Tree Ring Blue Intensity-Based August Temperature Reconstruction for Subtropical Central China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Sampling Information
2.2. Climate Data
2.3. Chronology Development
2.4. Correlation Analysis and Reconstruction Model Development
3. Results and Discussion
3.1. Chronology Characteristics
3.2. Relationship between Chronologies and Climate Variables
3.3. Temperature Reconstruction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esper, J.; Torbenson, M.; Büntgen, U. 2023 summer warmth unparalleled over the past 2000 years. Nature 2024, 631, 94–97. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Cook, E.; Krusic, P.; Anchukaitis, K.; Buckley, B.; Nakatsuka, T.; Sano, M. Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. Clim. Dyn. 2012, 41, 2957–2972. [Google Scholar] [CrossRef]
- Shah, S.K.; Berkelhammer, M.; Li, Q.; Mehrotra, N.; Thomte, L.; Shell, R.; Pandey, U.; Gaire, N.P.; Kathayat, G.; Sinha, A. Regional tree-ring oxygen isotope deduced summer monsoon drought variability for Kumaun-Gharwal Himalaya. Quat. Sci. Rev. 2023, 301, 107927. [Google Scholar] [CrossRef]
- Heeter, K.J.; Harley, G.L.; Maxwell, J.T.; Wilson, R.J.; Abatzoglou, J.T.; Rayback, S.A.; Rochner, M.L.; Kitchens, K.A. Summer temperature variability since 1730 CE across the low-to-mid latitudes of western North America from a tree ring blue intensity network. Quat. Sci. Rev. 2021, 267, 107064. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Ljungqvist, F.C. A millennial summer temperature reconstruction for the eastern tibetan plateau from tree-ring width. J. Clim. 2015, 28, 5289–5304. [Google Scholar] [CrossRef]
- Wilson, R.; Anchukaitis, K.; Briffa, K.R.; Büntgen, U.; Cook, E.; D’Arrigo, R.; Davi, N.; Esper, J.; Frank, D.; Gunnarson, B.; et al. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quat. Sci. Rev. 2016, 134, 1–18. [Google Scholar] [CrossRef]
- Salzer, M.W.; Bunn, A.G.; Graham, N.E.; Hughes, M.K. Five millennia of paleotemperature from tree-rings in the Great Basin, USA. Clim. Dyn. 2014, 42, 1517–1526. [Google Scholar] [CrossRef]
- Huang, R.; Zhu, H.; Liang, E.; Liu, B.; Shi, J.; Zhang, R.; Yuan, Y.; Grießinger, J. A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE. Clim. Dyn. 2019, 53, 3221–3233. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.; Liu, G.; Fu, B.; Fan, Z.; Wang, X.; Wu, X.; Zhang, Y.; Halik, U. Tree-ring based minimum temperature reconstruction on the southeastern Tibetan Plateau. Quat. Sci. Rev. 2021, 251, 106712. [Google Scholar] [CrossRef]
- Fan, Z.-X.; Bräuning, A.; Yang, B.; Cao, K.-F. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Glob. Planet. Chang. 2009, 65, 1–11. [Google Scholar] [CrossRef]
- Briffa, K.; Osborn, T.; Schweingruber, F.H.; Harris, I.C.; Jones, P.D.; Shiyatov, S.G.; Vaganov, E. Low-frequency temperature variations from a northern tree ring density network. J. Geophys. Res. Space Phys. 2001, 106, 2929–2941. [Google Scholar] [CrossRef]
- Rydval, M.; Larsson, L.; McGlynn, L.; Gunnarson, B.E.; Loader, N.J.; Young, G.H.; Wilson, R. Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland. Dendrochronologia 2014, 32, 191–204. [Google Scholar] [CrossRef]
- Cao, X.; Hu, H.; Kao, P.; Buckley, B.M.; Dong, Z.; Chen, X.; Zhou, F.; Fang, K. Improved spring temperature reconstruction using earlywood blue intensity in southeastern China. Int. J. Clim. 2022, 42, 6204–6220. [Google Scholar] [CrossRef]
- McCarroll, D.; Pettigrew, E.; Luckman, A.; Guibal, F.; Edouard, J.L. Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings. Arct. Antarct. Alp. Res. 2002, 34, 450–453. [Google Scholar] [CrossRef]
- Campbell, R.; McCarroll, D.; Loader, N.J.; Grudd, H.; Robertson, I.; Jalkanen, R. Blue intensity in Pinus sylvestris tree-rings: Developing a new palaeoclimate proxy. Holocene 2007, 17, 821–828. [Google Scholar] [CrossRef]
- Kaczka, R.J.; Spyt, B.; Janecka, K.; Beil, I.; Büntgen, U.; Scharnweber, T.; Nievergelt, D.; Wilmking, M. Different maximum latewood density and blue intensity measurements techniques reveal similar results. Dendrochronologia 2018, 49, 94–101. [Google Scholar] [CrossRef]
- Björklund, J.; Seftigen, K.; Kaczka, R.J.; Rydval, M.; Wilson, R. A definition and standardised terminology for Blue Intensity from Conifers. Dendrochronologia 2024, 85, 126200. [Google Scholar] [CrossRef]
- Kaczka, R.J.; Wilson, R. I-BIND: International Blue intensity network development working group. Dendrochronologia 2021, 68, 125859. [Google Scholar] [CrossRef]
- Fuentes, M.; Salo, R.; Björklund, J.; Seftigen, K.; Zhang, P.; Gunnarson, B.; Aravena, J.-C.; Linderholm, H.W. A 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings. Holocene 2018, 28, 254–266. [Google Scholar] [CrossRef]
- Heeter, K.J.; Harley, G.L.; Maxwell, J.T.; McGee, J.H.; Matheus, T.J. Late summer temperature variability for the Southern Rocky Mountains (USA) since 1735 CE: Applying blue light intensity to low-latitude Picea engelmannii Parry ex Engelm. Clim. Chang. 2020, 162, 965–988. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, H.; Abernethy, R.; Wilson, R. Experiments of the efficacy of tree ring blue intensity as a climate proxy in central and western China. Biogeosciences 2023, 20, 3481–3490. [Google Scholar] [CrossRef]
- Björklund, J.; Gunnarson, B.E.; Seftigen, K.; Zhang, P.; Linderholm, H.W. Using adjusted Blue Intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia. Holocene 2015, 25, 547–556. [Google Scholar] [CrossRef]
- Wilson, R.; Rao, R.; Rydval, M.; Wood, C.; Larsson, L.; Luckman, B.H. Blue Intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada. Holocene 2014, 24, 1428–1438. [Google Scholar] [CrossRef]
- Wilson, R.; Anchukaitis, K.; Andreu-Hayles, L.; Cook, E.; D’arrigo, R.; Davi, N.; Haberbauer, L.; Krusic, P.; Luckman, B.; Morimoto, D.; et al. Improved dendroclimatic calibration using blue intensity in the southern Yukon. Holocene 2019, 29, 1817–1830. [Google Scholar] [CrossRef]
- Buckley, B.M.; Hansen, K.G.; Griffin, K.L.; Schmiege, S.; Oelkers, R.; D’arrigo, R.D.; Stahle, D.K.; Davi, N.; Nguyen, T.Q.T.; Le, C.N.; et al. Blue intensity from a tropical conifer’s annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia 2018, 50, 10–22. [Google Scholar] [CrossRef]
- Zheng, Y.; Shao, X.; Lu, F.; Li, Y. February–May temperature reconstruction based on tree-ring widths of Abies fargesii from the Shennongjia area in central China. Int. J. Biometeorol. 2016, 60, 1175–1181. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 19. [Google Scholar] [CrossRef]
- Maxwell, R.S.; Larsson, L.-A. Measuring tree-ring widths using the CooRecorder software application. Dendrochronologia 2021, 67, 125841. [Google Scholar] [CrossRef]
- Cook, E.R.; Briffa, K.R.; Jones, P.D. Spatial regression methods in dendroclimatology: A review and comparison of two techniques. Int. J. Climatol. 1994, 14, 379–402. [Google Scholar] [CrossRef]
- Wigley, T.M.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Wilson, R.; Allen, K.; Baker, P.; Boswijk, G.; Buckley, B.; Cook, E.; D’Arrigo, R.; Druckenbrod, D.; Fowler, A.; Grandjean, M.; et al. Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand. Biogeosciences 2021, 18, 6393–6421. [Google Scholar] [CrossRef]
- Blake, S.A.; Palmer, J.G.; Björklund, J.; Harper, J.B.; Turney, C.S. Palaeoclimate potential of New Zealand Manoao colensoi (silver pine) tree rings using Blue-Intensity (BI). Dendrochronologia 2020, 60, 125664. [Google Scholar] [CrossRef]
- Cao, X.; Fang, K.; Chen, P.; Zhang, P.; Björklund, J.; Pumijumnong, N.; Guo, Z. Microdensitometric records from humid subtropical China show distinct climate signals in earlywood and latewood. Dendrochronologia 2020, 64, 125764. [Google Scholar] [CrossRef]
- Wiles, G.C.; Charlton, J.; Wilson, R.J.; D’arrigo, R.D.; Buma, B.; Krapek, J.; Gaglioti, B.V.; Wiesenberg, N.; Oelkers, R. Yellow-cedar blue intensity tree-ring chronologies as records of climate in Juneau, Alaska, USA. Can. J. For. Res. 2019, 49, 1483–1492. [Google Scholar] [CrossRef]
- Frank, D.; Esper, J. Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 2005, 22, 107–121. [Google Scholar] [CrossRef]
- Buras, A. A comment on the expressed population signal. Dendrochronologia 2017, 44, 130–132. [Google Scholar] [CrossRef]
- Yin, H.; Li, M.-Y.; Huang, L. Summer mean temperature reconstruction based on tree-ring density over the past 440 years on the eastern Tibetan Plateau. Quat. Int. 2021, 571, 81–88. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.; Duan, B.; Sun, C. Regional difference of the start time of the recent warming in Eastern China: Prompted by a 165-year temperature record deduced from tree rings in the Dabie Mountains. Clim. Dyn. 2018, 50, 2157–2168. [Google Scholar] [CrossRef]
- Yuan, Y.; Deng, Y.; Gao, L.; Fu, X.; Xu, Y.; Gou, X. Unprecedented recent warming as recorded by tree-ring in the western Qinling Mountains, China. Palaeogeogr. Palaeoclim. Palaeoecol. 2024, 644, 112202. [Google Scholar] [CrossRef]
- Dang, H.; Zhang, K.; Zhang, Y.; Tong, X.; Zhang, Q. Regeneration dynamics of subalpine fir (Abies fargesii) forest across the altitudinal range in the Shennongjia Mountains, central China. J. Plant Ecol. 2013, 6, 36–47. [Google Scholar] [CrossRef]
Sampling Site | XCP | TZY | JHL | SND |
---|---|---|---|---|
Latitude | 31.478° N | 31.451° N | 31.473° N | 31.440° N |
Longitude | 110.187° E | 110.192° E | 110.310° E | 110.304° E |
Elevation (m a.s.l.) | 2722 | 2494 | 2564 | 2876 |
number of trees/cores | 25/49 | 37/64 | 54/98 | 10/20 |
Total period (CE) | 1774–2011 | 1811–2018 | 1830–2020 | 1846–2011 |
Parameters | PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|---|
RW | Eigenvalue | 2.325 | 0.798 | 0.499 | 0.378 |
Proportion | 0.581 | 0.199 | 0.125 | 0.095 | |
Cumulative | 0.581 | 0.781 | 0.905 | 1.000 | |
EWBI | Eigenvalue | 2.724 | 0.569 | 0.438 | 0.269 |
Proportion | 0.681 | 0.142 | 0.109 | 0.067 | |
Cumulative | 0.681 | 0.823 | 0.933 | 1.000 | |
LWBI | Eigenvalue | 2.955 | 0.421 | 0.386 | 0.239 |
Proportion | 0.739 | 0.105 | 0.096 | 0.060 | |
Cumulative | 0.739 | 0.844 | 0.940 | 1.000 | |
DBI | Eigenvalue | 3.056 | 0.419 | 0.319 | 0.207 |
Proportion | 0.764 | 0.105 | 0.080 | 0.052 | |
Cumulative | 0.764 | 0.869 | 0.948 | 1.000 |
R2 | F | DW | RMSE | RE | CE | |
---|---|---|---|---|---|---|
Calibration 1953–1986 | 0.362 | 18.131 | - | 1.057 | - | - |
Verification 1987–2020 | 0.402 | - | - | 1.046 | 0.485 | 0.402 |
Calibration 1987–2020 | 0.407 | 22.011 | - | 1.041 | - | - |
Verification 1953–1986 | 0.356 | - | - | 1.062 | 0.448 | 0.356 |
Full period 1953–2020 | 0.408 | 45.506 | 1.719 | 1.050 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Wilson, R. Tree Ring Blue Intensity-Based August Temperature Reconstruction for Subtropical Central China. Forests 2024, 15, 1428. https://doi.org/10.3390/f15081428
Zheng Y, Wilson R. Tree Ring Blue Intensity-Based August Temperature Reconstruction for Subtropical Central China. Forests. 2024; 15(8):1428. https://doi.org/10.3390/f15081428
Chicago/Turabian StyleZheng, Yonghong, and Rob Wilson. 2024. "Tree Ring Blue Intensity-Based August Temperature Reconstruction for Subtropical Central China" Forests 15, no. 8: 1428. https://doi.org/10.3390/f15081428
APA StyleZheng, Y., & Wilson, R. (2024). Tree Ring Blue Intensity-Based August Temperature Reconstruction for Subtropical Central China. Forests, 15(8), 1428. https://doi.org/10.3390/f15081428