The Many Shades of the Vegetation–Climate Causality: A Multimodel Causal Appreciation
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. CRU TS
2.1.2. GLASS LAI
2.1.3. GLEAM ET
2.2. Methods
2.2.1. Kernel Granger Causality (KGC)
2.2.2. Peter and Clark Momentary Conditional Independence (PCMCI)
2.2.3. Liang–Kleeman Information Flow (L-K IF)
3. Results
3.1. Nonlinearity of the Causal Relationship between Vegetation and Temperature
3.2. Feedback/Coupling Signs and Timescales between Vegetation and Temperature
3.3. Information Flow between Vegetation and Temperature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, J.; Piao, S.; Huntingford, C.; Wang, X.; Lian, X.; Chevuturi, A.; Turner, A.; Kooperman, G. Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nat. Commun. 2020, 11, 5184. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.; Li, L.Z.X.; Chen, A.; Wang, X.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.; Zeng, Z.; et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef] [PubMed]
- Forzieri, G.; Alkama, R.; Miralles, D.; Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 2017, 356, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.Q.; Li, L.; Li, J.; Liu, C.; Wu, Y.-P.; Gao, S.; Wang, Z.; Feng, G.-L. Impacts of climate change on vegetation pattern: Mathematical modeling and data analysis. Phys. Life Rev. 2022, 43, 239–270. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Jinxi, S.; Bin, T.; Xu, W.; Feihe, K.; Sun, H.; Yuxin, L. Vegetation variation regulates soil moisture sensitivity to climate change on the Loess Plateau. J. Hydrol. 2022, 617, 128763. [Google Scholar] [CrossRef]
- Jiang, M.; He, Y.; Song, C.; Pan, Y.; Qiu, T.; Tian, S. Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China. Sci. Total Environ. 2021, 786, 147574. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, Y.; Yang, W.; Yi, Y.; Yang, Z.; Fu, Q. Contributions of climatic and anthropogenic drivers to vegetation dynamics indicated by NDVI in a large dam-reservoir-river system. J. Clean Prod. 2020, 256, 120477. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, S.; Huang, Q.; Wang, H.; Leng, G.; Fang, W. Time-lagged response of vegetation dynamics to climatic and teleconnection factors. Catena 2020, 189, 104474. [Google Scholar] [CrossRef]
- Zhou, Z.; Ding, Y.; Shi, H.; Cai, H.; Fu, Q.; Liu, S.; Li, T. Analysis and prediction of vegetation dynamic changes in China: Past, present and future. Ecol. Indic. 2020, 117, 106642. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, Z.; Huang, L.; Lian, X.; Piao, S. Comment on “Satellites reveal contrasting responses of regional climate to the widespread greening of Earth”. Science 2018, 360, eaap7950. [Google Scholar] [CrossRef] [PubMed]
- Kerr, Y.H.; Wigneron, J.P. Vegetation models and observations A review. In Passive Microwave Remote Sensing of Land—Atmosphere Interactions; CRC Press: Boca Raton, FL, USA, 2023; pp. 317–344. [Google Scholar]
- Lian, X.; Jeong, S.; Park, C.E.; Xu, H.; Li, L.Z.X.; Wang, T.; Gentine, P.; Peñuelas, J.; Piao, S. Biophysical impacts of northern vegetation changes on seasonal warming patterns. Nat. Commun. 2022, 13, 3925. [Google Scholar] [CrossRef] [PubMed]
- Gutman, G.; Skakun, S.; Gitelson, A. Revisiting the use of red and near-infrared reflectances in vegetation studies and numerical climate models. Sci. Remote Sens. 2021, 4, 100025. [Google Scholar] [CrossRef]
- Pearl, J.; Mackenzie, D. The Book of Why: The New Science of Cause and Effect; Basic Books: New York, USA, 2018. [Google Scholar]
- Pearl, J. Causality; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Imbens, G.W.; Rubin, D.B. Causal Inference in Statistics, Social, and Biomedical Sciences; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Hagan, D.; Wang, G.; Liang, X.; Dolman, H. A Time-Varying Causality Formalism Based on the Liang–Kleeman Information Flow for Analyzing Directed Interactions in Nonstationary Climate Systems. J. Clim. 2019, 32, 7521–7537. [Google Scholar] [CrossRef]
- Runge, J.; Bathiany, S.; Bollt, E.; Camps-Valls, G.; Coumou, D.; Deyle, E.; Glymour, C.; Kretschmer, M.; Mahecha, M.D.; Muñoz-Marí, J.; et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 2019, 10, 2553. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, Y.; Wang, S. Granger causality in risk and detection of extreme risk spillover between financial markets. J. Econom. 2009, 150, 271–287. [Google Scholar] [CrossRef]
- Ajayi, R.A.; Friedman, J.; Mehdian, S.M. On the relationship between stock returns and exchange rates: Tests of Granger causality. Glob. Financ. J. 1998, 9, 241–251. [Google Scholar] [CrossRef]
- Shojaie, A.; Fox, E.B. Granger causality: A review and recent advances. Annu. Rev. Stat. Its Appl. 2022, 9, 289–319. [Google Scholar] [CrossRef]
- Kar, M.; Nazlıoğlu, Ş.; Ağır, H. Financial development and economic growth nexus in the MENA countries: Bootstrap panel granger causality analysis. Econ. Model. 2011, 28, 685–693. [Google Scholar] [CrossRef]
- Seth, A.K.; Barrett, A.B.; Barnett, L. Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 2015, 35, 3293–3297. [Google Scholar] [CrossRef] [PubMed]
- Stokes, P.A.; Purdon, P.L. A study of problems encountered in Granger causality analysis from a neuroscience perspective. Proc. Natl. Acad. Sci. USA 2017, 114, E7063–E7072. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, G.; LaConte, S.; James, G.A.; Peltier, S.; Hu, X. Multivariate Granger causality analysis of fMRI data. Hum. Brain Mapp. 2009, 30, 1361–1373. [Google Scholar] [CrossRef]
- McGraw, M.C.; Barnes, E.A. Memory matters: A case for Granger causality in climate variability studies. J. Clim. 2018, 31, 3289–3300. [Google Scholar] [CrossRef]
- Papagiannopoulou, C.; Miralles, D.G.; Decubber, S.; Demuzere, M.; Verhoest, N.E.; Dorigo, W.A.; Waegeman, W. A non-linear Granger-causality framework to investigate climate–vegetation dynamics. Geosci. Model Dev. 2017, 10, 1945–1960. [Google Scholar] [CrossRef]
- Smirnov, D.A.; Mokhov, I.I. From Granger causality to long-term causality: Application to climatic data. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2009, 80, 016208. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Moran, R.; Seth, A. Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 2013, 23, 172–178. [Google Scholar] [CrossRef]
- Kovács, D.D.; Amin, E.; Berger, K.; Reyes-Muñoz, P.; Verrelst, J. Untangling the Causal Links between Satellite Vegetation Products and Environmental Drivers on a Global Scale by the Granger Causality Method. Remote Sens. 2023, 15, 4956. [Google Scholar] [CrossRef]
- Attanasio, A.; Pasini, A.; Triacca, U. A contribution to attribution of recent global warming by out-of-sample Granger causality analysis. Atmos. Sci. Lett. 2012, 13, 67–72. [Google Scholar] [CrossRef]
- Dhamala, M.; Rangarajan, G.; Ding, M. Estimating Granger causality from Fourier and wavelet transforms of time series data. Phys. Rev. Lett. 2008, 100, 018701. [Google Scholar] [CrossRef]
- Marinazzo, D.; Pellicoro, M.; Stramaglia, S. Kernel method for nonlinear granger causality. Phys. Rev. Lett. 2007, 100, 144103. [Google Scholar] [CrossRef] [PubMed]
- Bueso, D.; Piles, M.; Camps-Valls, G. Explicit Granger causality in kernel Hilbert spaces. Phys. Rev. E 2020, 102, 062201. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Denman, K.L.; Brasseur, G.; Chidthaisong, A.; Ciais, P.; Cox, P.M.; Dickinson, R.E.; Hauglustaine, D.; Heinze, C.; Holland, E. Couplings between Changes in the Climate System and Biogeochemistry; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2007. [Google Scholar]
- Rial, J.; Pielke, R.; Beniston, M.; Claussen, M.; Canadell, J.; Cox, P.; Held, H.; Noblet-Ducoudré, N.d.; Prinn, R.; Reynolds, J.; et al. Nonlinearities, Feedbacks and Critical Thresholds within the Earth’s Climate System. Clim. Chang. 2004, 65, 11–38. [Google Scholar] [CrossRef]
- Kennaway, R. When causation does not imply correlation. In The Interdisciplinary Handbook of Perceptual Control Theory; Elsevier: Amsterdam, The Netherlands, 2015; pp. 49–72. [Google Scholar]
- Spirtes, P.; Glymour, C.; Scheines, R. Causation, Prediction, and Search; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Runge, J.; Nowack, P.; Kretschmer, M.; Flaxman, S.; Sejdinovic, D. Detecting and quantifying causal associations in large nonlinear time series datasets. Sci. Adv. 2017, 5, eaau4996. [Google Scholar] [CrossRef] [PubMed]
- Runge, J. Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 075310. [Google Scholar] [CrossRef] [PubMed]
- Gerhardus, A.; Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. Adv. Neural Inf. Process. Syst. 2020, 33, 12615–12625. [Google Scholar]
- Kretschmer, M.; Coumou, D.; Donges, J.; Runge, J. Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation. J. Clim. 2016, 29, 4069–4081. [Google Scholar] [CrossRef]
- Dubey, N.; Ghosh, S. The relative role of soil moisture and vapor pressure deficit in affecting the Indian vegetation productivity. Environ. Res. Lett. 2023, 18, 064012. [Google Scholar] [CrossRef]
- Krich, C.; Runge, J.; Miralles, D.; Migliavacca, M.; Pérez-Priego, Ó.; El-Madany, T.; Carrara, A.; Mahecha, M. Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach. Biogeosciences 2020, 17, 1033–1061. [Google Scholar] [CrossRef]
- Capua, G.d.; Kretschmer, M.; Donner, R.; Hurk, B.v.d.; Vellore, R.; Krishnan, R.; Coumou, D. Tropical and mid-latitude teleconnections interacting with the Indian summer monsoon rainfall: A theory-guided causal effect network approach. Earth Syst. Dynam. 2019, 11, 17–34. [Google Scholar] [CrossRef]
- Qu, Y.; Montzka, C.; Vereecken, H. Causation Discovery of Weather and Vegetation Condition on Global Wildfire Using the PCMCI Approach. In Proceedings of the IGARSS 2021—2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021; pp. 8644–8647. [Google Scholar] [CrossRef]
- Liang, X.S. Unraveling the cause-effect relation between time series. Phys. Rev. E 2014, 90, 052150. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461. [Google Scholar] [CrossRef] [PubMed]
- Ruddell, B.; Kumar, P. Ecohydrologic process networks: 1. Identification. Water Resour. Res. 2009, 45, W03419. [Google Scholar] [CrossRef]
- Goodwell, A.; Jiang, P.; Ruddell, B.; Kumar, P. Debates—Does Information Theory Provide a New Paradigm for Earth Science? Causality, Interaction, and Feedback. Water Resour. Res. 2020, 56, e2019WR024940. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Deacon, T.W. Shannon–Boltzmann–Darwin: Redefining information (Part I). Cogn. Semiot. 2007, 1, 123–148. [Google Scholar] [CrossRef]
- Liang, X. Information flow and causality as rigorous notions ab initio. Phys. Rev. E 2015, 94, 052201. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.S.; Xu, F.; Rong, Y.; Zhang, R.; Tang, X.; Zhang, F. El Niño Modoki can be mostly predicted more than 10 years ahead of time. Sci. Rep. 2021, 11, 17860. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, P.; Pellini, E.; Urga, G. Systemic risk in the Chinese financial system: A panel Granger causality analysis. Int. Rev. Financ. Anal. 2022, 82, 102179. [Google Scholar] [CrossRef]
- Cong, J.; Zhuang, W.; Liu, Y.; Yin, S.; Jia, H.; Yi, C.; Chen, K.; Xue, K.; Li, F.; Yao, D. Altered default mode network causal connectivity patterns in autism spectrum disorder revealed by Liang information flow analysis. Hum. Brain Mapp. 2023, 44, 2279–2293. [Google Scholar] [CrossRef]
- Stips, A.; Macias, D.; Coughlan, C.; Garcia-Gorriz, E.; Liang, X.S. On the causal structure between CO2 and global temperature. Sci. Rep. 2016, 6, 21691. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Liang, X.S.; Cai, L.; Zhao, J.; Zhang, M. Relative contributions of global warming, AMO and IPO to the land precipitation variabilities since 1930s. Clim. Dyn. 2021, 56, 2225–2243. [Google Scholar] [CrossRef]
- Docquier, D.; Vannitsem, S.; Ragone, F.; Wyser, K.; Liang, X. Causal Links Between Arctic Sea Ice and Its Potential Drivers Based on the Rate of Information Transfer. Geophys. Res. Lett. 2021, 49, e2021GL095892. [Google Scholar] [CrossRef]
- Zhou, F.; Hagan, D.F.T.; Wang, G.; Liang, X.S.; Li, S.; Shao, Y.; Yeboah, E.; Wei, X. Estimating Time-Dependent Structures in a Multivariate Causality for Land–Atmosphere Interactions. J. Clim. 2024, 37, 1853–1876. [Google Scholar] [CrossRef]
- Krakovská, A.; Jakubík, J.; Chvosteková, M.; Coufal, D.; Jajcay, N.; Paluš, M. Comparison of six methods for the detection of causality in a bivariate time series. Phys. Rev. E 2018, 97, 042207. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Li, Z.; Peng, S. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102179. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Change Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.; Yao, Y.; Yuan, W.; Zhang, X.; Zhao, X.; et al. The Global Land Surface Satellite (GLASS) Product Suite. Bull. Am. Meteorol. Soc. 2020, 102, E323–E337. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013, 6, 33–35. [Google Scholar] [CrossRef]
- Shan, Y.; Wei, J.; Zan, B. Improving Estimates of Land–Atmosphere Coupling Through a Novel Framework of Land Aridity Classification. Geophys. Res. Lett. 2024, 51, e2023GL106598. [Google Scholar] [CrossRef]
- Miralles, D.; Holmes, T.; Jeu, R.D.; Gash, J.; Meesters, A.; Dolman, A. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2010, 15, 453–469. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.; Lievens, H.; Schalie, R.V.D.; Jeu, R.; Fernández-Prieto, D.; Beck, H.; Dorigo, W.; Verhoest, N. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2016, 10, 1903–1925. [Google Scholar] [CrossRef]
- Docquier, D.; Capua, G.d.; Donner, R.V.; Pires, C.A.L.; Simon, A.; Vannitsem, S. A comparison of two causal methods in the context of climate analyses. Nonlinear Process. Geophys. 2024, 31, 115–136. [Google Scholar] [CrossRef]
- Granger, C. Long memory relationships and the aggregation of dynamic models. J. Econom. 1980, 14, 227–238. [Google Scholar] [CrossRef]
- Neath, A.A.; Cavanaugh, J.E. The Bayesian information criterion: Background, derivation, and applications. Wiley Interdiscip. Rev. Comput. Stat. 2012, 4, 199–203. [Google Scholar] [CrossRef]
- Liang, X. The Liang-Kleeman Information Flow: Theory and Applications. Entropy 2013, 15, 327–360. [Google Scholar] [CrossRef]
- Liang, X. Normalized Multivariate Time Series Causality Analysis and Causal Graph Reconstruction. Entropy 2021, 23, 679. [Google Scholar] [CrossRef] [PubMed]
- Hagan, D.; Dolman, H.; Wang, G.; Sian, K.T.C.L.K.; Yang, K.; Ullah, W.; Shen, R. Contrasting ecosystem constraints on seasonal terrestrial CO2 and mean surface air temperature causality projections by the end of the 21st century. Environ. Res. Lett. 2022, 17, 124019. [Google Scholar] [CrossRef]
- Koster, R.; Dirmeyer, P.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of Strong Coupling Between Soil Moisture and Precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef]
- Miralles, D.G.; Jimenez, C.; Jung, M.; Michel, D.; Ershadi, A.; McCabe, M.F.; Hirschi, M.; Martens, B.; Dolman, A.; Fisher, J.B.; et al. The WACMOS-ET project—Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 2015, 20, 823–842. [Google Scholar] [CrossRef]
- Koster, R.; Guo, Z.; Dirmeyer, P.; Bonan, G.; Chan, E.; Cox, P.; Davies, H.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; et al. GLACE: The Global Land-Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeorol. 2006, 7, 590–610. [Google Scholar] [CrossRef]
- Dirmeyer, P.A. The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett. 2011, 38, L16702. [Google Scholar] [CrossRef]
- Hsu, H.; Dirmeyer, P.A. Soil moisture-evaporation coupling shifts into new gears under increasing CO2. Nat. Commun. 2023, 14, 1162. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, C.; Hirschi, M.; Seneviratne, S. Quantifying Spatiotemporal Variations of Soil Moisture Control on Surface Energy Balance and Near-Surface Air Temperature. J. Clim. 2017, 30, 7105–7124. [Google Scholar] [CrossRef]
- Cotton, W.R.; Pielke, R.A., Sr. Human Impacts on Weather and Climate; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Ometto, J.; Aguiar, A.; Martinelli, L. Amazon deforestation in Brazil: Effects, drivers and challenges. Carbon Manag. 2011, 2, 575–585. [Google Scholar] [CrossRef]
- das Neves, P.B.T.; Blanco, C.J.C.; Duarte, A.A.A.M.; das Neves, F.B.S.; das Neves, I.B.S.; dos Santos, M.H.d.P. Amazon rainforest deforestation influenced by clandestine and regular roadway network. Land Use Policy 2021, 108, 105510. [Google Scholar] [CrossRef]
Methods | Kernel Granger Causality | Peter and Clark Momentary Conditional Independence | Liang–Kleeman Information Flow |
---|---|---|---|
Abbreviation | KGC | PCMCI | L-K IF |
Type of method | Qualitative causality | Qualitative causality | Quantitative causality |
Theoretical basis | Granger Causality, spectral representation, kernel function | Conditional independence test, structure causality graph | Liang–Kleeman information flow |
Use of time delays | Not by default | Always | Not by default |
Use of iterative conditioning | No | Yes | No |
Sign meaning 1 | No negative value | Positive value: Increases in drivers result in an increase in the target. Negative value: Increases in drivers result in an increase in the target. | Positive value: The driver functions to increase the variability of the target, thereby making it more uncertain. Negative value: The driver functions to reduce variability in the target. |
Key references | Marinazzo et al. (2007) [35] | Runge et al. (2019) [19] | Liang (2014) [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Hagan, D.F.T.; Li, S.; Zhou, F.; Zou, X.; Cabral, P. The Many Shades of the Vegetation–Climate Causality: A Multimodel Causal Appreciation. Forests 2024, 15, 1430. https://doi.org/10.3390/f15081430
Shao Y, Hagan DFT, Li S, Zhou F, Zou X, Cabral P. The Many Shades of the Vegetation–Climate Causality: A Multimodel Causal Appreciation. Forests. 2024; 15(8):1430. https://doi.org/10.3390/f15081430
Chicago/Turabian StyleShao, Yuhao, Daniel Fiifi Tawia Hagan, Shijie Li, Feihong Zhou, Xiao Zou, and Pedro Cabral. 2024. "The Many Shades of the Vegetation–Climate Causality: A Multimodel Causal Appreciation" Forests 15, no. 8: 1430. https://doi.org/10.3390/f15081430
APA StyleShao, Y., Hagan, D. F. T., Li, S., Zhou, F., Zou, X., & Cabral, P. (2024). The Many Shades of the Vegetation–Climate Causality: A Multimodel Causal Appreciation. Forests, 15(8), 1430. https://doi.org/10.3390/f15081430