone [70], combine it with Geodetector to analyze the explanatory strength of driving factors
on the spatial variation in ecological environment quality [71] or integrate it with Structural
Equation Modeling (SEM) to analyze vegetation responses to climate and human activities [72].
There is a lack of studies combining MGWR with the BRT model to evaluate the relative con-
tributions of multiple factors. In this study, the results of the MGWR and BRT model revealed
significant regional heterogeneity in the relationship between NDVI and TEM, PRE, SM, PAR,
GDP, and POP on Hainan Island’s forests. Overall, natural factors exerted a greater regional
influence on NDVI in Hainan’s forests compared with anthropogenic factors (Figures 8–10).
This is consistent with previous studies, which have shown that the dynamics of vegetation
targets are strongly influenced by climatic factors and the limitations of anthropogenic
activities [65,66]. This is primarily attributed to our focus on stable forest NDVI over
the past two decades, which helped mitigate forest loss and degradation due to human
activities to some extent. Numerous studies have demonstrated the significant role of
natural factors in influencing vegetation NDVI [73–75]. The impacts of temperature and
precipitation on NDVI varied markedly across different regions (Figure 9a,b). In humid and
semi-humid areas, the temperature played the dominant role, which enhanced vegetation
growth [76,77]. In all words, the greenness pattern was a reflection of the synergy effect of
various drivers. In the vicinity of Hainan Island, natural factors exerted a notable influence
on NDVI. This observation may stem from relatively low forest density around the island,
resulting in lower NDVI values and insufficient ecosystem stability, thereby making it
highly susceptible to climatic influences. The average correlation coefficient between NDVI
and temperature was found to be higher than that between NDVI and precipitation, sug-
gesting that tropical forests exhibit a more pronounced sensitivity to temperature variations
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(Figure 10). Temperature is identified as the primary driver of vegetation changes, and the
vegetation response to temperature varies spatially across the island, while water stress
on Hainan Island has no significant effect [57]. In contrast, precipitation demonstrated
a relatively weaker influence on NDVI in tropical forests on Hainan Island. This differs
from findings in the Amazon tropics, where tropical forests exhibit greater sensitivity to
moisture constraints [78]. Drought events in these regions can lead to tree mortality and a
shift from carbon sink to carbon source dynamics in tropical forests [79].

4.3. The Implications of Anthropogenic Factors for Greenness Pattern

Furthermore, we identified significant negative effects of GDP and population on
NDVI, particularly along the coastline of Hainan Island (Figure 9f). This is consistent
with the findings of Luo et al. (2021) [49]. The main mechanism to explain this is that the
expansion of urban areas, cropland, grassland, and forested areas, which were previously
used for agricultural purposes, but when they have been requisitioned for infrastructure
development, such as road construction, can lead to a significant decline in NDVI val-
ues [80]. The coastline, being a hub of urban development and economic activity, has
played a pivotal role in China’s socio-economic landscape over the last three decades [81].
Moreover, economic development on Hainan Island has been unevenly distributed, with
coastal areas exhibiting higher development levels compared with the central region [82].
The extensive highway and high-speed rail networks along the island have fragmented
forest continuity, potentially contributing to the observed negative effects of anthropogenic
factors on NDVI in the surrounding forests of Hainan Island. Additionally, the regional eco-
nomic development on Hainan Island is significantly imbalanced, with the highest growth
levels in the northern region, followed by the southern and eastern regions, and the lowest
in the western region [49]. With rapid economic development, continuous population
growth, and accelerated industrialization, the growth of urbanization and transportation
has significantly impacted the greenness pattern.

In conclusion, the response of tropical forests on Hainan Island to precipitation differs
from that of the Amazon region, likely due to Hainan’s unique geographical location and
distinct climatic patterns. Hainan Island experiences a tropical island monsoon climate
with abundant precipitation, resulting in relatively weak water stress for vegetation [57]. In
addition to climate conditions, non-climatic factors such as human activities significantly
influence vegetation dynamics. However, this study’s focus on the stable forested areas
of Hainan Island over the past two decades minimizes the impact of large-scale human
planting or logging. Furthermore, the NDVI and climatic variables derived from the
MGWR model’s spatial regression parameters may indirectly represent the influence of
human activities and their geographical variations.

5. Conclusions

This study analyzes the impact and contribution of natural and anthropogenic factors
on vegetation greenness patterns on Hainan Island from 2000 to 2019 using the MGWR
and BRT models. Additionally, it predicts the greenness pattern under different climate
scenarios (SSP119, SSP245, and SSP585). During the last two decades, the NDVI of Hainan
Island forests showed a significantly increased trend with an increasing rate of 0.0026/year
(p < 0.01). The central part of Hainan Island, which makes up 64.42% of the entire forest
area, saw this increasing pattern. The Moran’s I for NDVI was 0.71 (p < 0.01), indicating
a significant positive spatial correlation of NDVI. The R2 of the MGWR model was 0.929,
which described the spatial heterogeneity of NDVI in relation to climate anthropogenic
factors more accurately. In general, the negative impacts of all driving factors on NDVI are
greater than the positive impacts. The regional effect of anthropogenic factors on NDVI on
Hainan forests was less than that of natural factors. This might be because we had extracted
the stable forest NDVI in the last two decades, which avoided the loss and degradation
of forests due to factors such as human activities to some extent. We found that GDP and
population had significant negative effects on NDVI due to the economic development of
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cities along the coastline and the fragmentation of forests by highway and high-speed rail
networks. The effects of natural factors on forest NDVI varied in different regions, with the
lower elevation areas around Hainan Island having the most significant influence on NDVI.
The NDVI of forests around Hainan Island was significantly more affected by temperature
than precipitation. From 2000 to 2019, this study provided information on the regional and
temporal variation in forest NDVI on Hainan Island, as well as its spatial relationships with
air temperature and precipitation. It also provided an explanation of how variations in
forest NDVI relate to climate. Under different future climate scenarios (SSP119, SSP245,
SSP585), vegetation greenness is expected to decline to varying degrees, with most of the
decline occurring in coastal areas. Further research is needed in the future to determine the
influence mechanisms of different forest types and different factors.
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