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Abstract: The role of forests in providing multiple goods and services has been recognized worldwide.
In such a context, reliable spatial predictions of forest attributes such as tree volume and current
increment are fundamental for conducting forest monitoring, improving restoration programs, and
supporting decision-making processes. This article presents the methodology and the results of the
wall-to-wall spatialization of the growing stock volume and the current annual increment measured
in 273 plots of data of the Italian National Forest Inventory over an area of more than 3260 km2 in
the Friuli Venezia Giulia region (Northeast Italy). To this aim, a random forest model was tested
using as predictors 4 spectral indices from Sentinel-2, a high-resolution Canopy Height Model
derived from LiDAR, and geo-morphological data. According to the Leave One Out cross-validation
procedure, the model for the growing stock shows an R2 and an RMSE% of 0.67 and 41%, respectively.
Instead, an R2 of 0.47 and an RMSE% of 57% were obtained for the current annual increment.
The validation with an independent dataset further improved the models’ performances, yielding
significantly higher R2 values of 0.84 and 0.83 for volume and for increment, respectively. Our results
underline a relatively higher importance of LiDAR-derived metrics compared to other covariates in
estimating both attributes, as they were even twice as important as vegetation indices for growing
stock. Therefore, these metrics are promising for the development of a national LiDAR-based model.

Keywords: biomass estimation; area-based approach; LiDAR; random forest; remote sensing

1. Introduction

The role of forests in providing multiple goods and services has been recognized at
global, European, and national levels in many countries [1–3]. Many of these documents
underline the multifunctionality of forests, the provision of energy, raw materials (wood,
resin, medicinal plants, etc.), and non-wood forest products such as wild food (berries,
mushrooms, honey, etc.). They also play crucial roles in regulating local and global climate,
enhancing soil retention and water quality, facilitating pollination, acting as barriers to
natural hazards, promoting biodiversity, and offering recreational and aesthetic values in
rural and peri-urban landscapes [4,5]. The provision of updated, reliable, and spatially
explicit data on forest resources on a large scale is an essential element for efficient and
timely forest planning and management. In fact, it helps decision-makers to allocate
resources more effectively, whether for harvesting or for biodiversity conservation, based
on the latest information about forest resources. Spatially explicit data also aid in assessing
risks such as forest fires, pests, diseases, and illegal activities, thus allowing proactive
measures to mitigate them. Typically, information on forest resources is obtained through
National Forest Inventories (NFIs). Data collected in NFI field sample plots provide
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aggregated estimates of forest attributes, and their related uncertainties, by region or
country and, eventually, by forest category. However, detailed spatial layers reporting the
variation in the most important forest characteristics are available only at a local scale (i.e.,
forest property), while are lacking at a larger scale (i.e., region or country), thereby limiting
their potential use in forest management and planning.

In the last decades, different methods have been used to estimate and map forest
attributes (e.g., aboveground biomass, growing stock volume, basal area, etc.), and several
of these rely on remote sensing (RS) and the application of Artificial Intelligence (AI)
algorithms [6]. Some countries have already adopted a hybrid methodology to estimate
forest attributes in the so-called Enhanced Forest Inventories (EFIs) [7–9], which combine
data from different sources, like passive (optical), or active (i.e., Synthetic Aperture Radar
or Light Detection and Raging—LiDAR) sensors, and from many platforms (e.g., satellite,
plane, drone) [10]. Such inventories usually produce wall-to-wall spatial estimations of
forest attributes such as forest volume and height, providing detailed information aimed at
improving forest management and planning in the framework of the so-called precision
forestry [11]. For example, optical RS (i.e., Landsat and Sentinel-2) have been largely used
for forest biomass estimation over large areas [12], but they are often characterized by signal
saturation problems [13] (i.e., when forest aboveground biomass reaches a certain threshold,
RS imagery cannot effectively reflect the spectral change, resulting in an underestimation of
forest biomass). Moreover, these applications need seamless data that are currently limited
in spatial and temporal coverage due to their high costs and complexity. In particular,
many European countries, including Italy, still lack comprehensive coverage of large-scale
LiDAR surveys [14–16].

In terms of used approaches, the spatially explicit estimation of forest attributes follows
two alternative ways: Individual Tree Detection (IDT) and area-based approach (ABA). IDT
is mainly oriented at identifying the location of each single tree and the most used sources
are optical RS and LiDAR data [17,18]. This approach, although very accurate, is not easy
to apply in broadleaved or mixed forests [19] and could be computationally expensive due
to the use of very high-resolution data, especially when applied at a large spatial scale [20].
Conversely, ABA estimates a predictive model that links a set of covariates available on
the entire area (e.g., tree height, spectral indexes) to a target inventory attribute measured
at selected ground plots [7,21,22]. In this case, data by global scale observation systems
like Sentinel and Landsat are widely applied in the estimation of several biophysical
variables [23] such as Vegetation Indices (VIs), which have been demonstrated to be effective
for assessing vegetation cover, vigor, and growth dynamics [24–26].

In addition, LiDAR has often become an additional source to be included in ABA for
predicting a range of forest attributes, including tree height, tree density, growing stock
volume (GSV), forest stand biomass, etc. The spatialization using ABAs could follow several
methods, including both parametric (multiple linear regression, geographically weighted
regression) and non-parametric approaches (K-nearest neighbors, random forest) [27,28].
In particular, Random forest (RF) is a decision tree algorithm introduced by Breiman [29],
well documented in the forestry sector for classifying and predicting forest attributes [30].

Specifically, in Italy, wall-to-wall mapping of GSV and current annual volume in-
crement (CAI) at a large scale has been conducted so far using satellite data and some
auxiliary features (e.g., climate and geomorphologic variables) [31,32]. In the case of CAI,
the authors used a specific process-based model that simulates the storage and fluxes of
water, carbon, and nitrogen within terrestrial ecosystems. While some experiences are
available for local case studies [33,34], models to predict GSV and especially CAI at a large
scale using multiple data sources which also include Airborne Laser Scanning (ALS) are
still lacking for Italian forests.

This paper aims to fill the above-mentioned knowledge gaps by demonstrating the
feasibility of mapping GSV and CAI at a large scale by combining Sentinel-2 spectral
indexes, the Canopy Height Model (CHM) from ALS, and geomorphological variables. For
this purpose, a specific model was developed for the Friuli Venezia Giulia Region (Italy),
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where LiDAR data were available. The model was calibrated using NFI plots, and the
results were validated with an independent dataset derived from forest management plans.

2. Materials
2.1. Study Area

The study area is located in Friuli Venezia Giulia (7924 km2), in Italy. The region is
considered a representative case study in Italy because it includes three different biogeo-
graphical regions (i.e., alpine, continental, and Mediterranean). Approximately 41% of
Friuli Venezia Giulia is covered by forests (Figure 1). These forests have expanded over
the last 70 years, particularly in marginal areas, reflecting a trend that is quite prevalent in
Italy [35]. Since 1861, the forested area has doubled due to depopulation and the subsequent
abandonment of traditional agro-forestry practices especially in the hilly and mountainous
areas [36]. In contrast, the presence of forests in the plain is quite low, mainly due to
agricultural intensification and urbanization. The most common forest categories in the
region are beech (Fagus sylvatica L., 1753) pure stands, black pine (Pinus nigra J.F.Arnold,
1785) and Scots pine (Pinus sylvestris L., 1753) mixed stands, hornbeam (Carpinus betulus L.,
1753) and hophornbeam (Ostrya carpinifolia Scop.) mixed stands, and Norway spruce (Picea
abies (L.) H.Karst., 1881) pure stands. The climate ranges from the Mediterranean along the
coastal areas, to a humid temperate climate in the plains and hilly areas, up to the alpine
climate of the mountains.
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2.2. Data
2.2.1. Third Italian National Forest Inventory

The field reference data for this study were obtained from the third Italian NFI settled
in 2015, which is based on a three-phase, non-aligned, systematic sampling design, with
data collected between 2018 and 2019 [37]. This NFI consists of three phases: the first
regards classification of land use and land cover through the photointerpretation of high-
resolution orthophotos following a 1 km × 1 km grid overlapping the whole county (over
301,000 points). The second phase considers a subsample of the first phase points to
determine qualitative forest characteristics (i.e., composition, forest category, management,
etc.) through visits to the field. In the third phase, strata are identified considering the forest
category assigned in the second phase together with the land use and cover class, and the
region. For each forest stratum, a subsample of points is extracted for field measurements.
Dendrometric data are collected in two concentric plots (4 and 13 m radius) depending
on tree diameter at 1.30 m (diameter at breast height = DBH) and used to derive forest
attributes such as basal area (m2 ha−1), GSV (m3 ha−1), and carbon stock (Mg C ha−1). In
the NFI, CAI (m3 ha−1 y−1) is estimated by collecting increment cores by a subsample of
trees per plot using specific allometric equations [37]. It refers to the mean value of tree
growth in the last five years.

For this study, we selected all the 279 third phase’s plots available for the Friuli Venezia
Giulia region. After a first reliability check, six plots affected by the 2018 Vaia storm were
excluded since NFI plots were surveyed before forest cover loss and RS data acquisition.
Thus, the final calibration dataset comprised a total of 273 plots distributed across the entire
region, as shown in Figure 1.

2.2.2. Digital Elevation Models and Derivatives

ALS data used in this study were collected between 2017 and 2019, at an aver-
age altitude of 500 m above ground level, by the Autonomous Region Friuli Venezia
Giulia (https://irdat.regione.fvg.it/consultatore-dati-ambientali-territoriali/detail/irdat/
dataset/11647, accessed on 29 January 2022). Some areas were also re-surveyed in 2020 after
the Vaia storm in order to update the point cloud. Several flights in different years were
needed to achieve wall-to-wall coverage of the entire regional area. The resulting average
point density is 16 points m−2, with a lower density of 10 points m−2 collected above the
1000 m a.s.l., with a vertical accuracy of ±15 cm. From those data, a high-resolution Digital
Terrain Model (DTM) was built, and, after resampling at 10 m, the elevation, slope, and
aspect were derived as geomorphological predictors to be used in the spatialization model.
Moreover, a high-resolution CHM was derived as a difference between the Digital Surface
Model (DSM) first pulse and the DTM, masked for the forest areas defined by the regional
map of forest categories. Only some tiles in the southeastern part of the region (Karst
area) were excluded due to the problems in the original LiDAR data. The importance of
height models for predicting GSV and other forest attributes—also merging them with
other sources like RS data—has been proven to be useful for a variety of applications in the
literature, both at individual tree and area levels [38].

2.2.3. Sentinel-2 Data

In this study, four VIs commonly used in forestry research and known to be correlated
to forest attributes and physiological processes [39] were selected as covariates (Table 1).
Such VIs were derived by Sentinel 2 data using Google Earth Engine [40] from June, July,
and August (i.e., growing season) within the 2019–2021 timeframe, starting from Level-2A,
filtering for cloud presence and assembled in a median dataset (Figure 2). The considered
period corresponds to the sampling period of the third Italian NFI. 2017 and 2018 were not
included to avoid biases due to the loss in forest cover due to the Vaia storm in part of the
study area [41], while 2021 was included to fill some small gaps due to cloud coverage and
to have more data.

https://irdat.regione.fvg.it/consultatore-dati-ambientali-territoriali/detail/irdat/dataset/11647
https://irdat.regione.fvg.it/consultatore-dati-ambientali-territoriali/detail/irdat/dataset/11647
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Table 1. Synthesis of predictor used for the estimations.

Type Variable Year Reference Resolution (m)

Digital Elevation Models and
Derivatives from Lidar

Elevation [median]

Original LiDAR collected between 2017
and 2020

10

Slope [median] 10

Aspect [median] 10

CHM [mean, median] 0.5

SENTINEL-2 DATA NDVI, NDII, GNDVI, EVI 2019–2021
June, July, August [median dataset] 10Forests 2024, 15, x FOR PEER REVIEW 5 of 14 
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The Normalized Difference Vegetation Index (NDVI) is the most widespread spectral
index used in the biological field as it has been used in commercial agriculture and land-
use studies to estimate different vegetation properties, including leaf area index (LAI),
aboveground biomass, and plant productivity [42,43].

The Normalized Difference Infrared Index (NDII) is a reflectance measurement, sensi-
tive to changes in water content of tree canopies. The index values increase with increasing
water content. Applications of this index include agricultural crop management, forest
canopy monitoring, and detection of stressed vegetation [44].

The Green Normalized Difference Vegetation Index (GNDVI) is a modified version of
NDVI, more sensitive to variation in chlorophyll content than NDVI [45].

The Enhanced Vegetation Index (EVI) is like NDVI and can be used to quantify
vegetation greenness and corrects for some atmospheric conditions and canopy background
noise and is more sensitive in areas with dense vegetation [46]. EVI has been shown to be
directly and positively associated with Gross Primary Production [47,48].

3. Methods
3.1. Random Forest Application

GSV and CAI were estimated at a regional scale following an ABA approach (Figure 2)
based on an RF algorithm trained using the variables listed in Table 1, Figure 2, following
Chirici et al. [31]. RF generates a set of regression trees that are aggregated across nodes to
produce predictions without overfitting the data. For the present application, we considered
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1000 trees to balance the calculation time with the correctness of the results [49]. To build the
whole set of trees, RF uses a subset of predictors randomly chosen for each node, and each
tree is built independently on samples randomly extracted from a portion of the reference
set (usually 2/3 of the data), while the remaining third of the sample is randomly excluded
(out-of-bag samples procedure, OOB). OOB allows an estimation of the error as well as the
calculation of the relative importance of each covariate in the estimation of the attribute
of interest by calculating the percentage increase in the mean squared error [29]. The
predictors that produce the most accurate results are then selected at each node. According
to White et al. [50], the variables that are used as predictors in the ABA exist as rasters
or tessellations, with each grid cell typically representing a forest area similar in size to a
standard ground plot. Thus, for this research, the RF model was estimated using a first
dataset consisting of NFI data at the plot level (GSV and CAI) as dependent variables and
the values of the selected covariates (Table 1) calculated for each NFI inventory plot (530 m2)
using the “zonal statistics” tool in QGIS (Figure 2). Then, the model was applied to a second
dataset consisting of a 23 m × 23 m grid with the same surface of NFI plots and covering
all the forest areas. Each cell contains the median value of all the covariates, and also the
mean in the case of the CHM. Data have been exported in GeoPackage format. The RF
model was first estimated using only the first dataset applying all the predictors. Then, the
model was applied to the second dataset, obtaining the spatialization. Finally, the estimated
attributes of interest were rasterized for the validation. All analysis were performed using
the randomForest [51] within the R software version 4.2.0, and the pseudo-code is reported
in the Appendix A.

3.2. Validation

A twofold validation was conducted to estimate the goodness of the approach. First,
R2, RMSE, and RMSE% were estimated, applying the leave-one-out (LOO) cross-validation
technique within the RStudio code. In this method, the model was trained 273 times on
all the datasets except for one point, and a prediction was made for that point. Then, the
average error was computed and used to evaluate the model. Each row in the reference
set was excluded in sequence to train the model and then predicted from the model
established using the partial reference set. Secondly, we also performed a validation using
an independent dataset, selecting 26 forest management units (mean surface = 13 ha),
where a complete tree survey was performed in a period comparable to that of the LiDAR
data acquisition. In these units, mean estimated GSV and CAI were compared with actual
values measured in the field.

4. Results

Estimated GSV ranges between 17 and 919 m3 ha−1, while CAI shows a range from 0.46
to 15.3 m3 ha−1 y−1. At a regional level, the total GSV is 76,312,755 m3 (mean = 192 m3 ha−1),
while the mean CAI amounts to 1,587,265 m3 y−1 (mean = 4.6 m3 ha−1 y−1). Figure 3 shows
the distribution of GSV and CAI at a regional scale with a spatial resolution of 23 m ×
23 m. The different values of both attributes are related to the heterogeneity in species
composition (forest categories) and environmental conditions. The highest GSV are mostly
concentrated in the mesalpic and endalpic zones on more gentle slopes where tree diversity
is limited to 1–3 species (Norway spruce, fir, and partially beech). The esalpic area (Prealps)
shows lower values, especially where beech and black pines are dominant and mainly on
steep areas. The hilly areas and the Karst show quite low GSV values. The forests in those
areas are dominated by temperate oaks, chestnut, hornbeam, hophornbeam, and some
other deciduous broadleaves. CAI is higher in the endalpic area like GSV but also in the
esalpic area where most of the forests have been established on fertile ex-agricultural land
following secondary successions and are characterized by fast-growing species such as
Robinia pseudoacaica L., Acer spp., and Fraxinux spp.
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The relative importance of the considered covariates was assessed through an im-
portance plot (Figure 4), where the code estimates the importance for each variable if
removed from the model in terms of increment of MSE%. CHM-derived features are the
most influential covariates for both the attributes of interest. Among the VIs, differences
were detected between GSV and CAI. Indeed, GNDVI is the most important index for GSV
estimation, while NDII is the most relevant for CAI. In both cases, NDVI does not result
in the best predictors. With regards to geomorphology, while slope and elevation show
a certain importance in estimating CAI and GSV, respectively, the aspect has a very low
influence in both cases.
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The accuracy of our model in estimating GSV and CAI according to LOO is reported
in Table 2 and Figure 5. The goodness of fit was higher for GSV than for CAI, with an R2

ranging from 0.67 to 0.46, respectively. In both cases, the RMSE% was lower than 60%. The
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validation using the 26 forest management plans is reported in Figure 6. In this case, the R2

shows values of 0.84 and 0.83 for GSV and CAI, respectively (Table 2, Figure 6).

Table 2. Error estimation for the growing stock volume (GSV) and current annual increment (CAI)
according to the leave-one-out (LOO) procedure and the comparison with the forest management
units (FMUs).

Attribute LOO FMU

Attribute R2 RMSE RMSE% R2 RMSE RMSE%

GSV 0.67 96 40 0.84 118 64

CAI 0.46 3 57 0.83 2 14
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5. Discussion

Detailed maps on the distribution of GSV and CAI at the regional or national scale
are fundamental for monitoring forest ecosystems, supporting policymakers and forest
planning, as well as for the evaluation of ecosystem services (wood production, climate
regulation, soil protection). In fact, these maps are not only important for producing
statistics at different spatial scales, but can also be integrated into specific forest decision
support systems [52], thus supporting evidence-based strategies and decisions at a regional
scale [53]. Another potential application is using them as inputs for models designed to
simulate the behavior and/or probability of disturbances such as fires [54,55]. For these
reasons, the main objective of the study was to develop a spatial approach to jointly obtain
high-resolution GSV and CAI maps over an area of more than 3260 km2. The proposed
approach allowed, through the spatialization of the values measured in the third Italian
NFI, a spatially explicit estimation of the attributes of interest with a good level of precision.
When validation according to the LOO method is considered, we obtained a better accuracy
for GSV than for CAI (R2 0.67 vs. 0.46), showing how spatially explicit estimation of
stand growth is still challenging. LOO has been often used for the accuracy assessment
of model outputs [14], but, as it is sensitive to outliers, it may not be representative of
the model’s performance, and the estimation accuracy may be overoptimistic. For this
reason, we validated our model results also using data from an independent dataset
(i.e., forest management units). In such a case, an even better performance of the model
in the estimation of the attributes of interest when averaged over forest management
units’ surfaces was obtained. However, despite the good agreement between estimated
and measured values (slope of the regression lines around 1), a significant intercept of
94.5 m3 ha−1 and 2.2 m3 ha−1 y−1 for GSV and CAI was detected, respectively (Figure 6).
This is probably related to the different sampling approaches and DBH thresholds used in
NFI and forest management plans. In fact, the NFI surveys all trees with a DBH greater
than 4.5 cm, while forest management plans consider only trees with a DBH greater than
20 cm. Moreover, standing snags are often not measured by forest management plans. For
this reason, the NFI-based estimates show systematically greater GSV and CAI. Differences
between our estimates based on NFI data and ground truth from forest management plans
can also derive from differences in the used allometric equations: while NFI uses general
equations for the whole country, forest management plans quite often use local and species-
specific equations. Earlier studies on the spatialization of GSV conducted in Friuli Venezia
Giulia using VIs only obtained a lower R2 (0.57) when comparing estimates with ground
truth forest management plan data [56], showing how combining different data sources for
modeling of forest attributes (our approach) can produce much more accurate estimations
of GSV [57,58]. In another recent research at the national scale, Chirici et al. [26] achieved
an R2 of 0.47 by applying the RF algorithm to RS covariates (without ALS) and an RMSE%
equal to 68.70. Puliti et al. [59], including ALS among covariates, reached an accuracy
similar to ours when considering management units as ground truth (R2 = 0.83), but these
authors used ALS data with a lower density than ours (7.45 points m−2), and the studied
area was rather small and quite homogeneous in terms of stands and species composition.
Another recent study compared linear regression, K-nearest neighbors, and random forest
methods for predicting GSV from ALS data, and reported that RF is the best predictor for
boreal forest in Norway and Finland (R2 of 0.91 and 0.96, respectively) even with a lower
LiDAR point (0.6–4.8 points m−2) [60].

Spatialization of the CAI is more challenging than GSV. Previous papers have reported
very different accuracies depending on the working scale, the species composition, and
the structural heterogeneity. In fact, when forest stands are more homogenous and the
investigated area is small, the comparison between modeled values and field-measured
ones is generally strong. For example, Tian et al. [49] reported R2 values up to 0.65 and
0.66 in natural Larix and Quercus forests. Other authors reported values closer to the ones
we estimated following the LOO procedure (i.e., [61]). When CAI estimates are compared
with the ones measured in the forest management units (Table 2, Figure 6), the correlation
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coefficient is higher and closer to the values reported by Tian et al. [49]. Stratification for
forest categories could eventually improve our CAI estimation, but this would require a
larger number of well-distributed NFI plots to have enough data to train the models. On
the other hand, potential improvements in our approach could come from the use of other
ALS-derived products, such as previous surveys to calculate the DSM of Differences (DoDs),
or texture metrics, like Gray Level Co-Occurrence Matrix metrics (GLCMs) [62], as they can
help to better characterize the spatial properties and variability of the vegetation. Previous
studies have obtained different conclusions on the combined use of LiDAR and optical
sensor data, depending on the data sources, applied algorithms, and the characteristics
of the area under investigation (e.g., [57,63,64]). Our results show that GSV and CAI, at
least in our study area, are mostly driven by CHM rather than other optical and geo-
morphological information (Figure 4). Especially in the case of VIs, this could be explained
by the saturation effect in dense forests, which can reduce the efficiency of these indices
in predicting GSV and CAI [13]. Several other studies have underlined the importance
of having ALS-derived data for a most reliable estimation of forest attributes [7,14,17].
However, few regions are actually seamlessly covered by ALS, especially in Italy [15]. A
potential step forward would be to test different configurations of predictors for GSV and
CAI, with or without LiDAR-derived metrics, in order to better understand to what extent
the use of LiDAR data can improve the prediction of these biophysical attributes over a
large area. Additionally, our approach could be also tested to assess the GSV and CAI of
forested areas smaller than 2000 m2 and not included in the NFI definition of “forest”, such
as hedgerows or trees outside the forests.

6. Conclusions

A reliable estimation of the spatial distribution of forest biomass and growth over
large areas is fundamental to not only support forestry practice and policy, but also to
estimate some other relevant ecosystem services (for example, carbon stock and flux). In
this study, we modeled GSV and CAI over more than 3260 km2 by combining LiDAR-
derived metrics, optical imagery, and geo-morphological data through an RF algorithm.
Our results emphasized the relatively higher importance of LiDAR-derived information
than other covariates to estimate both GSV and CAI. Possible marginal improvements in
the estimates could be derived by integrating other data sources into the models (e.g., other
LiDAR-derived products) or by stratifying by forest category before modeling, but such
an approach is still limited by the relative un-even distribution of NFI plots across forest
categories at both the regional and national scale. However, our results strongly confirm
the robustness of using ALS data for GSV estimation at a large scale and are promising for
the development of a national LiDAR-based model as soon as data coverage is available
countrywide. Even if we have found a good fit between modeled and measured CAIs, a
future challenge will be a deeper integration of LiDAR data and other RS data sources with
physical-based model and machine learning methods to further improve forest growth
estimation.
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Appendix A

This pseudocode used in RStudio explains the random forest algorithm here applied.
for each target variable (i.e. GSV, CAI)

# Definition of the equation formula to be used by the model
eq <- as.formula(dependant variable ~ covariate1 + covariate 2 + . . . + covariate n)

# Estimation of the RF model, activating the option to calculate partial dependant plots
RF_model <- randomForest(eq, data = NFI data, ntree = 1000, importance = T)

# Spatialization of the results
estimating the dependent variable for the entire area (i.e. at each cell of the grid 23 × 23 m
covering all the forest area)
predict (RF_model, grid)

# LOO evaluation
for each raw in the NFI database

1. Training the model, using all the data except the raw we are evaluating using the same
equation as above

LOO_rf <- randomForest(eq, data = NFI data except the raw, ntree = 1000)

2. Predicting the value of the dependent variable using the model trained on the subsample
n-1 for that specific raw that is excluded from the training set

predict(LOO_rf, raw)
end for

Calculating the parameters RMSE, RMSE% and R2 confronting the predicted values of the
dependent variable using the model trained on the subsample which excludes that raw and the
actual value of the target
end for
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4. Grammatikopoulou, I.; Vačkářová, D. The Value of Forest Ecosystem Services: A Meta-Analysis at the European Scale and

Application to National Ecosystem Accounting. Ecosyst. Serv. 2021, 48, 101262. [CrossRef]
5. Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Velasco-Muñoz, J.F. Forest Ecosystem Services: An Analysis of

Worldwide Research. Forests 2018, 9, 453. [CrossRef]

www.inventarioforestale.org
https://www.un.org/esa/forests/wp-content/uploads/2016/12/UNSPF_AdvUnedited.pdf
https://www.un.org/esa/forests/wp-content/uploads/2016/12/UNSPF_AdvUnedited.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021DC0572
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021DC0572
https://doi.org/10.1016/j.ecoser.2021.101262
https://doi.org/10.3390/f9080453


Forests 2024, 15, 1356 12 of 14

6. Liu, Z.; Peng, C.; Work, T.; Candau, J.-N.; DesRochers, A.; Kneeshaw, D. Application of Machine-Learning Methods in Forest
Ecology: Recent Progress and Future Challenges. Environ. Rev. 2018, 26, 339–350. [CrossRef]

7. White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing
Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [CrossRef]

8. Stinson, G.; White, J.C. What’s the Difference between EFI and NFI? Demystifying Current Acronyms in Forest Inventory in
Canada. For. Prof. 2018.

9. Gschwantner, T.; Alberdi, I.; Bauwens, S.; Bender, S.; Borota, D.; Bosela, M.; Bouriaud, O.; Breidenbach, J.; Donis, J.; Fischer, C.; et al.
Growing Stock Monitoring by European National Forest Inventories: Historical Origins, Current Methods and Harmonisation.
For. Ecol. Manag. 2022, 505, 119868. [CrossRef]
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