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Abstract: Weather is a significant factor influencing forest health, productivity, and the carbon cycle.
However, our understanding of these effects is limited for many regions and ecosystems. Assessing
the impact of weather variability on harvester productivity from plantation forests may assist in forest
planning through the use of data modeling. We investigated whether weather data combined with
timber harvesting attributes could be used to create a high-performance model that could accurately
predict harvester productivity in Eucalyptus plantations using machine learning. Furthermore, we
aimed to provide an online application to assist forest managers in applying the model. For the
modeling, we considered 15 weather and timber harvesting attributes. We considered productivity
as the target attribute. We subjected the database to 24 common algorithms in default mode and
compared them according to error metrics and accuracy. From the timber harvesting features
combined with weather features, the Catboost model can predict the productivity of harvesters
in a tuned mode, with a coefficient of determination of 0.70. The use of weather data combined
with timber harvesting attributes in the model is an accurate approach for predicting harvester
productivity in Eucalyptus plantations, allowing for the creation of an online, free application to assist
forest managers.

Keywords: artificial intelligence; meteorological data mechanized; timber harvesting; Eucalyptus
planted forests; forest operations

1. Introduction

The primary challenge for forest managers in forest-based industries is controlling
productive inputs in a rational and efficient manner, thereby achieving high productivity.
In addition to understanding the productive chain, plantation forest management requires
a closer examination of potential factors that enhance the performance of harvesters. The
increased data collection in harvesters and meteorological stations in plantation forests has
attracted the attention of forestry companies, who have found machine learning techniques
to be an efficient tool for planning operational activities.

Plantation forests are a type of forest that employs high-level management techniques,
contains one or two species, and has trees with uniform spacing and age. As the demand
for forest products continues to grow, plantation forests represent 7.0% of the total forested
area worldwide, encompassing 294 million hectares. Brazil is well-known for its high
productivity of Eucalyptus plantation forests, occupying 7.3 million hectares. This is largely
due to the favorable climate for this species, as well as several plant breeding and plant
management research initiatives [1-3].

In accordance with forest planning, the management of plantation forests encompasses
the cultivation phase and the subsequent timber harvest. The timber harvest process is
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defined as comprising a series of activities, including pruning, tracing, loading, trans-
portation, and the provision of raw materials to the forest industry [4,5]. In the context of
mechanized timber harvesting management, it is essential to select self-propelled forestry
machines that are tailored to specific activities and functions. In Brazil, one of the primary
timber-harvesting systems employed for Eucalyptus spp. is the cut-to-length system [6-8].

In the context of the cut-to-length system, the most prevalent self-propelled forestry
machines are harvesters. These machines are capable of performing a diverse range of
tasks, including felling, delimbing, topping, debarking, and bucking [9-13]. In this system,
the productivity of the harvester is influenced by a multitude of factors, including the slope
and soil type, the average volume, the density of the timber, the number of assortments, the
technical characteristics of the self-propelled machine and cutting head, and the operator’s
experience level. In this context, the harvester provides several data points regarding the
operation of harvest trees, which can be utilized to adjust forest management in order to
achieve the optimal harvest yield [14,15].

In addition to the aforementioned factors, weather conditions can also affect harvester
productivity, particularly for Eucalyptus spp. grown in plantations in more than 90 countries.
Meteorological stations collect weather data, which are then used to determine synoptic
atmospheric conditions. These data can be analyzed in relation to different research areas
and crops, including Eucalyptus spp. [16-25].

The exponential growth in computational power has led to an exponential increase
in the amount of data generated by mechanized timber harvesting. This has created a
significant opportunity for the application of machine learning (ML) algorithms to these
datasets, with the potential to enhance timber harvesting productivity and support more
informed decision-making. However, the paucity of publications on the application of
ML techniques to mechanized harvesting operations represents a significant obstacle to
the advancement of this crucial field of research [26-29], particularly when it involves the
integration of these data with climatic aspects [30].

Machine learning techniques, which may be classified as either supervised or unsuper-
vised learning, are based on the extraction of patterns from a database in order to generate
predictive models. These techniques are employed in a variety of studies within the field
of forest research. In particular, regression analysis has been utilized in timber harvesting
operations in order to predict productivity [31]. Ideally, models and experimental research
should be closely integrated. A modeling framework can be employed to generate research
questions and identify key sets of measurements needed. Furthermore, experimental data
must be used critically to test model performance [32].

The objective of this study was to ascertain whether meteorological data from mete-
orological stations combined with timber harvesting attributes could be used to create a
high-performance model that could accurately predict harvester productivity in Eucalyptus
plantations using machine learning. Furthermore, the study aimed to provide an online
application, accessible free of charge, to assist forest managers in applying the model.

2. Materials and Methods
2.1. Raw Data

We utilized structured data pertaining to mechanized timber harvesting operations in
Eucalyptus plantations situated in two regions within the Brazilian state of Minas Gerais.
The harvested timber was destined for paper and bleached Eucalyptus pulp production.
The plantation area in question has a total area of 8609 hectares, with an average of
1028 trees ha ™!, a forest age of 7.5 years, an average individual tree volume of 0.20 m?, and
a slope terrain of 24°. The Koppen classification indicates that these forests are situated in a
climate designated as Cwa, which is characterized by humid subtropical conditions with
dry winters and hot summers [33]. The soils were classified as yellow Latosol, yellow red
Argisol, and red Argisol, as described in the work of Santos et al. [34].

A cut-to-length system (CTL) was employed to harvest 1.77 million m3 of timber
over a 27-month period. This entailed a range of activities, including felling, delimbing,
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topping, debarking, and bucking. The average log length was 6.4 m, and the work was
carried out using 8-wheeled harvesters (model Ergo H8, Ponsse Plc, Vierem4, Finland)
with a typical weight of 21,500 kg and an engine power of 205 kW. All machines utilized
the harvester head (model H7 HD, Ponsse Plc, Vieremd, Finland) with a feed speed of
5m s~ ! and a maximum opening of 650 mm. To enhance the timber harvesting dataset, we
employed weather data collected by the Brazilian National Institute of Meteorology [35]
from automatic weather stations.

2.2. Data Processing

The raw dataset included the following features: timber assortment (CC—log with
bark; EN—log-to-energy; and SC—log without bark), work shift (A—morning to afternoon;
B—afternoon to night; and C—night to morning), working hours, operator experience
(years), forest age (years), stand density (tree ha~'), and average individual tree volume
(m3) obtained from a forest inventory. The mean wind speed (m s~1), mean dew point
temperature (Celsius degree), mean gust of wind (m s~!), mean relative air humidity (%),
mean atmospheric pressure (mbar), mean air temperature (Celsius degree), mean global
radiation (k] m~?), and mean rainfall (mm) were also recorded by the meteorological
stations. The target feature, productivity (m® h~!), was also measured. The total volume
harvested was determined using diameter and length sensors located on the harvester
head. To prevent the under or overestimation of productivity, we validated the sensor
accuracy using the methodology described by Santos et al. [36].

We applied several processes to the input dataset in order to produce meaningful data
information. This process of data wrangling involves the removal of special characters,
missing values, outliers, features without variation and incomplete data information.
Furthermore, we employed exploratory data analysis (EDA) to ascertain the profile and
distribution of the data, while recursive feature elimination (RFE) was utilized to retain
the highly relevant features. We employed feature importance (FI) to remove features with
low importance, as illustrated in the Supplementary Materials (Figures S1 and S2; Tables
51-53), in order to facilitate the modeling process [37-39].

2.3. Modeling, Evaluation and Prediction

The input dataset generated was randomly divided into a training set and a test set
according to an 8:2 ratio, resulting in 20,308 and 5078 instances, respectively. To ensure the data
similarity between the two sets, we applied the EDA (Supplementary Materials—Table 54).

This study is based on the seven algorithm groups (Table 1) available for regression
analysis via supervised learning. A total of 24 machine learning algorithms were applied with
their default configurations in the Python programming language [40,41] with the objective of
identifying the optimal models for each group (Supplementary Materials—Table S5).

Subsequently, the optimal default model was selected, and the optuna framework [42]
was employed to adjust the hyperparameters, resulting in the tuned model (Supplementary
Materials—Tables S6 and S7). The modeling process was conducted solely using data per-
taining to timber harvesting features (THF) and timber harvesting features in conjunction
with weather features (THFWF).

The metrics mean square error (MSE), mean absolute error (MAE), median absolute
error (MedAE), maximum error (ME), and determination coefficient (R?) were employed to
assess the efficacy of the models based on the train and test datasets. In order to identify
the optimal model, the Kruskal-Wallis test [43,44] was applied using the programming
language R [45] (Supplementary Materials—Tables S8 and S9).

Two final models were applied to the test dataset to provide a comprehensive overview
of the predictions (Supplementary Materials—Table S10), and we employed the SHapley
Additive exPlanations (SHAP) method [46] to observe the effect of features over the models
on prediction results. The general roadmap of the methodology is depicted in Figure 1.
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Table 1. Main model groups that are possible to use in supervised machine learning for regression

analysis. Groups 1 to 6 are provided by the Python scikit-learn module; Group 7 is provided by the

Python gplearn module.
Description Model Group

The target value is expected to be a linear combination of the features. Linear Methods 1
In high-dimensional spaces, the use of a subset of training points in the
decision function is an effective approach. The choice of kernel function is also SVM 2
a matter of discretion.
The prediction is based on the distance of the new point (Euclidean distance)
to the samples analyzed, which are known as non-generalizing machine K nearest Neighbors 3
learning methods and non-parametric methods.
A non-parametric supervised learning method predicts the value of a target -

. . . .. . Decision Tree 4
variable by learning simple decision rules inferred from the data features.
The combination of the predictions of several estimators using a learning
algorithm can enhance the generalizability and robustness of the resulting Ensemble 5
model over a single estimator.
T}.le input and output layers may comprise one or more non-linear layers Artificial Neural
(hidden layers), which are capable of learning non-linear models and 6

. . . Network

executing them in real time.
The identification of an underlying mathematical expression that best
describes a relationship is a crucial initial step. This is followed by the
construction of a population of naive random formulas, which represent the Genetic Algorithm 7

relationship between the known independent variables and their dependent
variable targets. The objective is to predict new data.

Remove missing data and outliers
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Figure 1. Flowchart of the methodology to generate the harvester productivity prediction model in

timber-harvesting operations in Eucalyptus plantations.
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3. Results
3.1. Recursive Feature Elimination and Feature Importance

The initial dataset comprised 35,223 instances and 43 features. Following the data
wrangling process, the dataset pertaining to timber harvesting features (THF) now exhibits
eight attributes, while the dataset incorporating timber harvesting features in conjunction
with weather features (THFWF) displays sixteen attributes, both with 25,387 instances.

The initial features were ranked using the RFE method in the input dataset THF, with
no feature being removed. In contrast, in the input dataset THFWE, the features mean
air temperature, mean global radiation, and mean rainfall were removed. These results
indicate that these features have low relevance in the dataset (Supplementary Materials—
Table S2). Subsequently, the FI method demonstrated that the most crucial features were
working hours and average individual tree volume, followed by forest age and operator
experience, for both datasets (Figure 2 and Supplementary Materials—Table S3). Following
the RFE method and FI, the THF dataset retained eight attributes, resulting in a total of
13 attributes in THFWE.

A
F2
F4
. F5
F3
F6
i [ 7
F8
[ F9
F5
F10
0 20 40 60 0 20 40 60
Mean Score Mean Score

Figure 2. Feature importance analysis applied to database. (A) Only timber-harvesting features (THF):
Fl—working hours; F2—average individual tree volume (m?3); F3—forest age (years); F4—operator
experience (years); F5—stand density (tree ha—1); (B) timber harvesting features combined with
weather features (THFWEF): F1—working hours; F2—average individual tree volume (m3); F3—forest
age (years); F4—operator experience (years); F5—wind speed mean (m s~ 1); F6—stand density
(tree ha~1); F7—mean atmospheric pressure (mbar); F8—mean relative air humidity (%); F9—mean
dew point temperature (Celsius degree); F10—mean gust of wind (m s~ 1).

3.2. Modeling in Default Mode

The ensemble, linear, and neural network methods (algorithm groups) yielded the
most favorable outcomes in the training and test datasets across both input datasets, THF
and THFWF (Supplementary Materials—Table S5). The CatBoost model demonstrated
the most optimal performance in the test dataset, according to the Kruskal-Wallis test
(Supplementary Materials—Table S8), with a higher value for R? and lower values for MSE
and MAE (Tables 2—4).
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Table 2. Mean value of the model performance by group of algorithms, analyzing the test dataset.

R? ME MedAE MAE MSE Group

0.57 98.35 15.22 18.86 599.45 Linear Methods

0.19 97.02 22.87 26.61 1119.18 SVM

0.53 107.82 15.51 19.59 653 K Nearest Neighbors

0.28 133.17 16.76 23.39 1001.68 Decision Tree THF

0.63 101.75 13.34 17.16 513.29 Ensemble

0.57 96.71 15.73 19.15 597.97 Artificial Neural Network

0.54 112.42 13.73 18.69 638.22 Genetic algorithm

0.58 103.75 14.13 18.29 577.82 Linear Methods

0.24 97.49 24.87 26.74 1050.12 SVM

0.35 109.85 20.18 23.97 904.21 K Nearest Neighbors

0.29 128.07 16.91 23.19 982.87 Decision Tree THFWF

0.65 102.48 13 16.73 485.92 Ensemble

0.57 100.23 13.97 18.47 593.42 Artificial Neural Network

0.55 119.67 13.04 18.43 628.27 Genetic algorithm

Table 3. Best models for each group of models applied to test dataset analyzing THF data.

R? ME MedAE MAE MSE Model Group
0.59 97.92 14.24 18.13 568.84 LassoLars 1
0.38 111.65 16.16 21.99 857.9 SVM Linear Kernel 2
0.53 107.82 15.51 19.59 653 K Nearest Neighbors 3
0.28 133.17 16.76 23.39 1001.68 CART 4
0.67 105.89 12.2 15.93 458.67 CatBoost 5
0.57 95.74 15.33 18.86 591.1 Multilayer Perceptron with 2 Layers 6
0.54 112.42 13.73 18.69 638.22 Symbolic Regressor 7

Table 4. Best models for each group of models applied to test dataset analyzing THFWF data.

R? ME MedAE MAE MSE Model Group
0.59 104.59 13.88 18.09 567.81 Bayesian Ridge 1
0.48 112.73 20.24 22.25 720.55 SVM Linear Kernel 2
0.35 109.85 20.18 23.97 904.21 Nearest Neighbors 3
0.29 128.07 16.91 23.19 982.87 CART 4
0.69 105.38 11.77 15.4 425.99 CatBoost 5
0.57 99.33 14.04 18.5 593.15 Multilayer Perceptron with 2 Layers 6
0.55 119.67 13.04 18.43 628.27 Symbolic Regressor 7

3.3. Tuned Model

Following the hyperparameter adjustment process, the tuned model was created based
on the best default model (CatBoost). According to the Kruskal-Wallis test (Supplementary
Materials—Table S9), the tuned model (THF or THFWF data) demonstrated the highest
performance on the test dataset. This was evidenced by the higher value of R? and the low
values of MSE and MAE results (Tables 5 and 6).

Table 5. Performance of CatBoost model on test dataset THF data.

R2 ME MedAE MAE MSE Mode Final
Model

0.67 105.89 12.2 15.93 458.67 Default Cath

0.67 104.59 11.88 15.72 450.63 Tuned atboost




Forests 2024, 15, 1398 70f12
Table 6. Performance of CatBoost model on test dataset THFWF data.
R2 ME MedAE MAE MSE Mode Final
Model
0.69 105.38 11.77 15.4 425.99 Default CatB
0.7 109.09 11.57 15.18 4145 Tuned atboost

3.4. SHAP Dependence Analysis

SHAP single dependency analysis was applied to the best-tuned model (with the use
of weather data) to demonstrate the impact of the features in this model. The working
hours and average individual tree volume were identified as the features with the greatest
positive impact on the model output, while stand density, forest age, and timber assortment
exhibited the greatest negative impact on the model output (Figure 3A,B).

B
A fx)
High
wonangnes  ~eommannenueeGiRRe— Wrking hours D
Average individual tree volume --*- Average individual tree volume
Operator experience e —+—- Stand density (SRl
Timber assortment * Forest age
Stand density + Timber assortment
E
Forest age + s Mean wind speed -181 '

o
‘ 1

Mean relative air humidity + E Mean dew point temperature ' +1.4
fid

Mean atmospheric pressure -’—w Mean gust of wind -0. 'Jz‘
Mean dew point temperature -+ Mean atmospheric pressure ’ +0.49
Mean wind speed + Mean relative air humidity -0 43‘
Mean gust of wind + Operator experlence ) +0.46
Work shift * Work shift |+0.34
Low
-60  -40 20 0 20 40 60 70 80 %0
SHAP value (impact on model output) ELfiX)]

Figure 3. SHAP dependence analysis of the main features in harvester productivity data associated
with weather data. (A) Impact of the feature values on model output; (B) impact of each feature
(SHAP value) on the model output.

4. Discussion
4.1. Features in the Model

Irrespective of the dataset in question, namely THF or THFWEF, the features pertaining
to working hours, average individual tree volume, stand density, forest age, and timber
assortment appear to be of particular relevance to this type of work. Indeed, these features
exhibit a linear response to productivity. Some studies have indicated that tree volume and
forest age play an important role in predictive models for harvester productivity [47,48].

However, our results indicate that the combination of harvest data with weather data
produced the most optimal results, even if subtle, in the modeling process, as evidenced
by Tables 2—4 and the Supplementary Materials (Tables S5 and S7). Despite exhibiting
relatively low feature importance values, wind speed mean, mean atmospheric pressure,
mean relative air humidity, mean dew point temperature, and mean gust of wind were
able to enhance the predictive performance of the evaluated models. These features can
impact the performance of harvester operators, such as impaired visibility due to sun glare
or rain and exposure to different temperatures during entering/exiting the cabin or repair
and maintenance work [49].

In terms of the utilization of features, the incorporation of weather data into the
harvest data resulted in enhanced predictive models, which contributed to a reduction in
the distortions and biases observed in models that solely utilized harvester data.
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4.2. Predictive Models

An evaluation of the algorithms utilized in this study revealed that those belonging
to the ensemble group exhibited the most favorable performance, regardless of whether
the data in question were THF or THFWF. This observation was particularly evident in
the case of the CatBoost algorithm, as evidenced by Tables 2—4. This algorithm has been
successfully employed in a number of research endeavors, including those pertaining to
power consumption forecasting and the estimation of building energy consumption. Its
models have consistently demonstrated high performance [50,51]. Moreover, this type of
model has demonstrated advantages in computational speed and reliable prediction when
compared to other ensemble algorithms, such as XGBoost and LightGBM [52].

Following hyperparameter adjustments using the optuna framework to the default
CatBoost model (generated using THF and THFWF data), it was found that the tuned
CatBoost model exhibited the best performance. Consequently, this two-tuned model was
selected as the final model. Nevertheless, as shown in Tables 5 and 6, the final model
generated by the use of harvest data combined with weather data exhibited the lowest
values for MSE and MAE, resulting in a higher value for R?.

4.3. Impact of the Features on Predictive Model

The findings revealed that all features used in harvest data combined with weather
data played a significant role in predicting productivity. The SHAP single dependency
analysis method demonstrated the impact of these features on the final model.

When we consider the features working hours, average individual tree volume, mean
dew point temperature, mean atmospheric pressure, operator experience, and work shift,
it is evident that they exert a positive influence on the predictive model. On the other
hand, the features stand density, forest age, timber assortment, mean wind speed, mean
gust of wind, and mean relative air humidity exert a negative influence on the predictive
model (Figure 3B). It can be concluded that the modifications in any features used in
harvest data combined with weather data played a significant role, at different weights, in
predicting productivity.

Operator experience in mechanized timber harvesting has been observed to increase
over time, which has a positive impact on productivity [53]. Therefore, it is recommended
that opportunities be provided to harvester operators in the form of adequate training,
courses designed to transfer specific knowledge and standardization methods. These
measures are likely to enhance the results of productivity. Furthermore, timber harvest
data can be utilized to inform production control and forest management. These data can
be employed to develop predictive models that assess harvester productivity, which can
assist forest managers in making informed decisions [54]. Moreover, weather data collected
by meteorological stations, whether by government institutions or private companies, can
be utilized for a variety of purposes, including weather prediction and climate change
studies [55].

4.4. Harvester Productivity Prediction Tool

Following the completion of the modeling process, the two models generated are
available for download and use locally via the GitHub repository at https:/ /github.com/
AlmeidaRO/ML_Tools (accessed on 7 August 2024). Additionally, the same repository
contains an online application based on Streamlit that can be accessed remotely [56], thus
facilitating use by regular users. Streamlit is a Python-based tool for developing web
applications for various purposes, primarily data science and machine learning. It enables
users to rapidly and seamlessly construct web applications from Python scripts [57].

The online tool enables the user to select the model to be employed, with the models
based on either timber harvesting feature (THF) or timber harvesting features combined
with weather feature (THFWF) data. Consequently, in the absence of weather data, the
forest manager must select the option “NO” in the weather data use option. The results
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are displayed in real-time in response to the user’s selection of an option in each feature
(Figure 4).

Feature adjustments

Use weather data Average Individual Tree Forest age (years) Stand density (unit/ha)
)
O Yes No Volume (m?) Lo X5 © 700<x=900
O 0.15<x<0.20 7 900 <x = 1200
0.20=x=0.25 8 1200 <x=1350
0.25<x<0.30 9
Dew point temperature (*C})  Gust of wind (m/s) Relative air humidity (%) Atmospheric pressure
O 0<x=10 O 0<xs3 O 10<x<30 {mbar)
10<x<15 3<x<4 30<x<60 © 950<x=960
15<x=20 4<xsT 60<x=80 960 <x=965
20<x=30 80<x=99 965<x=975
Work shift Operator experience Timber assortment Working hours
© morning - (years| © log with bark _.
afternoon O 01<x=s1 log to energy 1 8
afternoon - nigth 1<x=25 log without bark
night - morning 2.5<x=15
15<x=40
Results

Productivity: 71.7

Figure 4. Harvester Productivity Predictor, a user-friendly online tool to assist forest managers.

5. Conclusions

The application of machine learning techniques to the prediction of harvester produc-
tivity has been demonstrated to yield satisfactory results. The objective of our research was
to integrate weather data with timber harvesting data in order to develop a more accurate
predictive model for harvester productivity in Eucalyptus plantations. The integration
of weather data into the model led to enhanced predictive capacity, indicating that the
combination of these two data sources may be a valuable approach for enhancing the
accuracy of harvester productivity predictions.

Moreover, the generated model has been employed to develop a harvester productivity
prediction tool, an application (interactive dashboard) that enables the rapid visualization
of harvester productivity in terms of specific situations and conditions. This tool is designed
to assist forest managers in making informed decisions.

To direct further investigation, it is recommended that weather stations be installed
in close proximity to regions with forest plantations. This will facilitate the creation of
more precise models for predicting harvester productivity, thereby enabling the planning
and implementation of forest harvesting operations. Furthermore, the utilization of this
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localized meteorological data could enhance the accuracy of predictions generated by our
model, which is accessible through the online application.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/f15081398 /s1: Figure S1: Comparison between raw dataset and
dataset after wrangling process; Figure S2: Data distribution for weather dataset x productivity; Table
S1: Main information of the timber harvest feature (THF) dataset; Table S2: Recursive feature elimina-
tion process (RFE) applied to timber harvest features (THF) and timber harvest features combined
with weather feature (THFWF) data; Table S3: Feature information process (FI) applied to timber
harvest feature (THF) and timber harvest features combined with weather feature (THFWF) data;
Table S4: Main information of the timber harvest feature (THF) and timber harvest features combined
with weather feature (THFWF) dataset, in train and test dataset; Table S5: Predictive performance of
the models (default mode) in train and test dataset, using timber harvest feature (THF) and timber
harvest features combined with weather feature (THFWF) dataset; Table S6: Hyperparameter adjust-
ment process (tuning) by Optuna hyperparameter optimization framework; Table S7: Comparison of
predictive performance of the default CatBoost model and tuned CatBoost model in test dataset, using
timber harvest feature (THF) and timber harvest features combined with weather feature (THFWF)
dataset; Table S8: Kruskal-Wallis tests with post hoc Fisher’s least significant difference applied to
predictive performance of the models (default mode), using alpha = 0.05; Table S9: Kruskal-Wallis
tests with post hoc Fisher’s least significant difference applied to predictive performance of the tuned
CatBoost model, using alpha = 0.05; Table S10: Comparison of the prediction performed by tuned
CatBoost model on test dataset, using timber harvest feature (THF) and timber harvest features
combined with weather feature (THFWF) dataset.
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