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Abstract: Detecting surface defects in bamboo strips is essential for producing Asian bamboo products.
Currently, the detection of surface defects in bamboo strips mainly relies on manual labor. The labor
intensity is high, and the detection efficiency is low. Improving the speed and accuracy of identifying
bamboo strip defects is crucial in enhancing enterprises’ production efficiency. Hence, this research
designs a lightweight YOLOv5s neural network algorithm using the Ghost module to identify surface
defects of bamboo strips. The research introduces an attention mechanism CA module to improve
the recognition ability of the model target; the research also implements a C2f model to enhance the
network performance and the surface quality of bamboo strips. The experimental results show that
after training with the acquired image dataset, the YOLOv5s model can exert an intelligent detection
effect on five common types of defects in bamboo strips, and the Ghost module makes YOLOv5s
lightweight, which can effectively reduce model parameters and improve detection speed while
maintaining recognition accuracy. Meanwhile, the C2f module and CA module can further leverage
the model’s ability to identify specific defects in bamboo strips after lightweight improvement.

Keywords: bamboo strips defect detection; artificial intelligence; lightweight YOLO; C2f module

1. Introduction

The bamboo products industry is one of the essential industries in Asia [1]. Bamboo
products have been widely used in China, Japan, South Korea, and Southeast Asia since
ancient times [2,3], mainly including bamboo building materials, coffee table furniture,
and bamboo chopsticks tableware [4]. It is well-known that strip ply bamboo is mainly
the raw material used for building and furniture. It uses slender bamboo strips with a
rectangular cross-section as the basic unit and consists of many slender bamboo strips
with glue and pressure. The bamboo strips used to make bamboo boards are available
in lengths of 1.2 m and 1.6 m, and the cross-section is a rectangular cross-section with a
width of 15–18 mm and a thickness of 6–7 mm. Bamboo poles make these bamboo strips
through cutting, planning, and chemical treatment. However, defects may exist on the
bamboo surface during the growth and processing of bamboo strips. In order to ensure
the quality and beauty of bamboo plywood, humans need to inspect each bamboo strip’s
surface defects before splicing the laminated bamboo boards; therefore, bamboo strip
inspection is one of the important processes. The surface inspection of bamboo strips is
carried out simultaneously with the polishing process of bamboo strips or in the prescribed
processes [5,6]. It mainly includes detecting whether there are five common defects on
the surface of bamboo strips: flat yellow defects, concave yellow defects, green-black knot
defects, yellow-black knot defects, and carbon defects, as shown in Figure 1. These defect
features are essential indications of defects during the production process [7]. Bamboo
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strip inspection should not only distinguish existing defects but should accurately identify
the types of defects. It is crucial because different defects correspond to different post-
processing methods. Producers will use re-planning, polishing, or removal according to
the type of defect. Since there are many types of surface defects on bamboo strips, the
defects are irregularly distributed in various locations, easily making wrong or missed
detections. Moreover, the production volume of bamboo strips is large, and the detection
efficiency restricts the production efficiency of bamboo boards. Hence, reliable and efficient
detection of bamboo strips is important in bamboo board production. Currently, surface
defect detection of bamboo strips mainly relies on manual work. The level of operation
automation is low, labor intensity is high, and labor costs are rising yearly, which restricts
bamboo product companies’ production efficiency and profit margins. Due to the fact
that environmental awareness has risen in recent years, the implementation of “replacing
plastic with bamboo” has further increased the production demand for bamboo products
enterprises in Asia area, and there is an urgent need to improve automated detection
technology and equipment research to enhance development capabilities for the surface
inspection of bamboo strips, as well as in promoting the intellectual and automation of
agricultural machinery and equipment [8,9].
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Figure 1. Five different defect marks show respective distribution position, shape, and area size in
bamboo strips.

Therefore, there is an urgent need to enhance detection strategies for bamboo product
surface defects and use new intelligent, automated equipment to develop a method for effi-
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ciently detecting bamboo strip surface defects [10–12]. Surface inspection of bamboo strips
is done randomly and varies in shape and size. Traditional image recognition struggles
with adapting to complex and variable recognition scenarios. Many Asian bamboo product
companies are self-employed and lack funds for advanced intelligent equipment. Owners
struggle to afford large-scale automated lines and lack scientific/technical personnel. Small
intelligent testing equipment development has led to manual surface defect detection for
bamboo strips, which is labor-intensive with low automation levels. Deep learning-based
research has significantly advanced defect detection in products like steel strips, aluminum
materials, and textiles in recent years [13–15]. Implementing deep learning’s ability to
extract features and adapt to irregular shapes is crucial for studying detection strategies
for bamboo strip surface quality, aiming to enhance bamboo equipment’s efficiency and
intelligent development. Hence, this article suggests an efficient detection approach for
bamboo strip surfaces using YOLOv5, focusing on the following two key aspects:

(1) Suggest a novel image recognition method for bamboo strip surface defects by com-
bining machine vision and convolutional neural networks to extract defect features
automatically. The research aims to enhance the recognition of varied targets in shape
and position while balancing speed and accuracy.

(2) Suggest a lightweight YOLO network utilizing model structure enhancement, param-
eter reduction with a Ghost module, and optimization with a C2f module and a CA
attention mechanism.

2. Prior Research Work

Nowadays, most surveyed studies on bamboo surface detection use machine vision
and image processing technology. Zeng et al. collected bamboo strip images and matched
them with bamboo strip defect characteristics in four aspects: color features, texture features,
frequency domain amplitude spectral features, and mathematical morphology features [16].
Huang et al. employed morphological analysis, difference shadow method, adaptive Canny
double threshold, edge extraction, and region growing approaches to detect defects like
wormholes, cracks, green bamboo, and white on long bamboo strips [17]. Chen et al. created
an algorithm for detecting bamboo chip shape defects by analyzing grayscale features. The
study compared the segmentation effectiveness of the global threshold method and the
Maximum Stable Extremal Region (MSER) method on bamboo slices [18].

Wang et al. proposed a method to construct multivariate images using multiscale
representations and developed an efficient approach based on multiscale color texture
eigenspace features to grade the surface of bamboo strips correctly [19]. Li et al. analyzed
bamboo cane images through threshold segmentation, image filtering processing, and
corresponding defect points through morphological and particle analysis [20]. Sun et al.
detected the defects of the bamboo edge with the intensity of the light passing through
the gap, using an optical fiber amplifier and an infrared photoelectric switch positioning
the bamboo area [21]. Qin et al. improved a method for the “selection of bamboo strip”
production process of bamboo flooring. The image inspection method can detect the major
defects on the bamboo strip’s surface and distinguish the color of the main-used surface
of the qualified bamboo strip [22]. Min et al. improved contour features by targeting
the area, geometrical symmetry, and texture features, considering the average gradient
to exercise defect detection of bamboo strips based on machine vision [23]. Kuang et al.
proposed a method for defect detection of bamboo strips using a set of features based on
LBP (Local Binary Pattern) and GLCM (Gray-level Co-occurrence Matrix), and the two
algorithms are combined to detect the texture of the ROI region and finally applied the
SVM classifier to classify the bamboo strips [9]. Traditional image processing methods
for detecting bamboo surface defects rely on manually defined features, which struggle
with defects’ random and varied nature. Since these methods use fixed feature templates,
they face challenges adapting to diverse bamboo types, potentially resulting in missed or
incorrect detections. Most image processing techniques rely on basic image features, which
may not suffice to address the complex variations in bamboo strip defects. Methods based
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on Support Vector Machines (SVM) are typically designed for specific datasets and have
limited generalization capabilities, making them less adaptable to other image data. Given
the diverse varieties of bamboo strips and the significant differences in defect types and
morphologies, although image processing techniques for bamboo strip defect detection
have shown high accuracy and efficiency in specific experimental settings, there remain
deficiencies in feature extraction and generalization capabilities.

Recently, researchers have combined target detection algorithms with deep learning
algorithms [24–26]. Convolutional neural networks enable adaptive feature extraction and
image classification, offering a new approach to target detection without the constraints
of manually defined features. Researchers have utilized CNNs for automated detection
in bamboo product analysis amidst agricultural informatization advancements [27,28].
Guo et al. incorporated asymmetric convolution and CBAM hybrid attention mechanism
into YOLOv4-CSP, enhancing feature extraction horizontally on bamboo surfaces [8]. The
approach involved utilizing asymmetric convolution for improved feature extraction and
integrating key channels and region weights via the CBAM module to enhance the model’s
capabilities. Liu et al. employed a radial basis function (RBF) neural network to spot
surface defects on mahjong mat bamboo blocks, pinpointing key features and establishing
an online detection system for workpiece defect characteristics [29]. Gao et al. analyzed
bamboo stick surface defects using an enhanced CenterNet model, combining a pre-trained
model core with an attention mechanism for superior results compared to YOLOv3 and
the original CenterNet [30]. Jun-Song et al. developed a detection system for chopstick
burr defects using a CNN method, optimizing the network structure for 94% accuracy and
achieving 21 frames per second in transmission [31].

Researchers have not generally focused on bamboo product defect identification
in AI studies. However, since wood and bamboo share natural origins, lessons could
be drawn from identification methods for sawn wood surface features in this project
category [32]. Sun et al. designed and developed an automatic detection method for wood
surface defects using a deep learning algorithm and multi-criteria framework [33]. Based
on the YOLOv3 network model, Yue H et al. reduced the multiscale detection network
and improved the loss function to enhance the accuracy and speed of wood knot defect
detection [34]. Li and Zhang applied YOLOv4 to identify knots, wormholes, and cracks in
spruce-sawn timber, digitally assessing and analyzing the primary defects with successful
recognition outcomes [35]. From above, we note that YOLOv5, a lightweight model in
the YOLO algorithm series, efficiently balances model parameters and detection speed,
reducing weight and calculations compared to YOLOv4, while maintaining solid prediction
accuracy [36–39].

Note that CNN in deep learning excels at adapting to complex defects, but it is
crucial to realize their heavy reliance on computer hardware due to numerous parameters
and calculations, factors sometimes overlooked in previous studies. Direct integration
into current production line control systems can cause slow detection and system jams.
Small bamboo product businesses struggle to afford high-performance computer detection
systems. Hence, researchers should devise a new method for identifying lightweight
bamboo strip defects tailored to the needs of small enterprises.

On the other hand, lightweight neural networks offer scaled-down models, reduced
parameter calculations, and lower hardware demands, ideal for industrial control computer
deployment. Zhang et al. suggested adopting MobileNetv3 instead of Darknet53 in
YOLOv3, simplifying the model, streamlining feature extraction, and introducing an IoU
loss function for faster network convergence [40]. Mohsin et al. merged MobileNetV3 with
Faster R-CNN to detect wood surface defects swiftly. MobileNetV3 was utilized for feature
extraction, while Faster R-CNN efficiently classified features from input videos for prompt
defect detection [41]. In 2021, Wang et al. substituted the original YOLOv3 backbone
network with the lightweight MobileNetV3 model, altered the activation function, greatly
diminished model parameters, and notably enhanced prediction speed [42].
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Recently, researchers switched the backbone network’s residual block to a Ghost block
structure for a lightweight model to address high network parameter calculations and
real-time performance issues. In 2022, Hu et al. implemented the Ghost module to re-
vamp YOLOv5’s backbone feature extraction network, cutting parameters and calculations
with minimal accuracy loss [43]. Zhao et al. designed and used the Ghost module for
convolution feature extraction in YOLOv4-tiny, enabling the algorithm to achieve good
results in both speed and accuracy [44]. Zhang et al. used Ghost and CA to improve the
YOLOv4 model, increasing precision and resolving the problem of accurate and rapid
identification of apple objects [45]. Cheng et al. used Ghost and SE modules to improve the
YOLOv5 model, enhancing the small target recognition ability based on lightweight neural
networks [46]. Zhang et al. employed aerial images to identify pine blight, enhancing the
YOLOv5 framework by integrating coordinated attention (CA), effective channel atten-
tion (ECA), convolutional block attention module (CBAM), and squeeze and excitation
(SE). He discovered that the attention mechanism minimizes the influence of irrelevant
features on model recognition, with the CA module proving the most effective without
excessive parameter addition [47]. Xu et al. improved YOLOv5 to detect wood defects by
incorporating the SimAM attention model into the network and using Ghost convolution
to minimize model parameters [48]. The improved network balances recognition speed
and accuracy for five categories of wood defects. Researchers enhanced feature fusion
with the attention mechanism and BiFPN structure within a lightweight network model,
enhancing multiscale feature fusion and small target feature detection without adding
network parameters or computational complexity.

Regarding surface defect detection of bamboo strips, traditional machine vision, and
image processing technology cannot adapt to the defect characteristics of bamboo strips of
different sizes, shapes, and irregular distributions. Convolutional neural networks have
apparent advantages but rely on the support of high-configuration computer hardware.
Current lightweight algorithms can reduce calculation parameters and increase speed, but
often at the expense of accuracy [49–52].

Nowadays, researchers have designed a lightweight neural network with a Ghost
module for the surface defect detection of bamboo strips. By introducing the CA attention
mechanism and C2f module based on the lightweight network model, the prior research
also improved the performance of multiscale feature fusion and small target feature recogni-
tion, realizing the identification and classification of surface defects of bamboo strips, which
has significant research significance for the detection technology of intelligent equipment
for bamboo products.

Moreover, researchers have already incorporated the C2f module into the advanced
YOLOv8 object detection network to enhance the network by running multiple gradient
flow branches in parallel to gather more extensive gradient data, thereby optimizing
performance [53]. For detecting the Forestry Pests, the C2f module is adopted to replace
part of the C3 module of YOLOv5 to obtain richer gradient information [54]. Hence, it
is important to consider applying the strategy to the basic architecture of the method,
YOLOv5s, and adopting the C2f module to replace part of the C3 module to obtain richer
gradient information [55,56].

3. Methods
3.1. Algorithm Improvement of YOLOv5s

The YOLOv5 model structure includes three parts: Backbone network, Neck network,
and Head, as shown in Figure 2. The Backbone includes the CBS (Conv-BatchNorm-SiLU),
C3, and SPPF modules. Researchers usually used the CBS for employed feature extraction,
the C3 for enhanced feature extraction, and SPPF for multiscale feature fusion. The neck
module adopts the PANet structure, which achieves goals through a feature pyramid
structure that combines feature maps of varying resolutions, generating a new feature
representation. The PANet structure effectively fuses feature maps from different levels to
enhance detection performance. The head component predicts image features, constructs
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bounding boxes, and outputs feature maps for object detection. The YOLOv5 mainly offers
four types: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Servers or workstations suit
YOLOv5l and YOLOv5x, as these types contain many parameters. Personal computers
can operate YOLOv5s and YOLOv5m as the models have fewer parameters than others.
In particular, YOLOv5s runs the fastest and has the fewest parameters, considering that
it can obtain excellent response and high accuracy among all the mentioned networks.
The four versions of YOLOv5 share the same network architecture. Two parameters,
depth factor (depth_multiple) and width factor (width_multiple), determine the size of the
network structure. This article selects YOLOv5s_V6.1 as the baseline model for improving
a lightweight design while ensuring detection accuracy.
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For the lightweight YOLOv5s model, this article uses Ghost convolution modules to re-
place the original model’s CBS and C3 modules for the Backbone and Neck parts, as shown
in Figure 3. Ghostconve combines BatchNorm (BN) with SiLU to become Ghostconve-BS
to replace the original CBS. The Ghost convolution module combines standard convolu-
tion operations with linear operations. It performs a linear transformation on the gener-
ated convolution feature maps to obtain similar features and generates high-dimensional
convolutions. At the same time, the C3Ghost module replaces the C3 module with the
GhostBottleNeck. After making the model lightweight, this article adds the CA attention
mechanism module to the Backbone of the original model to capture its area of interest
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faster. In the meantime, the C2f modules replace the original C3 modules in the Backbone
part and update the Bottleneck times of C2f based on the original Bottleneck times in C3.
The C2f modules improve the model’s robustness and enhance its detection ability for
small targets for a lightweight model, which reduces the computational load.
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The study lightens the original YOLOv5s model using Ghost convolution, further
simplifying model parameters. Figure 4 illustrates the Ghost convolution module. While
models like MobileNet and ShuffleNet reduce floating point calculations, they struggle
to efficiently handle redundant feature maps from convolution. The Ghost convolution
module first generates basic original feature maps through a 1 × 1 standard convolution and
then performs φ1, φ2, . . ., and φk linear transformation on these original feature maps one by
one. After obtaining another part of the redundant feature maps, the research combines this
part of the feature maps with the original feature maps to increase the number of channels.
This approach of obtaining redundant feature maps through linear operations can generate
those redundant feature maps at less cost than ordinary convolution. Accordingly, the
developed method simplifies the model by reducing total parameters.
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Figure 5 illustrates the Ghost Bottleneck structure created by Ghost convolution. The
approach divides the Ghost bottleneck module into two types according to the stride. When
the convolution step size is Stride = 1, it comprises two stacked Ghost convolution modules.
The first Ghost convolution module primarily expands the layer to increase the channels
of the input feature map. The second Ghost convolution module reduces the number of
feature map channels to match the shortcut path and then uses the shortcut to connect the
inputs and outputs of these two Ghost modules. When the Stride = 2, the structure uses a
depth-separable convolution and two Ghost convolution modules to reduce the number of
parameters. In this step, the first Ghost convolution module acts as an expansion layer to
increase the number of channels in the network, and the second Ghost convolution module
reduces the number of network channels and matches the residual connection. When
the approach does not use the ReLU activation function after the second Ghost module,
the other layers use batch normalization (BN) and the ReLU nonactivation function after
each layer. The essence of the Ghost bottleneck structure involves replacing standard
convolution with Ghost convolution to reduce calculation parameters.
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3.2. Replacement with C2F Module

The convolutional layer module used in YOLOv5s is the C3 module, and the C2f
module is the convolutional layer module proposed in the latest target detection algorithm,
as shown in Figure 6. The research improves part of the C2f module from the C3 module,
which contains Conv and Bottleneck modules. These two modules are all consistent
with the C3 module, and their composition structure generally refers to the composition
of the ELAN (Efficient Long-range Attention Network) module. While ensuring it is
lightweight, the model can obtain richer gradient information during training. In the target
detection task, the feature extraction module’s performance significantly affects the model’s
performance, so applying C2f to the Backbone network can improve YOLOv5s.
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3.3. CA Attention Mechanism for Optimization

CA (Coordinate attention) improves the spatial understanding of deep learning mod-
els. By introducing coordinate information, the CA mechanism enhances the compre-
hension of the relationship between various locations in the data. The developed net-
work enhances target identification and reduces computational expenses, as illustrated in
Figure 7.
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Figure 7. CA attention mechanism module.

The developed strategy transforms any intermediate feature tensor X in the network
and outputs feature tensor Y of the same size. H, W, and C present the input feature map’s
height, width, and number of channels, respectively. The CA mechanism considers its
positional relationship based on channel attention and combines it with spatial attention.
This research divides the operational process into coordinated information embedding
and attention generation. For input X, the pooling kernel (H,1) or (1,W) performs global
average pooling for each channel along the height and width directions. Compared with
global pooling, it helps the attention mechanism capture the long-distance relationship in
one direction and retain the spatial location information in the other direction, making the
object of network positioning more accurate than the original one.

The feature maps of the global receptive field’s width and height are spliced together
and transmitted to the 1 × 1 convolution module, with the dimension decreased to the
original C/r. After batch normalization, the characteristic figure is fed into the Sigmoid
activation function, yielding the characteristic figure in the form of 1 × (W + H) × C/r.
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The feature map is convolved by 1 × 1 according to the original height and width
to obtain the feature maps with the same number of channels as the input X. Using the
Sigmoid activation function, the attention weights in the height and width directions of the
feature map is obtained. Lastly, the feature map integrates with the attention mechanism to
maintain channel consistency.

4. Experiment Results and Discussion

In order to evaluate the algorithm’s impact, the study conducted experiments on a
bamboo strip defect dataset, training, testing, and comparing it with other target detection
algorithms.

4.1. Data Preparation and Experimental Conditions

Bamboo strip defect samples come from a Southern Asian bamboo strip processing
enterprise, a typical bamboo strip production factory, including five common defects: flat
yellow, concave yellow, green-black knot, yellow-black knot, and carbon defects, as Figure 1
shows.

The study sets up an experiment for bamboo strip inspection with linear light source
illumination. Using an industrial camera, the team vertically scans the defects on the
top of the bamboo strip, capturing images at 640 × 640 pixel resolution in jpg format. In
the 640 × 640 photograph, the bamboo strip is narrow and elongated. The background,
together with any of the bamboo defects in the image, was cropped in this paper to display
the bamboo strip in a rectangular shape.

Researchers gathered around 10,000 defect images and annotated them in YOLO data
format. Annotations include flat yellow and concave yellow defects, which have about
1200 labels each; green-black knot, yellow-black knot, and carbon defects, which have about
4000 labels each. The five types of defects total about 14,400 labels. Then, the data was split
into training, validation, and test datasets in an 8:1:1 ratio.

4.2. Experimental Platform

In the experiment, the researchers used two E5-2682V4 @ 2.5GHz CPU as the worksta-
tion CPU models, 64 GB DDR4 memory, and two GeForce GTX 2080Ti GPU models with
12 GB video memory. The study used PyTorch to construct a deep learning framework
on the 64-bit Windows 10 operating system and Python 3.8 to write programs, leveraging
required libraries such as CUDA 11.8, Cudnn, and OpenCV to implement neural network
model training.

For acceptable comparisons under the same conditions during the experiments, the
researchers set the same initial training parameters for each group of experiments. This
algorithm enhanced the YOLOv5-v6.1 version, training it with stochastic gradient descent
(SGD) using 48 samples per batch. The researchers trained all models for 300 epochs. The
study used Batch Normalization (BN) for regularization, with a momentum factor of 0.937,
weight decay rate of 0.0005, and initial learning rate of 0.01.

4.3. Model Training Improvement and Ablation Experiment

The study evaluates performance using Average Precision (AP), Recall, Mean Aver-
age Precision (mAP), Weights, Giga Floating-point Operations Per Second (GFLOPs), and
Frames Per Second (FPS). Average precision combines precision and recall, where precision
signifies the correctly identified positives, and recall indicates ground-truth positive sam-
ples. Mean average precision averages the model’s performance across all categories. The
explicit calculation formulas for the four indicators are delineated as follows:

Precision =
TP

TP + FP
× 100% (1)

Recall =
TP

TP + FN
× 100% (2)
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Ap =
∫ 1

0
(Precision)d(Recall) (3)

mAP =
∑N

i=1 APi
N

× 100% (4)

Among them, TP (True Positive) is the number of samples where the target exists,
FP (False Positive) is the number of samples where the target does not exist, FN (False
Negative) is the number of samples where the target exists but is not recognized, and N is
the number of categories. Hence, this research took the weight file with the highest mAP
for each model as the final result.

After training and testing the mode, the mAP (Mean Average Precision), Train loss
curves, and Validation loss curves were output, as shown in Figures 8a, 8b and 8c, respec-
tively. From observing the mAP curve, which measures detection accuracy, the improved
model stabilizes after the model is trained 250 times and reaches 97.6% after 300 training
times. The mAP achieves 97.6%, indicating that the improved model accurately recognizes
the five bamboo strip defects. As a comparative experiment, this study trained the YOLOv5s
model, the YOLOv5_Ghost model, and the YOLOv5_Ghost_CA model after introducing
the CA module and drew the curves in the same coordinate system. The final mAP value
of our improved model is higher than YOLOv5_Ghost (95.8%) and YOLOv5_Ghost_CA
(96.5%) and is the same as the mAP of YOLOv5s. Regarding training convergence speed, the
improved model converges at the same speed as YOLOv5_Ghost and YOLOv5_Ghost_CA
and tends to a stable value after about 250 times. The curve of YOLOv5s climbs faster and
converges faster, and it tends to a stable value after about 200 training times.

The value for the train loss curve of the improved model is 0.658% when trained
300 times, which is slightly higher than the value of YOLOv5s of 0.62% and lower than
YOLOv5_Ghost (0.712%) and YOLOv5_Ghost_CA (0.698%). The validation curve, which
measures the model’s performance, indicates whether the model can correctly identify
the target in the image with low validation obj_loss values. Note that from observing the
validation loss curves, which start to stabilize after 250 times of training, the obj_loss drops
to 0.217% after 300 times of training. The validation curve of YOLOv5s decreases quickly
and stabilizes after 200 times, but the stability value of 0.225% is slightly higher than the
improved model. The validation values for the other two models are 0.226% and 0.266%.

The ablation experiment aims to verify the optimization effect of each improved
module. We first tested the effect of YOLOv5s on the bamboo surface dataset; then, we
used the Ghost module to modify the YOLOv5 model for training and testing. Next, we
introduced the CA attention mechanism and added the C2f module as our improved model.
Table 1 demonstrates the experimental results.

Table 1. Summary of Ghost-CA ablation experiments.

Model Weights
MB

Precision
%

Recall
% mAP@0.5% mAP@0.5:0.95% GFLOPs

Average
Time per
Epoch/s

YOLOv5s 14.4 89.5 95.9 97.6 91.9 16.5 47
YOLOv5 + Ghost 7.6 86.8 93.0 95.8 89.0 8.1 47

YOLOv5 + Ghost + CA 9.28 90.0 91.7 96.5 90.7 8.9 54
Our improved model 13.0 91.9 92.4 97.6 92.6 16 52
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After training the bamboo strip defect dataset 300 times, the training effect of the initial
YOLOv5 network on the test set’s mAP was 97.6%, with a precision of 89.5%. On this basis,
the Ghost module replaced the C3 and Conv of the Backbone and Neck, reducing the mAP
and precision by 1.8% (to 95.8%) and 2.7% (to 86.8%). Although the accuracy decreased,
the number of model parameters and calculations reduced significantly, and the model
weights were reduced to 4.6M (by 47.2%), indicating that the Ghost module significantly
affects model lightweight. On this basis, the research implemented the CA module to the



Forests 2024, 15, 1480 13 of 21

Backbone, which improved the mAP to 96.5% (by 0.7%) and the precision to 90.0% (by
3.2%), with the Weights (the weight size) only adding 1.68 MB. The last column of Table 1
records the average time per epoch during training. A comparison reveals that the time
required for each epoch has not increased significantly after model improvement. In other
words, this study has enhanced the model’s performance with only a slight increase in
time.

Based on the above YOLOv5-Ghost, the C2f module is improved on the Backbone and
Neck, that is, using C2f to replace the C3Ghost in the Backbone of YOLOv5-Ghost; C2f to
replace the C3Ghost in the Neck; and using C2f to replace all C3Ghost in the Backbone and
Neck. Table 2 shows the obtained effects. The replaced model improved mAP compared
to the YOLOv5-Ghost’s, which shows that C2f can optimize the model performance by
appropriately increasing the model weights. At the same time, it is not true that replacing
all the C3Ghost networks with the C2f networks achieves better results. C2f acts in different
locations on the network and changes network performance differently. The comparison
shows that after the C2f module improves on the Backbone, the precision reaches 89.9%, and
the mAP reaches 97.1%. The detection speed of the model is 68.5 FPS. The precision exceeds
other improvements of C2f and also exceeds the original YOLOv5s model. Although
C2f completely replaces C3Ghost, the mAP reaches 97.3%, the weight reaches 15.7 MB,
the speed decreases to 55.6 FPS, and the precision has no obvious advantage, making it
challenging to effectively balance the calculation amount and accuracy.

Table 2. Summary of C2f ablation experiments.

Model Backbone Neck CA Weights
MB

Precision
%

Recall
% mAP@0.5% mAP@0.5:0.95% GFLOPs FPS

Average
Time per
Epoch/s

YOLOv5s
+ Ghost

7.6 86.8 93.0 95.8 89.0 8.1 64.5 47√
11.5 89.9 92.8 97.1 92.0 15.1 68.5 50√
11.5 86.4 96.6 96.3 90.8 12.1 66.2 48√ √
15.7 87.8 96.3 97.3 92.2 17.1 55.6 48√ √
13.0 91.9 92.4 97.6 92.6 16 62.1 56√ √
13.0 91.1 92.1 97 91 12.9 59.6 58√ √ √
17.2 92.7 90.9 97.0 91.9 20.0 54.1 53

Table 2 emphasizes that the addition improves network mAP to 97.6%, precision
to 91.9%, and speed to 62.1 FPS, showing promising optimization. When replacing all
instances of C2f to C3Ghost, precision rises to 92.7%, a 4.9% improvement post-CA inclusion.
However, with increased Weights to 17.2 M and the FPS reduced to 54.1, it is better
to implement this model for high-performance computers due to its resource-intensive
nature. The last column of Table 2 allows for a comparison of the average time per epoch
during training. The introduction of the CA attention mechanism increased the number of
parameters, leading to an extended duration of each epoch. When incorporating the C2f
enhancement into the network, the smaller computational load of C2f can reduce the time
per epoch during training. When the study applies C2f to both the Backbone and Neck
parts, the average time per epoch is shorter, but the model’s weight increases, which is not
conducive to achieving a lightweight effect.

The study integrates the CA module into the C2f enhanced backbone network. Table 3
shows that implementing the Ghost module realizes the lightweight YOLOv5s network
effectively, and combining the CA and C2f modules improves the mAP and precision of
the network. However, the BiFPN structure enhances the YOLOv5 + Ghost + CA model’s
neck section, decreasing precision by 1.2% and decreasing mAP by 1.8%; the average time
of per-epoch increasing to 56 s. BiFPN falls short of the substantial impact seen with C2f
and CA modules.
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Table 3. Summary of all ablation experiments.

Model Weights
MB

Precision
%

Recall
% mAP@0.5% mAP@0.5:0.95% GFLOPs

Average
Time per
Epoch (s)

YOLOv5s 14.4 89.5 95.9 97.6 91.9 16.5 47
+ Ghost + CA 9.28 90.0 91.7 96.5 90.7 8.9 54

+ Ghost + CA +
backC2f (ours) 13.0 91.9 92.4 97.6 92.6 16 52

+ Ghost + CA + BiFPN 10.6 88.8 90.9 95.7 88.9 9.8 56

From above, this investigation asserts that YOLOv5 diminishes model weights while
enhancing recognition performance via the enhancement framework integrating Ghost,
CA, and C2f.

Table 4 compares precisions for the above networks’ executions in detecting various
bamboo strip defects. As for detecting the flat yellow defect experiments, YOLOv5s
achieved 80.2% precision. After incorporating the Ghost module for weight reduction,
accuracy dipped slightly to 82.2%. The addition of the CA module improved accuracy to
87.9%. Integrating Ghost with C2f led to a slight accuracy reduction to 87.7%, later rising
to 91.1% with the CA module. A lightweight CA module trims the computational load in
YOLOv5s, reducing network size while improving target recognition slightly. The modified
network, although different, performs comparably to YOLOv5s, boasting enhanced speed
and fewer parameters.

Table 4. Comparison of precisions for five categories of bamboo strip defects.

Class YOLOv5s YOLOv5s-
Ghost

YOLOv5s-
Ghost-CA

YOLOv5s-
Ghost-backC2f

YOLOv5s-
Ghost-

backC2f-CA

YOLOv5s-
Ghost-CA-

BIFPN

All 89.5 86.8 90.0 89.9 91.9 88.8
Yellow-black knot 96.2 94.8 95.3 95.5 96.2 93.7
Green-black knot 96.5 95.4 96.5 96.5 97.6 94.6

Flat yellow 80.2 82.2 87.9 87.7 91.1 82.1
Concave yellow 96 85.3 91.7 91 94.1 89.3

Carbon 78.6 76.3 78.7 78.8 80.6 84.3

However, the concave yellow defect, YOLOv5s, initially achieved 96% precision but
was reduced to 85.3% when the Ghost module was implemented. Incorporating the CA
module changed accuracy to 91.7%. The Ghost module added the C2f, and the recognition
accuracy improved to 91% from 85.3%. Adding the CA module improved accuracy slightly
to 94.1%, which is still less than the precision for YOLOv5s.

After employing BiFPN to modify the network, recognition accuracy decreased for
bamboo strip defects, except carbon. BiFPN may be effective in other datasets but is
unsuitable for flat_yellow, concave_yellow, green_black_knot, and yellow_black_knot
defect detection in bamboo strips.

4.4. Comparative Experiment

Table 5 depicts the test results of the algorithm on the bamboo strip defects dataset,
including YOLOv5s-Ghost, YOLOv5s, YOLOv7-tiny, YOLOv8n, and YOLOv9c, and the
new algorithm in this study. YOLO networks show notable efficacy in identifying bamboo
strip defects. Comparative analysis reveals that this article’s algorithm balances model size,
accuracy, and speed when contrasted with YOLOv5s and YOLOv5s-Ghost models. The
new YOLOv7, YOLOv8n, and YOLOv9c YOLO networks achieve a 2% precision and 0.3%
mAP increase over the algorithm in this study with lower CPU detect speed performance.
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Table 5. Comparisons of various YOLO experimental results for bamboo strip defect detection.

Networks Weights
MB

Precision
%

Recall
% mAP@0.5% mAP@5:0.95% GFLOPs FPS

(GPU)
FPS

(CPU)

Average
Time per
Epoch (s)

YOLOv5n 6.7 88.9 94.8 95.6 87.7 4.2 49.3 10.0 44
YOLOv5s-Ghost 7.6 86.8 93.0 95.8 89.0 8.1 64.5 10.4 47

YOLOv5s 14.4 89.5 95.9 97.6 91.9 16.5 76.9 11.6 47
YOLOv7 12.3 94 92.7 97.9 91.2 106.5 77.5 5.8 299

YOLOv8n 7.2 95.3 95.3 98 79.3 28.4 82 2.9 58
YOLOv9c 50 94.3 96.5 98 93.9 266.2 18.5 6 415
Developed
algorithm 13.0 91.9 92.4 97.6 92.6 16 62.1 8.2 52

The mAP serves as a critical metric for evaluating model performance. YOLOv7-tiny
performs well, indicating good precision and recall, but lacks overall mAP value and CPU
FPS. The YOLOv8n exhibits mAP results similar to this article, showing superior precision
and recall with compact model weights. YOLOv8n replaces C3 with C2f and leverages
anchor-free techniques for network optimization, resulting in a parameter-efficient model
with enhanced performance. While YOLOv5 is ideal for CPU setups due to its equipment
requirements, v8n excels with fewer parameters and better performance. Notably, YOLOv5
aligns well with CPU environments, offering stability and cost-effectiveness. Moreover,
YOLOv9 outperforms the algorithm in defect identification, indicating enhanced perfor-
mance. Regarding the Average Time per epoch, YOLOv7 and YOLOv9 could consume a
significant amount of time.

The current YOLOv9 network has excessive memory requirements and high computa-
tional load, making it impractical for regular computers but suitable for network server
clouds. As a result, YOLOv9 struggles to strike a balance between detection accuracy
and speed for bamboo strip defect identification, rendering it unsuitable for standalone
real-time detection. While YOLOv9 partially aims to slim down the YOLOv5s network, it
falls short in developing a genuinely lightweight network design.

Figure 9 shows the detection results of the algorithm in this study. The network’s
processing reveals the various recognized defects in the figures, and this research also
shows the confidence values of the detection results from experiments. For example, in
Figure 9, this research’s developed network can recognize the flat yellow defects with a
confidence level of 0.93 (the maximum confidence value is 1), with a confidence level of 0.95
for the concave yellow defects, and with a confidence level of 0.95 for the carbon defects
on the bamboo strip samples. The detection result diagram shows that the algorithm
developed in this paper identified the five common bamboo strip defects well.
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As shown in Figure 10, there are detection results of five types of bamboo strip defects,
with six images for each. The areas framed in the images indicate the locations of the
defects, and the names above the frames are the identified defect names, followed by the
detection confidence level (maximum value of 1). The displayed bamboo strips exhibit
significant color variations, and the defect shapes differ; some images even contain multiple
defects. The research revealed that false detections of defects in bamboo strips were scarcely
observed during the experimental process. Based on the confidence levels of the detected
defects, the model can accurately determine the corresponding defect types. Meanwhile,
the last image in the groups detecting flat yellow and concave yellow defects represents
a model omission case. The defect colors are too close to the bamboo strip background,
resulting in omissions. Overall, the model demonstrates good detection performance for
the five bamboo strip defects mentioned in this research.
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5. Conclusions

Surface defect detection of bamboo strips is an important process in producing bamboo
plywood. The quality of bamboo strips directly affects the quality of subsequent products.
Currently, bamboo strip manufacturing enterprises rely on manual visual identification,
which has problems such as high labor costs, easy fatigue, and missed inspections. Many
types of defects and irregular shapes and sizes characterize the surface defects of bamboo
strips. Therefore, when research applies traditional image analysis technology to detect
bamboo strip defects based on basic image features, it is difficult to meet the complex
bamboo strip defect characteristics. Given the excellent performance of deep learning
models in automatically extracting features, this article proposes a detection strategy for
bamboo strip surface defects that improves the YOLOv5 model. This study trains the model
to automatically extract defect features by constructing a dataset containing some bamboo
strip defects. In order to weigh the amount of model calculation and recognition speed, this
article uses the Ghost module to improve the convolution of the YOLOv5s model and the
C3 convolution in Neck, reducing network parameters and calculation load and achieving
lightweight improvements. In order to improve the feature recognition accuracy of the
lightweight model, this study introduces the C2f module and CA attention mechanism.
The improved model replaces the C3 convolution in Backbone with the C2f module to
extract features at different scales, allowing the modified model to capture complex image
features better. By implementing the CA attention mechanism and paying attention to
image channel information and position information simultaneously, this research has
effectively improved the object detection ability of the model for strip defects on bamboo
surfaces without incurring too much computational overhead.

The researchers collected about 10,000 images to build a dataset based on five common
bamboo defects contained. The dataset was trained by the improved YOLOv5 model. After
training for 300 epochs, the improved model showed good performance and achieved
fast and accurate defect detection effects of the lightweight model. The trained model’s
mAP@.5 reached 97.6%, mAP@.5:.95 was 92.6%, recall was 92.4%, precision reached 91.9%,
and the model’s Weights was only 13M. Compared with the initial YOLOv5s, the improved
model’s precision increased by 2.4%, mAP@.5:.95 rose by 0.7%, and the model weights
reduced by 1.4M, which is 10% lower than the weights of the original YOLOv5s, achieving
lightweight improvements and recognition effects. Compared with the updated versions
of YOLOv7, YOLOV8, and YOLOv9, the improved model in this article had mAP@5:0.95 at
92.6%, second only to YOLOv9, and its mAP@0.5%, and precision was lower than other
high-version YOLO models. However, the FPS of the improved model on the CPU was 8.2,
which was higher than other high-version YOLO models. It indicates that the improved
model has low computer hardware requirements and can achieve better recognition speed
by relying on CPU calculation and reasoning and balancing the hardware configuration
and model. The performance is favorable to applications in industrial environments with
low computer configurations. It is more suitable for bamboo processing companies to
save computer hardware costs when applying YOLO detection technology. Although the
current model has achieved good results in detecting defects on the surface of bamboo strips,
detecting small object defects on bamboo strip surfaces is still challenging. Subsequently,
this research will optimize the model to improve its detection capabilities for small object
defects. Meanwhile, the number of samples for small object defects in bamboo strips
is still small, and training the YOLO model on small sample datasets will be the next
direction for this research. In summary, the experimental results of this study contribute a
technical solution to a better detection approach for bamboo strip defects and promote the
development of intelligent equipment design.
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