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Abstract: Individual tree canopy extraction plays an important role in downstream studies such as
plant phenotyping, panoptic segmentation and growth monitoring. Canopy volume calculation is an
essential part of these studies. However, existing volume calculation methods based on LiDAR or
based on UAV-RGB imagery cannot balance accuracy and real-time performance. Thus, we propose a
two-step individual tree volumetric modeling method: first, we use RGB remote sensing images to
obtain the crown volume information, and then we use spatially aligned point cloud data to obtain
the height information to automate the calculation of the crown volume. After introducing the point
cloud information, our method outperforms the RGB image-only based method in 62.5% of the
volumetric accuracy. The Absolute Error of tree crown volume is decreased by 8.304. Compared
with the traditional 2.5D volume calculation method using cloud point data only, the proposed
method is decreased by 93.306. Our method also achieves fast extraction of vegetation over a
large area. Moreover, the proposed YOLOTree model is more comprehensive than the existing
YOLO series in tree detection, with 0.81% improvement in precision, and ranks second in the
whole series for mAP50-95 metrics. We sample and open-source the TreeLD dataset to contribute to
research migration.

Keywords: remote sensing; unmanned aerial vehicle; object detection; individual tree; crown volume;
deep learning

1. Introduction

The study of vegetation remote-sensing image processing is very valuable. Numerous
downstream applications are derived from it, including vegetation area segmentation [1,2],
individual tree extraction [3,4], and vegetation density research [5,6]. Researchers have
been able to model individual trees with point clouds for individual tree extraction [7].
The calculation of tree canopy volume plays a great role in the evaluation of the manage-
ment and actual monitoring of plantations, which can create conditions for the accurate
calculation of the living vegetation volume and carbon storage of vegetation, and can
be used as an indicator for comprehensively evaluating the ecological benefits of urban
and forest areas. We found that using only vegetation phenotype information from point
cloud LiDAR scans is insufficient for modeling the internal structure of tree crowns. This
directly leads to volume underestimation when employing existing voxel-based modeling
methods based on point clouds, as they do not sample points within the crown’s interior.
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To address this issue, we propose complementing the volume estimation using ellipsoidal
geometric modeling, while ignoring internal structural details. Since internal crown struc-
ture is irrelevant for volume calculations, this assumption proves effective for computing
crown volumes. For crown shape, we utilize remote-sensing imagery to capture maximum
crown dimensions and assume it as the base, which aligns with the growth morphology
of Chinese Catalpa bungei C.A.Mey. Additionally, we observe variations in catalpa tree
growth due to factors such as pruning and environmental conditions, resulting in diverse
shapes (tall and thin, short and thick). We employ morphological curvature for selection
and calculate crown volumes using two different modeling approaches, effectively fitting
crown profile information for different growth forms. Our goal is to come up with a deep
learning method that can solve this problem at a lower computational cost. However,
processing data in a direct point cloud is often associated with significant computational
and financial expenses. Images with extremely high-spatial resolution information are
frequently needed for remote-sensing individual tree extraction. The two primary types
of mainstream UAV data acquisition forms are: (1) passive remote sensing data, which is
represented by RGB and hyperspectral images; (2) 3D stereo point cloud data obtained by
LiDAR scanning. RGB photos are less expensive and can help with band redundancy in
hyperspectral images during monoculture extraction at the same aircraft height. LiDAR
data describe the three-dimensional structure of vegetation but lack spectral information.
Combining two distinct data dimensions can be useful in both two- and three dimensions
and compliment one another.

Thus, we suggest that the required parameters can be obtained by pre-processing
the data using RGB-UAV remote-sensing imagery and combining it with LiDAR point
cloud data positioning. This can reduce the cost of rowan tree canopy volume calculation
by avoiding the arithmetic consumption associated with direct spatial data processing.
But to do this, a more precise technique for individual tree crown volume extraction
and spatial localization is needed. Recent years have seen significant advancements in
the use of deep learning in remote-sensing image processing [8]. Traditional machine
learning approaches require a laborious feature analysis procedure, which is eliminated
by deep learning. The branch of target detection is necessary for both localization and
crown volume extraction. The end-to-end YOLO series (You Only Look Once) are the
current bounding-box-based target detection techniques. This series is currently the most
mainstream algorithm framework for object detection, and is widely used in real-time
detection. In this research, we address the need for more precise range extraction and
suggest a novel network YOLOTree to do so.

In order to verify the accuracy of proposed network for crown range extraction, we
selected the rowan artificial forest area in Jiaozuo City, Henan Province (34◦53′60′′ N,
113◦09′00′′ E) as the study area to create the dataset TreeLD for individual-tree localization
and crown range extraction (The area is shown in Figure 1). Jiaozuo is rich in vegetation
resources with a warm climate, and the catalpa trees there have a good growth posture,
which provides a good source of data for rowan tree adults at different growth stages.
Catalpa tree is native to China and is a tree of the genus Catalpa in the family Ziweiidae.
It is a small tree ranging between 8–12 m in height. Its leaves are triangular-ovate or
ovate-oblong, 6–15 cm long, up to 8 cm wide, apically long acuminate, base truncate,
broadly cuneate or cordate. The site has a rich vegetation resource, a warm climate and
has a favorable growth pattern, providing catalpa trees with different growth stages for
study. Our RGB imagery was acquired by low altitude remote sensing from a large aircraft
flying at an altitude of about 2500 m, with a spatial resolution of 0.6 meters, and at a speed
of 500 to 700 km per hour. Our point cloud data were generated from LiDAR scanning.
We unify the relative coordinates of the RGB image with the horizontal plane of the point
cloud data through spatial correlation operations, which facilitates us to obtain the canopy
height information in LiDAR. Meanwhile, in order to verify the compatibility extraction
capability of our model, we compared different publicly available remote sensing datasets
and achieved good results.
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Figure 1. Study area (34◦53′59.9905′′ N, 113◦09′00.0057′′ E).

2. Related Work
2.1. The Development of Target Detection Method

Currently, an increasing number of scholars are using object detection neural networks
for object extraction work. These networks have shown good results in various fields such
as crowds, pests, vegetation, and automobiles. Representative object detection algorithms
can be broadly categorized into two major types. The first type is the two-stage extraction
structure, with the R-CNN series neural networks as representatives. The second type is
the individual-stage end-to-end neural networks, with the YOLO series as representatives.

In the early stages of object detection development, Girshick et al. [9] proposed the
R-CNN network. Its network architecture can be divided into two stages. First, a separate
network is used to train the candidate box generation network, and then a region selection
network is used to adjust the position parameters to obtain the final prediction results. This
was also the first introduction of CNN into the field of object detection. However, due to the
need to train a separate SVM classifier for each category and then use a regressor to regress
the bounding boxes for each category, the classification and bounding box prediction,
which should have been related, were separated. This affected the speed of network
training and inference. Subsequently, Girshick et al. [10] optimized and proposed the Faster
R-CNN structure, which combines feature extraction, proposal extraction, bounding box
regression, and classification together, greatly improving overall performance, especially in
detection speed.

However, it is still fundamentally a two-stage network. There remained a pressing
need for an individual-stage network that is easy to train and deploy, leading to the birth
of the YOLO series. YOLOv1 [11] directly predicts detection outputs based on regression,
achieving an end-to-end object detection method. It detects all the bounding boxes at the
same time, and unifies the detection steps. The YOLOv3 [12] series integrates a deeper
Darknet-53 backbone network, replacing all max-pooling layers with fully connected layers,
and adding Residual connections, making feature extraction more accurate. In addition, it
introduces the precedent of multi-scale prediction for the first time, improving the weakness
in detecting small objects.

Then in 2020, YOLOv4, proposed by Bochkovskiy et al. [13], attempted to find the
best balance by experimenting with many variations classified as bag-of-freebies and bag-
of-specials. Bag-of-freebies refers to methods that only change training strategies and
increase training costs without increasing inference time, with data augmentation being
the most common. On the other hand, bag-of-specials refers to methods that slightly
increase inference costs but significantly improve accuracy. YOLOv5, maintained by over
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250 developers, introduces five different parameter size versions of network structures.
YOLOv7 [14] introduces the concept of model scaling based on concatenation, where
standard scaling techniques such as depth scaling lead to changes in the ratio between the
input and output channels of transition layers, which in turn reduces the hardware usage of
the model. YOLOv8 is anchor-free, reducing the number of box predictions and speeding
up non-maximum suppression (NMS). Additionally, YOLOv8 uses mosaic augmentation
during training. YOLOv9 [15] introduces Programmable Gradient Information (PGI) and
strengthens deep supervision and multi-scale feature extraction during network training
through the GELAN main branch.

2.2. The Development of Point Cloud Method

With the advancement of 3D acquisition technologies, an increasing number of scholars
are dedicating themselves to the study of three-dimensional spatial data. These irregular
3D spatial information datasets have empowered various industries, including 3D depth
prediction [16], 3D shape classification [17–19], remote sensing urban extraction [20,21],
irregular volume calculation [22], and more.

Three-dimensional data are typically stored in unstructured formats, posing chal-
lenges for deep learning in handling such irregular data. Some studies employ projection
techniques to project point cloud data into different dimensions for multi-view learning,
which can be used for shape classification and volume calculation. Other scholars utilize
graph convolutions to handle non-structural information in point cloud data, predict-
ing connections between information. For instance, some researchers use it for training
individual-tree modeling. In terms of deep neural networks for volume calculation, Daniel
et al. [23] proposed a method called VoxNet, which reliably achieves 3D object recognition.
Additionally, the ShapeNet network proposed by Wu et al. [24] learns the point cloud
distribution of various 3D shapes. However, these methods for processing point clouds
still face the challenge of high time complexity. As resolution increases, computational and
memory resource requirements grow exponentially. Such costs are evidently unacceptable
for tasks like volume calculation in artificial forest individual-tree populations. Therefore,
we propose a new method to bypass the direct processing of point cloud data, instead
leveraging the implicit spatial information for individual-tree volume calculation.

3. The Proposed Work

This section will present our work in two parts. First, we will show our workflow in
detail. Then, we will analyse our proposed network model on a principle level.

3.1. Our Work

Our work can be summarised in two main steps (Flowchart is shown in Figure 2):
firstly, individual tree crown extraction is performed using UAV RGB images to obtain
crown volume and spatial location information of individual trees. We compare sev-
eral deep learning target detection methods and propose the novel network architecture
YOLOTree for accurate extraction of individual tree crowns. (Step 1 is shown in Figure 3)
Next, we selected sample trees for crown volume calculation and used the location in-
formation provided by the programme to locate the point cloud data by coordinates to
obtain the crown height. In order to ensure that the spatial resolution of the UAV image
matches that of the point cloud data, we conducted a spatial alignment exercise to unify
the magnitude, facilitating subsequent canopy volume calculations (Step 2 is shown in
Figure 4). We first mapped the point cloud data to the Z-axis to obtain the monoki top view,
and then calculated the mapping relationship between the pixels in the RGB image of the
UAV and the actual spatial distance through the programme and applied it to the top view
to obtain the appropriate tree point cloud data.
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Figure 2. Flowchart of our work.

Figure 3. Flowchart of Crown Extractor.

Figure 4. Steps of Spatial Correlation.
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3.2. The Overview of YOLOv8

YOLOv8 (You Only Look Once version 8), as a significant advancement in the field of
object detection, (The structure is shown in Figure 5) has achieved notable improvements
in accuracy and speed through overall architectural optimization and innovation. It con-
siders the multi-scale characteristics of objects, using three detection layers at different
scales to accommodate objects of various sizes. This multi-scale strategy effectively han-
dles targets of different sizes and proportions, enhancing the model’s detection accuracy
for a variety of objects. Its comprehensive design includes three main parts: Backbone,
Neck, and Head, each of which plays a crucial role in the final performance of the model.
(1) The Backbone efficiently extracts multi-scale features, ensuring the model’s perceptual
capability across different scales, including modules like Conv, C2f, and SPPF (Spatial
Pyramid Pooling-Fast); (2) The Neck, through the integration of a feature pyramid network
and a path aggregation network, enhances the multi-scale fusion of features and the transfer
of contextual information, improving the model’s detection accuracy; (3) The Head adopts
a decoupled head strategy, responsible for target classification, bounding box regression,
and confidence assessment in the prediction layers, and outputs precise detection results
through the technique of non-maximum suppression.

Figure 5. The structure of YOLOv8.

The integrated design and optimization of these three parts have made YOLOv8
perform excellently in various complex scenarios, making it a significant achievement in
the field of object detection. To accommodate different hardware devices and application
scenarios, it is available in five versions: n, s, m, l, and x. These models vary in width
and depth parameters, leading to variations in the number of parameters and resource
consumption. As model scale increases, both parameter count and resource consump-
tion rise, contributing to progressively improved detection performance. We selected
YOLOv8n as our baseline model due to its relatively lower parameter count and resource
efficiency, making it an ideal starting point for research and experimentation. By comparing
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performance differences among models, we can more comprehensively understand the
strengths and weaknesses of the model, thus guiding subsequent model improvements
and optimizations.

3.3. Overview of Proposed YOLOTree

The accurate identification of individual trees in forested areas presents challenges due
to mutual shading among trees, which can obscure or connect parts of tree crowns, compli-
cating separation. Furthermore, individual tree detection often requires high-resolution
images to clearly capture the details of individual trees. However, high-resolution im-
age processing is challenging, consumes a lot of computing resources, and requires the
algorithm to handle complex backgrounds, occlusions, and diverse features to ensure
detection accuracy.

To address the challenges of low accuracy and the common issue of detecting clumps
of trees in RGB images, alongside the need for model light-weighting, we propose the
YOLOTree object detection model based on YOLOv8 (The structure is shown in Figure 6).
This model aims to fully explore the potential for identifying individual trees against
complex forest backgrounds.

Firstly, it employs multi-scale feature fusion to effectively integrate high-level semantic
information with detailed low-level features. Enhancements to the FPN (Feature Pyramid
Network) bolster the model’s detection performance across varied scales. Secondly, to
enhance feature expression capabilities, we introduce the EMA(Efficient Multi-Scale At-
tention) mechanism and design the C2f_EMA module to replace the original C2f module,
effectively adjusting the receptive field.

Figure 6. The structure of proposed YOLOTree.

3.4. Multiscale Feature Fusion

Multiscale feature fusion plays a crucial role in the field of computer vision, aiming to
integrate feature maps from different levels and scales to enable detection models to better
perceive and understand target information at various scales. This integration results in
more comprehensive and rich feature representations. During the process of multiscale
feature fusion, feature maps of different levels and resolutions correspond to different recep-
tive fields and semantic levels of feature representations. Shallow features are upsampled to
match the resolution of deeper features, and then weighted concatenation is performed, al-
lowing fine-grained details captured by shallow layers and semantic information captured
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by deep layers to complement each other, generating enhanced feature representations.
Ultimately, the fused feature maps are used for target detection through the detection head.
This process assists models in individual tree detection tasks by overcoming common
issues such as target scale variations and occlusions, thereby improving detection accuracy
and robustness.

We propose a multiscale feature fusion method based on Bidirectional Feature Pyra-
mid Network (BiFPN) [25]. Building upon the FPN, this network introduces bidirectional
connections and multi-level feature fusion mechanisms. It establishes forward and back-
ward connections between feature maps at different levels for adaptive feature fusion. In
our model, the division of feature maps is based on the network’s hierarchical structure
and the resolution of each layer’s feature maps. Specifically, the feature maps are divided
into shallow features and deep features. Shallow feature maps come from the early stages
of the network and have higher resolution but lower semantic information. In contrast,
deep features come from the later stages of the network, containing abstract semantic
information but fewer spatial details. To fuse feature maps from different levels, shallow
features are upsampled to match the resolution of deep features. These feature maps are
processed by the three main parts of YOLOv8 and the BiFPN module. Through specific
hierarchical division and multiscale feature fusion, the model effectively performs object
detection across different resolutions and semantic levels.

By considering the scale and semantic information of input feature maps, BiFPN
introduces trainable weight parameters. When the model is incorporated into the overall
network structure, its forward and backward propagation processes automatically compute
the loss function and the gradients of the weights concerning the loss function. The
optimiser then updates the parameters based on the gradients, minimising the loss function.
This process is repeated multiple times until the model converges or the predefined number
of training iterations is reached. During feature fusion, BiFPN employs a weighted sum
approach to generate the fused feature map Pl+1

i from the l-layer feature map Pl
i :

Pl+1
i =

∑ wj × resize(Pl
i )

∑ wj + ε
, (1)

where i represents the set of feature layers involved in the feature fusion, wj denotes the
weight of the j-th input feature layer, reflecting its importance in the fusion process, and
resize adjusts the size of the input feature layers to ensure consistency in feature size. The
constant ε is usually a very small value, generally in the range of 10−4 to 10−6, used to
prevent division by zero when computing normalised weights.

3.5. The C2F _EMA Module

In remote sensing images, particularly against complex backgrounds like forests, the
boundaries between trees are often blurred, making it difficult to distinguish targets from
the background. The model struggles to extract small targets of interest from large images.
To address these issues, we have introduced the EMA attention mechanism (The structure is
shown in Figure 7b) and reengineered the C2f module in YOLOv8, designing the C2f_EMA
module (The flowchart is shown in Figure 7a). The C2f module performs initial feature
extraction, it integrates CBS (ConBnSiLU) for normalization. After normalization, the
features are split into two branches. One branch is passed directly to the output, while the
other branch is processed through multiple BN (BottleNeck) modules. The BN module
first reduces dimensions using a 3 × 3 convolution kernel, then performs convolution
computation before directly outputting. In this process, the number of channels is halved
to reduce network parameters. This bottleneck structure allows the network to efficiently
capture complex patterns, maintaining low computational complexity while enhancing
model performance and representation capability. Finally, the results of both parts are
concatenated along the channel dimension, increasing the network’s capacity to express
input features. The EMA module captures multi-scale feature information through parallel
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convolutions and global average pooling, reweighting features with attention mechanisms
to enhance their representation. By combining the efficient feature extraction capabilities of
C2f with the parallel convolutional attention mechanism of EMA (illustrated in Figure 8),
we achieve better extraction and detection of key information in images, thereby improving
the accuracy of individual tree detection.

Figure 7. The flowchart of proposed method. (a) Represents the flowchart of C2F_EMA module, (b)
Represents the details of the EMA mechanism.

EMA [26] is an attention mechanism used to enhance the performance of convo-
lutional neural networks. It reshapes the depth of each layer’s feature map into batch
dimensions and employs parallel substructures. This method segments the feature map
into multiple sub-feature maps, each undergoing parallel convolution operations. These
are then subjected to global average pooling to obtain attention weights. This approach
not only avoids excessive sequential processing and deep depths but also ensures a more
uniform distribution of spatial semantic features within each feature group. The module
combines global information encoding and cross-dimensional interaction to capture pixel-
level pairing relationships, aiming to retain information from each channel while reducing
computational overhead. Through these innovative methods, the EMA module reduces
computational burden while enhancing feature representation capability, thus performing
well across various computer vision tasks. In the EMA module, these substructures are
realised through a grouping operation. Given an input feature map XϵRC//G∗H∗W with C
channels, partitioned into G groups, each group contains C//G channels. Each sub-feature
has the same spatial dimensions, allowing different semantic representations to be learned
within each sub-feature group.

To capture multi-scale spatial information, the module employs three parallel sub-
networks to extract attention weight descriptors for grouped feature maps. Two parallel
branches are located in a 1 × 1 branch, and one is in a 3 × 3 branch, recalibrating channel
weights for each parallel branch and further aggregating the output features of the two
parallel branches to capture pixel-level pairing relationships.

• Two parallel subnetworks process the input feature map. Each of these subnetworks
contains a 1 × 1 convolution layer that performs convolution operations on the feature
map of each branch, adjusting the channel weights.

• Global average pooling is applied to each grouped feature map in both horizontal
and vertical dimensions to obtain two sets of vectors. The aim is to aggregate spatial
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dimension information into a single vector to capture global spatial information. The
vectors obtained from horizontal and vertical pooling are then concatenated to form a
new feature vector. This new feature vector combines global information from both
horizontal and vertical directions.

• A 1 × 1 convolution is applied to the concatenated feature vector to adjust its di-
mensions, generate new feature representations, and perform a Softmax operation to
normalize the weights.

• The output features of the two parallel branches are further processed and aggregated.
The aggregated feature map contains both global and local information from the two
parallel branches.

Through learning and optimization during the training process, each pixel in the
feature map is assigned an attention weight based on its global information and contribution
in different directions.

For the grouped feature map XϵRC//G∗H∗W , where H and W are the height and width,
respectively, the output of the 1 × 1 branches is first globally average-pooled separately.
This operation averages the entire feature map along spatial positions along a specific
dimension, converting information from each channel into a vector. When globally average-
pooling along the horizontal dimension, the information of each channel is transformed into
a set of average values along the vertical dimension, summarizing positional information
along the vertical dimension. For a height H, the pooling output of C is represented as:

ZC//G
H (i) =

1
W

W

∑
j=0

XC//G(i, j), (2)

where (i, j) represents positional information, and Xc denotes the feature value of channel
C at that position. Similarly, when performing global average pooling along the vertical
dimension, it can be transformed to capture positional information along the horizontal
dimension. This ensures that the information of each channel encompasses the positional
information along the horizontal dimension. When the width is W, the pooled output of
channel C is represented as:

ZC//G
W (j) =

1
H

H

∑
j=0

XC//G(i, j), (3)

Concatenate the two feature vectors obtained above along the channel dimension.
The concatenated feature vector, denoted as ZϵRC//G∗(H+W) is then subjected to a 1 × 1
convolutional operation to yield a new feature vector:

f c′
out(i, j) =

c′

∑
k=1

wc′ ,k × Zk
(H,W)(i, j) + bc′ − µc′

√
σ2

c′ + ε
× rc′ + βc′ , (4)

where, k represents the input channels, c′ represents the output channels, and b denotes the
bias for the output channels. Batch normalization is applied, with µ representing the mean
and ε introduced to prevent division by zero. The parameters r and β represent trainable
scaling and shifting parameters, respectively. The weight matrix generated through the
aforementioned steps can reflect the importance of each channel and spatial information.
We utilize this weight matrix to reweight the original input feature map, adjusting the
response values for each channel and spatial position.
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Figure 8. The flowchart of parallel convolutions. The left figure is a sequence diagram, and the right
figure is a flowchart of parallel convolutions.

By using convolutional kernels and pooling operations of different sizes, information
is extracted from image features at different scales (or resolutions) to capture various
features in the image, from details to global information. This approach enhances the
model’s detection and recognition performance.

The primary purpose of a 1 × 1 convolution is to alter dimensionality by changing
the number of channels in the feature map, merging all channel information of each
pixel into a new channel. In contrast, a 3 × 3 convolution is mainly used to capture
local spatial information: it extracts features within a local area, increasing the model’s
receptive field and contextual understanding. Although it increases computational load,
the effect on capturing detail information is significant and can be used in conjunction
with different sizes of convolutional kernels to extract multi-scale features. To further
enhance feature representation, we employ a process of cross-dimensional reshaping and
rearrangement. Specifically, the feature map is reshaped and rearranged to the batch
dimension by transposing the channel and batch dimensions. This allows the network to
treat channels as independent samples, thus enabling the extraction of more complex and
informative features. The reshaped feature map is then divided into multiple sub-feature
groups, each with the same spatial dimensions, allowing different semantic representations
to be learned within each group. Following the reshaping, the outputs of the 1 × 1 and
3 × 3 branches are subjected to global average pooling separately, encoding global spatial
information to form a new input and enhancing the global and local dependencies of
feature expression. The model captures both global information and local information
during the feature extraction process. This dual capture enhances the feature representation
capability and improves detection accuracy.

Cross-Spatial Learning enhances pixel-level attention in high-level feature maps by
aggregating information across different spatial dimensions, capturing pixel-level pairing
relationships and global context. This method combines channel and spatial informa-
tion, forming a richer feature representation, and enhances model performance in image
classification and object detection tasks. Finally, joint activation, after combining channel
features, involves weighting and combining two spatial attention maps to generate the
final output feature map. This feature map retains the dimensions of the input feature
map and contains richer spatial and channel information. The weights are determined
through a global average pooling operation that reduces each feature map to a single vector,
effectively summarizing spatial information. This vector is subsequently passed through a
fully connected layer to generate the attention weights. These weights are optimized during
the training process, enabling the model to dynamically assign importance to different
spatial attention maps. This process ensures the final feature map retains the dimensions of
the input feature map while incorporating richer spatial and channel information, thereby
enhancing model performance in image classification and object detection tasks.
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Considering that the Sigmoid function may encounter issues such as gradient vanish-
ing, we have improved the activation function by introducing Leaky ReLu. The formula
as follows:

Leaky ReLu(x) =
{

x i f (x > 0)
ax i f (x <= 0)

}
, (5)

in this function, a is a very small constant that can effectively prevent the neuron death
problem associated with LeLU.

Leaky ReLU is to address the issue of potential neuron death caused by standard ReLU,
by introducing a small negative slope. This improvement enhances training effectiveness
and boosts model stability.

4. Experiments

In this section, we will introduce the details of our experiment and the result we
have achieved. Our code is available at: https://github.com/luotiger123/YOLOtree.

4.1. Experiments Details and Datasets

We trained our model using the following training environment: Our graphics card
model is NVIDIA GeForce RTX 3080Ti GPU (16GB VRAM). It is a product of NVIDIA
Corporation based in Santa Clara, CA, USA. Our official driver version is 546.80. The
processor model we used is 12th Gen Intel(R) Core(TM) i9-12900H. We utilized the PyTorch
1.12 deep learning framework developed by Facebook’s team in Menlo Park, California,
USA, for training our model. All networks are trained using official source code, with
each training session lasting 100 epochs. Most networks leverage weights pretrained on
ImageNet. Comparisons are made at similar scales, but this does not imply equal parameter
counts. For example, YOLOv8 and YOLOv9, each available in five sizes, are evaluated
using the lightest size. We compare the models’ ability to extract tree crown canopies on
TreeLD and further test our model’s capability for small object extraction and localization
in remote sensing scenes using the classic datasets Carpk and Visdrone. We measure
our model’s extraction capabilities using precision, recall, mAP50, and mAP95 to assess
performance. Here are the definition of four indicators:

precision =
TP

TP + FP
× 100%, (6)

recall =
TP

TP + FN
× 100%, (7)

mAP50 =
1
N

N

∑
i=1

AP0.5
i × 100%, (8)

mAP95 =
1
N

N

∑
i=1

AP0.95
i × 100%, (9)

where TP denotes the number of correctly predicted positive instances. FP denotes the
number of incorrectly predicted positive instances. FN represents the number of posi-
tive instances incorrectly predicted as negative. N denotes the total number of classes.
AP0.5

i denotes Average Precision at IoU threshold of 0.5 for class(i). These four metrics,
respectively, measure the precision, recall, and average precision at different IoU thresholds,
comprehensively evaluating the performance of the model in object detection tasks.

4.2. Quantitative Comparison Results

We compared our proposed YOLOTree with the state-of-the-art YOLO series mod-
els, including YOLOv9, YOLOv8, YOLOv7, YOLOv5, and YOLOv3, on three datasets:
TreeLD, Visdrone, and Carpk. Additionally, we compared them with the two-stage object
detection network Faster-RCNN. All datasets were randomly partitioned to ensure fair
comparisons, with 80% of images used for training, 10% for validation, and 10% for testing.

https://github.com/luotiger123/YOLOtree
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The quantitative comparison results are presented in Table 1. It is noteworthy that we
selected the lightest model from the official source code for our experiments. Since the
lightweight model of YOLOv9 is not open-sourced, we opted for a mid-sized model to
conduct comparative experiments.

Table 1. Quantitative Comparison of YOLO Series Models on Three Datasets.

Model Dataset Precision/% Recall/% mAP50/% mAP50-95/%

YOLOv3

TreeLD

88.77 92.82 93.23 46.60
YOLOv5 90.44 91.78 95.58 . 51.95
YOLOv7 89.84 90.8 94.73 49.91
YOLOv8 89.71 91.22 95.33 52.93
YOLOv9 90.13 90.32 95.04 53.96
Faster-RCNN 83.94 94.96 83.94 /
YOLOTree(ours) 90.52 91.14 95.53 52.84

YOLOv3

CarPK

97.34 94.31 97.65 68.64
YOLOv5 98.27 95.75 98.50 68.20
YOLOv7 98.41 96.65 99.36 70.76
YOLOv8 98.98 97.69 99.38 81.35
YOLOv9 98.73 98.27 99.40 83.04
Faster-RCNN 88.96 91.77 92.03 /
YOLOTree(ours) 98.93 98.35 99.22 83.13

YOLOv5

VisDrone

34.07 34.07 32.66 17.81
YOLOv8 43.29 31.70 31.83 18.37
YOLOv9 55.13 42.65 44.53 27.13
YOLOTree(ours) 44.08 32.00 32.11 18.59

Note: Bold font indicates the best performance metrics.

By incorporating the more efficient parallel convolution module CF2_EMA, our model
YOLOTree achieved improvement in individual-tree extraction. On the TreeLD dataset, our
model exhibited significant enhancement. With an equivalent parameter scale, our model
achieved a precision score of 90.52%, a recall score of 91.14%, and mAP50 and mAP50-95
scores of 95.53% and 52.84%, respectively, which were the highest among all models
comprehensively. This indicates that our model not only accurately locates individual trees
but also correctly identifies their contour information, demonstrating strong adaptability in
individual-tree extraction. Even in comparison with YOLOv9, which has a large parameter
count and very long training time, our model only slightly lagged behind in recall and
mAP50 indicators, further highlighting its superiority. In the Carpk dataset, our model
maintained its advantage with a precision indicator of 98.93%, a recall indicator of 98.35%,
and an mAP50-95 indicator of 83.13%, leading among multiple models. While in the
mAP50 indicator, YOLOv9 scored 99.40 and our model scored 99.22%, showing a minimal
difference. Despite YOLOv9’s significant lead in the multi-category detection VisDrone
dataset, its training cost is nearly several times that of other lightweight models. It cannot be
ignored that the parameter size of YOLOv9 is 20 Mb, and the parameter size of YOLOTree
model is 3 Mb. Such costs are unacceptable for rapid modeling of forest vegetation.
Obviously, our model has the advantage of being lightweight and has more comprehensive
performance. Under equivalent parameter conditions, our model outperforms existing
YOLO models.

We also conducted ablation experiments on the model, embedding the EMA module
into different stages of the baseline model to obtain different quantitative effects. We
selected YOLOv8 at different scales for the ablation experiments, as shown in Table 2.
The increase in model scale has little effect on performance improvement but significantly
increases the number of parameters and computational load.

We integrated the proposed C2f_EMA module into the backbone, neck, and detection
stages of the model. The results show that while embedding the C2f_EMA module in the
neck and detection stages slightly improves some metrics, it does not significantly improve
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overall performance and increases both the number of parameters and computational load.
However, embedding it in the backbone can moderately improve precision while maintain-
ing high recall, with a moderate increase in the number of parameters and computational
load, demonstrating a good balance.

Table 2. Ablation study on TreeLD.

Model E_neck E_detect E_backbone BiFPN Precision/% Recall/% mAP50/% mAP50-95/% Parameters/Mb GFLOPs

YOLOv8n 89.8 91.4 95.3 52.9 3.0 8.1
YOLOv8s 90.5 91.0 95.6 53.2 11.1 28.4
YOLOv8m 89.9 91.4 95.4 53.2 25.8 78.7
YOLOv8n ✓ 89.7 91.2 95.3 52.9 3.0 8.3
YOLOv8s ✓ 89.6 90.9 95.1 52.8 11.2 29.3
YOLOv8n ✓ 89.5 91.0 95.0 52.5 3.0 8.2
YOLOv8n ✓ 90.5 90.5 95.3 52.7 3.0 8.4
YOLOTree ✓ ✓ 90.5 91.1 95.5 52.8 3.0 8.4

Note: Bold font indicates the best performance metrics.

The improved model YOLOTree, with the C2f_EMA module embedded in the back-
bone and additional feature fusion, performs excellently in terms of precision, recall,
mAP50, and mAP50-95, with values of 90.5%, 91.1%, 95.5%, and 52.8%. Our model achieved
high precision, and other performance indices were also highly competitive, making the
overall performance of our model strong. Moreover, compared to other YOLOv8 models,
YOLOTree has relatively lower parameter and computational loads. In summary, while
maintaining high performance, YOLOTree exhibits lower complexity and parameter count,
making it more advantageous for individual-tree detection applications.

Additionally, we conducted an analysis of the sensitivity of the model to the four
parameters involved. We recorded the metrics of the model for each iteration, as shown in
Figure 9. It is evident that each metric gradually converges to its peak value. We marked
the peak results for each metric. It can be observed that our model converges quickly, with
all metrics reaching their optimal levels around the 20th iteration. The fitting is very good,
and all metrics exhibit stable convergence.

Figure 9. Parameter iteration analysis.

4.3. Visualization Comparison

In this section, we analyze the visual comparison results between models. As il-
lustrated in Figure 10, YOLOTree outperforms YOLOv8 and YOLOv9 in individual-tree
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recognition tasks. By introducing the EMA module, we emphasize the target detection
ability in small fields of view. Therefore, our model can capture small targets within edges,
whereas v8 and v9 may have omissions in certain scenarios. Compared to V3 and V7, our
model comprehensively captures information for each individual tree (The result is shown
in Figure 11). V3 and V7, on the other hand, often fail to capture even the most prominent
tree features in some scenes due to their sensitivity to scale changes, rendering them unable
to adapt to the interspecies heterogeneity of individual trees.

Figure 10. Visual Comparison Results of YOLOTree with YOLOv9 and v8. (a) Represents the original
input RGB image, (b) Visualization results, left for other models, right for YOLOTree, (c) Visualization
results details of other models , (d) YOLOTree results details.

Figure 11. Visual Comparison Results of YOLOTree with YOLOv7 and v3. (a) Represents the original
input RGB image, (b) Visualization results, left for other models, right for YOLOTree, (c) Visualization
results details of other models , (d) YOLOTree results details.
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5. Application

In this section, we will discuss the practical application of the model in calculating
the volume of individual trees, with Jiaozuo City’s plantation selected as our study site.
Compared to existing mainstream point cloud volume calculation methods, our model has
achieved improved accuracy.

5.1. Modeling of the Canopy Volume Calculation for Catalpa Trees

Scholars typically define the canopy volume as the space covered by the tree canopy,
which includes the trunk, leaves, branches, and the gaps within the canopy. For large
deciduous trees like catalpas, characterized by their sturdy branches and broad canopies,
their crown tops present as semi-ellipsoidal shapes with varying degrees of flatness. There-
fore, the volume of an ellipsoid can be used as an approximation to model the canopy
volume of catalpa trees (Illustration as shown in Figure 12). An ellipsoid is a surface in
three-dimensional space, consisting of all points that satisfy the following equation:

x2

a2 +
y2

b2 +
z2

c2 = 1, (10)

where a, b, and c are real numbers, representing the lengths of the semi-axes of the ellipsoid
along the three coordinate axes.

Figure 12. The Modeling of canopy volume. (a) Represents a semi-ellipsoidal shape. (b) Represents
an elliptical cone. In these figures, a, b, c represent the major axis, minor axis, and height of the tree
canopy respectively.

Given that the remote sensing image of the tree presents an elliptical projection on the
horizontal plane, we can establish a spatial coordinate system centered on this elliptical
surface. Using the proposed YOLOTree, we can obtain the major and minor axes a and
b of this ellipse. By then locating coordinates in the point cloud for individual trees, we
can obtain height information c. This allows us to derive the formula for calculating the
canopy volume:

V =
2
3

π × a × b × c, (11)

thus, we can approximate the volume of the catalpa tree canopies, but there are some
special cases to consider.

We observed that some catalpa trees do not exhibit a semi-ellipsoidal form but rather
approximate the characteristics of an elliptical cone. Therefore, for these catalpa trees, we
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can apply a similar modeling technique by using the canopy projection area as the horizon-
tal plane to establish a spatial coordinate system, resulting in the following volume formula:

V =
1
3

π × a × b × c, (12)

The selection of two modeling methods depends on the variation in crown curvature;
it is also possible to classify the models by training a classifier, although this introduces
additional computational load. We have analyzed the major morphological characteristics
of the plantation area, and based on empirical values, we consider a curvature greater
than 0.05 as semi-ellipsoidal and less than 0.05 as elliptical conical [27]. Our experimental
analysis shows that our model achieves high accuracy.

5.2. Existing Point Cloud Volume Calculation Methods and Error Analysis

At present, academics often use two mainstream ideas in dealing with point cloud
data volume calculation: the first is to use the voxel method to calculate the point cloud
volume. Its main idea is to build an octree in the point cloud space, the space is divided into
uniform eight cubes of equal size, by adjusting the depth of the octree, you can control the
stereo and then divided into eight smaller stereo, and so on recursively. The points in the
cubes where there is a point cloud are considered valid cubes, and vice versa, and the final
volume of the object is obtained by adding and summing the volumes of the valid cubes.
This is widely used in volume modelling [28]. However, it encounters some problems in
monoclinic modelling, as can be seen in the redundancy and shrinkage of volumes under
octagonal cubic spaces constructed at different depths. The redundancy is due to the fact
that at coarse granularity, as shown in Figure 13a, there will be many edge points that
are diffused into an individual effective cubic, and the cubic volume is not small at that
granularity. In addition, they are used in the summation volume calculation, introducing
a positive error. Secondly, the volume reduction is mainly due to the fact that the canopy
point cloud has only canopy surface data and cannot sample the inner canopy. At fine
granularity, as shown in Figure 13b, there will be some inner space ignored, which leads to
a smaller volume prediction. Therefore, we weight the computation of the two different
sampling methods at the same strength to make the volume converge to Ground Truth to
some extent. We consider the sum of the two critical depths of the method as the Ground
Truth of the volume of an individual tree.

The second method is to use the 2.5D information of the point cloud for volume
calculation. Specifically, the model is projected onto the Z-axis horizontal plane, parallel
hexahedra are constructed by setting the edge length parameter of the smallest parallel
hexahedron, the heat map of the projection’s height difference is used, and the volume of
these hexahedra are finally summed up. This approach tends to introduce a large error due
to ignoring the contour information of the real model, and its computational results are
biased because it constructs the hexahedra using the extreme difference in heights, and the
contour of the canopy determines that it will not completely cover the entire space of the
hexahedron. Our subsequent experiments proved this point.

Thus, we proposed a new way of modelling the volume of an individual tree, using
RGB images from remote sensing images to obtain the contour parameters of an individual
tree, as for the height information can be obtained either by counting the average height
of plantation forests or by locating specific point cloud data. Our experiments prove that
the latter can substantially improve the individual wood extraction accuracy, which is
inevitable because catalpa trees grow in different body shapes and are affected by different
environmental factors such as light, which can lead to different heights of the trees. To
summarise, our method circumvents the computational cost of directly processing point
cloud data while delivering high accuracy.
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Figure 13. Error Analyze. (a) represents the coarse granularity Octree. (b) represents the fine
granularity Octree. The red circles are used to highlight the details of the error.

5.3. Visualisation and Quantitative Analysis of Results

Our experiment was carried out in a plantation forest in Jiaozuo City, where we
selected and counted 574 individual trees, and obtained individual tree data from the
area in the form of LiDAR sampling and UAV remote sensing photography. At the same
time, we measured the height of individual trees in the area using a tape measure and
calculated the combined individual tree height for remote sensing estimation. We selected
eight catalpa trees from both areas for individual wood volume modelling application
and comparison. Table 3 exhibits the results of individual wood modelling calculations
for different models. V(2.5D) represents volume calculated using the 2.5D parallelepiped
method. V(left) represents the coarse granularity left boundary case of OcTree, while
V(right) represents the fine granularity right boundary case of OcTree. V(rs) indicates
volume estimated using two-dimensional remote sensing images and average tree height.
V(ours) represents volume estimated using two-dimensional images and point cloud tree
height. V(GT) represents the actual modeled volume. In the case of these eight trees, our
model outperforms using only RGB images for five of them. We use a metrics Absolute
Error to measure them. The formula is as follows:

Absolute Error =
n

∑
i=1

∣∣∣VPre
i − VGT

i

∣∣∣, (13)

where Vpre denotes the prediction of the proposed method, VGT represents the Ground
Truth. n denotes the numbers of samples.

Table 3. Calculation table for volume of individual tree.

Tree V(2.5D) V(Left) V(Right) V(GT) V(Ours) V(rs)

1 46.643 36.416 14.704 25.56 28.42 27.68
2 20.566 17.024 6.776 11.9 9.53 6.37
3 38.43 26.688 11.304 18.996 20.88 14.93
4 31.499 22.08 9.256 15.668 19.47 12.84

5 26.583 19.584 7.704 13.644 15.16 12.44
6 18.417 12.864 5.488 9.176 13.67 15.04
7 30.51 22.08 9.432 15.756 14.85 10.32
8 20.573 14.848 6.104 10.476 11.38 9.02

Note: Bold font indicates the best performance metrics.

By calculating the Absolute Error and summing them up for both methods, the error
introduced by incorporating point clouds is 18.736, while using only RGB images results
in an error of 27.704. The results indicate that our model outperforms other methods in
most cases. With the introduction of point cloud data, the predicted individual-tree volume
shows a significant improvement in accuracy compared to using only remote sensing data.
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Figures 14 and 15 present the process of these models in calculating individual tree
canopy volume. We completed the complete individual-wood canopy volume modelling
process by combining the 2D remote sensing images to predict the canopy crown parameters
with the point cloud data. By introducing the YOLOTree model, we improved the accuracy
of the model for the extraction of tree crown width and the spatial positioning of individual
trees. This helps to further accurate volume calculations. Comparing these methods, we
can see the computational simplicity of our model as well as the accuracy of the results.
This is further evidence of our outstanding contribution to the field of individual-tree
canopy volume modelling.

Figure 14. Visualisation of canopy volume calculation in Sample area 1. (a) UAV-RGB imagery, with
red boxes predicted by YOLOTree. (b) the captured canopy projection map. (c) the 2.5D projection
map with colours reflecting height changes. (d) coarse-grained octree voxel map. (e) a fine-grained
octree sketch.

Figure 15. Visualisation of canopy volume calculation in Sample area 2. (a) UAV-RGB imagery, with
red boxes predicted by YOLOTree. (b) the captured canopy projection map. (c) the 2.5D projection
map with colours reflecting height changes. (d) coarse-grained octree voxel map. (e) a fine-grained
octree sketch.

6. Discussion

This study introduced the YOLOTree model, which integrates UAV-RGB imagery and
LiDAR point cloud data for more accurate spatial positioning and crown volume calcula-
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tion of individual trees. Regarding the issue of missing points within tree crowns due to
the point cloud LiDAR scans mentioned earlier, we confirmed this through error analysis
and experimental validation. Our geometric modeling-based assumption evidently pro-
vides volume estimates closer to the Ground Truth of crown volumes compared to direct
voxel-based methods. Despite our assumption neglecting internal structural information of
the crowns, it appears that such structural loss has a minimal impact on volume accuracy.
Therefore, selectively ignoring its structural details in crown volume modeling is feasible,
considering the efficiency gains achieved outweigh this loss. Compared to traditional meth-
ods based on an individual data source, our model demonstrated significant improvements
in accuracy and real-time performance. Particularly, the model effectively enhanced target
detection accuracy and robustness in tasks involving individual tree detection in complex
forest backgrounds, thanks to the introduction of multi-scale feature fusion and the EMA
attention mechanism.

The YOLOTree model holds significant potential for practical applications, especially
in forestry resource management [29] and urban greenery monitoring [30]. For instance,
accurate canopy volume data can help forestry managers assess forest health and devise
more effective tree planting and maintenance plans. Additionally, the methods from this
study can support urban planners in designing green spaces by providing data to optimize
urban greening structures and improve urban ecological environments. It can provide
an effective approach for the accurate calculation of Living Vegetation Volume (LVV) and
carbon stock, which contributes to a comprehensive evaluation of the ecological benefits of
urban green spaces.

The multi-scale feature fusion strategy proposed in this study, particularly the use of
the BiFPN network, offers a new solution for high-precision target detection in complex
backgrounds. BiFPN enhances the integration of features at different scales by establishing
bidirectional connections between feature maps, which is crucial for improving model
performance on trees of various sizes and shapes. Furthermore, the introduction of the
EMA attention mechanism further optimized feature expression, enhancing the model’s
ability to recognize issues of occlusion and connectivity between individual trees in forests.

Although the YOLOTree model excels in detecting individual trees and calculating
their volume, training and optimizing the model still pose some challenges. Firstly, acquir-
ing high-quality point cloud and RGB data requires expensive equipment and complex
data preprocessing steps. Future research could explore more economical data collection
methods or develop more efficient data-processing algorithms. Additionally, enhancing
the model’s generalizability is an important direction for future research, including testing
and optimizing the model in different types of forest environments and extending its
applicability to other tree species.

7. Conclusions

In this paper, we propose a method that combines two-dimensional RGB remote
sensing imagery with three-dimensional point cloud data to address the challenges of
canopy volume calculation modeling for Chinese catalpa trees. Meanwhile, we also create
and release a new dataset TreeLD for individual-tree canopy detection in remote sensing.
This comprehensive resource fills a crucial gap in data support for individual-tree research.
Compared to traditional methods, our approach not only simplifies complex computational
procedures but also enhances accuracy. In 62.5% of cases, the introduction of point clouds
outperforms using solely RGB data, with an accuracy improvement of 30.71%. Compared
with traditional method using 2.5D point cloud data only, the proposed method exhibits
an improvement of 83.03%. Furthermore, the newly proposed YOLOTree architecture
boosts precision in individual-tree canopy extraction by 0.81% and demonstrates superior
performance across multiple datasets, solidifying its position as a leading solution. We also
conducted downstream applications in the artificial forests of Jiaozuo City with promising
results. While achieving the above results, our model provides a good direction for the
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calculation of canopy volume, which provides a valuable study for the evaluation of
ecological benefits of urban forest greening.
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