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Abstract: Due to its unique geographical and climatic conditions, the Liangshan Prefecture region is
highly prone to large fires. There is an urgent need to study the growth rate of fire-burned areas to fill
the research gap in this region. To address this issue, this study uses the Grey Wolf Optimizer (GWO)
algorithm to optimize the hyperparameters in the eXtreme Gradient Boosting (XGBoost) model,
constructing a GWO-XGBoost model. Finally, the optimized ensemble model (GWO-XGBoost) is
used to create a fire growth rate warning map for the Liangshan Prefecture in Sichuan Province, China,
filling the research gap in forest fire studies in this area. This study comprehensively selects factors
such as monthly climate, monthly vegetation, terrain, and socio–economic aspects and incorporates
monthly reanalysis data from forest fire assessment systems in Canada, the United States, and
Australia as features to construct the forest fire dataset. After collinearity tests to filter redundant
features and Pearson correlation analysis to explore features related to the burned area growth
rate, the Synthetic Minority Oversampling Technique (SMOTE) is used to oversample the positive
class samples. The GWO algorithm is used to optimize the hyperparameters in the XGBoost model,
constructing the GWO-XGBoost model, which is then compared with XGBoost, Random Forest (RF),
and Logistic Regression (LR) models. Model evaluation results showed that the GWO-XGBoost
model, with an AUC value of 0.8927, is the best-performing model. Using the SHapley Additive
exPlanations (SHAP) value analysis method to quantify the contribution of each influencing factor
indicates that the Ignition Component (IC) value from the United States National Fire Danger Rating
System contributes the most, followed by the average monthly temperature and the population
density. The growth rate warning map results indicate that the southern part of the study area is the
key fire prevention area.

Keywords: fire growth rate; forest fire prediction; GWO-XGBoost; machine learning

1. Introduction

Forests are indispensable ecosystems on Earth, playing crucial roles in maintaining
soil and water, facilitating carbon cycling, and preserving biodiversity: all essential for
sustaining the global ecological balance and human environment. However, forest fires,
as frequent natural disasters, cause devastating damage to forest ecosystems [1]. These
fires result in massive loss of biomass, destroy ecosystem functions, and exacerbate global
climate change through carbon emissions [2]. With global warming and the increase in
extreme weather events, the frequency and intensity of forest fires are rising significantly,
making them a critical challenge in global environmental protection and climate change
research. Annually, forest fires affect hundreds of thousands of hectares globally [3]. In 2020,
the massive bushfires in Australia not only caused unprecedented ecological damage
but also severe economic and social impacts, with 11.46 million hectares burned and
approximately three billion wildlife fatalities. On 30 March 2020, a severe forest fire in
Xichang, Liangshan, Sichuan Province, China, resulted in the deaths of 19 firefighters and
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three injuries and burned 3047 hectares [4]. In August 2023, large-scale wildfires in Maui,
Hawaii, USA, resulted in 97 deaths and economic losses of USD 5.52 billion.

Due to the diversity of geographical environments and climatic conditions, the causes
of forest fires are complex, and they lack a unified standard for prevention and control [5].
Hence, constructing localized forest fire warning systems specific for regional characteristics
is crucial. Driven by this need, many countries have established comprehensive forest fire
warning systems using ground stations, satellite remote sensing, and aerial reconnaissance
to monitor fires in real time. Examples include the National Fire Danger Rating System [6]
(NFDRS) in the USA and the Canadian Forest Fire Danger Rating System [7] (CFFDRS)
in Canada. With advances in remote sensing technology and computing power, the ca-
pacity for data analysis and feature extraction in fire research has improved significantly.
High-resolution satellite imagery enables researchers to accurately capture key parameters
such as forest topography, vegetation, climate, and human activities [8]. These complex
multidimensional datasets are well-suited for machine learning models, making advanced
machine learning algorithms a hot research topic in forest fire studies.

The severity of forest fires is primarily determined by the area burned, making it
essential to explore key factors and trends in burn area growth for regional fire manage-
ment [9]. Fire growth rate studies are typically divided into physical and empirical models.
Physical models, are based on an in-depth understanding of fire behavior and simulate
burning, propagation, and heat release processes [10] and rely on precise data on weather,
vegetation type, fuel moisture, and topography, thus requiring significant resources and
computational power. In contrast, empirical models establish patterns through statistical
analyses of historical fire data and commonly use statistical or machine learning methods
like linear regression, decision trees, or random forests [11]. With the development of
remote sensing technology, accessing high-quality, detailed fire-related data has become
easier. Researchers have successfully used these models to predict forest fire growth rates in
specific regions. For example, Juang et al. [12] utilized daily growth data of forest fires in the
western USA from 2001 to 2020 to investigate the reasons behind the exponential increase
in Annual Forest Area Burned (AFAB) with aridity in the western United States. The study
collected a large amount of empirical data, and the results showed that the exponential
growth of AFAB is primarily attributed to the exponential growth of individual forest fire
areas. Furthermore, the rapid expansion of large fires is the dominant factor contributing to
the exponential growth of AFAB. This study has significant implications for understanding
and predicting future forest fire trends. Markuzon et al. [13] utilized multi-source het-
erogeneous data, including remote sensing, meteorological, and land cover information,
in conjunction with machine learning algorithms such as random forest decision trees,
Bayesian networks, and k-nearest neighbors to predict whether nearly 3000 wildfires in
the southwestern United States would escalate into “large fires” within the next one to
two days. The study results indicated that the predictive performance of the three machine
learning algorithms was similar, with an accuracy rate of approximately 75%. However,
there are issues with low data accuracy and unbalanced data distribution in the study,
which have impact the predictive capabilities of the model. In the study of forest fire burn
areas, compared with the integrated model, the single prediction model does not perform
very well.

As each algorithm has limitations affecting model accuracy, researchers have found
that ensemble models outperform single models, leading to their widespread use in re-
lated fields [14,15]. Bhadoria et al. [16] combined Support Vector Machine (SVM) and
random forest regression models to develop a Random Vector Forest Regression (RVFR)
model that was applied for predicting forest fire areas in India. They also introduced a
predictive density function and vectorization, which enhanced the model’s adaptability
and robustness. The results demonstrated that the RVFR model achieved higher predic-
tive accuracy (94%) and better variance (1.0) compared to other traditional single models.
Mohajane et al. [17] standardized forest fire impact factors using the Frequency Ratio (FR)
method and combined several machine learning models (multilayer perceptron, LR, classi-



Forests 2024, 15, 1493 3 of 22

fication and regression trees, SVM, and RF) to develop a forest fire prediction model for
northern Morocco and showed the RF-FR model had the best performance (AUC = 0.989).
Hao et al. [18] quantified the contribution of fire risk and related indices using RF, Gradient
Boosting Decision Tree (GBDT), and XGBoost models, followed by regression analysis with
Back-Propagation Neural Networks (BPNNs) and Geographically Weighted Regression
(GWR), and showed that integrating RF and BPNN offered the best performance (R2 = 0.97).
Obviously, compared to single models, ensemble models effectively integrate the strengths
of various models, enhancing the predictive performance and research quality.

Currently, ensemble models show good predictive capabilities in this field. Shmuel
et al. [19] utilized monthly global forest fire satellite data from 2015 to extract various factors
that may influence forest fires, including meteorology, topography, fuel, and population,
as feature variables. They employed multiple machine learning models, including random
forest, XGBoost, and multilayer perceptron, to construct classification models for predicting
forest fire occurrence probability and regression models for predicting burned area size.
The best model (XGBoost) achieved an AUC of 0.97 for fire occurrence prediction and a
Mean Absolute Error (MAE) of 3.13 km2 for burned area prediction. They also used 2016
global wildfire data to extract factors influencing wildfire spread, including meteorology,
topography, and fuel as features. They attempted XGBoost, random forest, and MLP
models to construct regression models for predicting daily burned area and classification
models for predicting whether the burned area would increase. In both tasks, XGBoost
continued to perform the best, significantly outperforming logistic regression [20]. It is
evident that XGBoost consistently demonstrates excellent performance in tasks related to
forest fires. Therefore, in this study, we choose XGBoost 1.7 as our optimization target and
apply it to predict the growth rate of forest fire areas.

XGBoost has been used for the assessment of forest fire risk. Xie et al. [21] constructed
a forest fire risk assessment model with strong generalization ability and robustness and ap-
plied it for fire risk prediction and mapping across the entire Liangshan Prefecture. They
collected fire occurrence records from MODIS data and selected 10 factors representing
the topography, meteorology, vegetation, and human activities as influencing factors.
The FR method is used to assign objective weights to each factor in their method. They
also employed Bayesian Optimization (BO) algorithms to automatically optimize the hy-
perparameters of various machine learning models, including SVM, RF, and XGBoost,
and compared their models’ performances. The results indicated that among the three
proposed models, the FR-BO-XGBoost model performed the best, with an AUC value
of 0.887. Similarly, Li et al. [22] combined four different machine learning methods—
RF, XGBoost, Light Gradient Boosting Machine (LightGBM), and MLP—to propose an
ensemble-learning-based forest fire risk prediction model, which they applied to fire risk
prediction in Yunnan Province, China. They performed hyperparameter tuning on the
base models using Bayesian optimization and employed SHAP analysis to evaluate the
importance of various influencing factors. The results showed that the ensemble model
achieved an accuracy of 0.906, while individual models ranged between 0.86 and 0.89.
However, it is worth noting that their approaches can be considered a re-ensemble of
ensemble models, which increases model complexity, thus leading to higher training time,
cost, and demands on data quality. Compared to their studies focused on fire risk [19–22],
our research focuses on the growth rate of forest fire in specific regions. This emphasis on
growth rate offers a more dynamic perspective and contributes to a better understanding
and forecasting of fire growth trends within those regions. This is critical for targeted fire
management and resource allocation strategies.

The application of deep learning models in the field of wildfires is also becoming
increasingly widespread. According to a detailed study by Ghali et al. [23], the use of deep
learning in wildfire detection and mapping primarily includes fire detection and mapping,
severity estimation, and spread prediction. Deep learning models demonstrate outstanding
performance in these tasks related to wildfires. They also analyzed commonly used remote
sensing data, noting that the most common type of data is image data, which are suited
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for deep learning. Compared with deep learning models, the proposed GWO-XGBoost
model, with its lower data and computational requirements and easier parameter tuning,
is better suited for practical applications in scenarios where data acquisition is difficult or
computational resources are limited.

Fire area growth rate studies typically select large regions as research subjects, as small
areas rarely experience multiple fires in a short period. Only by expanding the study area
can sufficient data on forest fires be collected. Research on fire growth rates is still nascent
in China, but its research value cannot be overlooked. Predictions of fire growth rates on a
broad scale provide management with recommendations for fire resource allocation from a
macro perspective, facilitating more effective fire management and response strategies. This
study focuses on predicting the growth rate of fire areas in Liangshan, Sichuan Province.
During the data extraction phase, after reviewing the existing literature and conducting
preliminary experiments, we have found that, compared to the simple Fire Weather Index,
it is necessary to collect multi-dimensional datasets to ensure better model performance.
The incorporation of additional features provides a more comprehensive understanding
of the complex relationships between weather conditions, vegetation, and wildfire risk,
leading to improved predictive accuracy. Incorporating additional features allows for a
more comprehensive understanding of the complex relationships between terrain, weather
conditions, vegetation, human activities, and fire risk, thereby improving prediction accu-
racy. In addition to common fire-related factors, a series of reanalysis data from national fire
assessment systems are incorporated; we selected 22 potential influencing factors. After co-
linearity testing and correlation analysis, 13 key indicators were chosen as input features
for the machine learning model. The parameters of the XGBoost model were optimized
using the GWO, and the GWO-XGBoost model was compared with RF, XGBoost, and LR
models. The performance assessment showed that the GWO-XGBoost model excelled in
several performance metrics, demonstrating good classification fit. To further interpret
the model’s predictions, SHAP value analysis was used to quantify the contributions of
various factors to the model output. The analysis revealed that the Ignition Component (IC),
Mean Monthly Temperature (MT), and Population Density (PD) were the most significant
indicators affecting the trend of fire area growth. Finally, by fitting the data from March
of historical fire years in Liangshan, a fire area growth rate warning chart was drawn,
and together with a risk difference map of the Luzhou region, the study’s rationality was
validated. By thoroughly analyzing these key indicators, this research provides data-driven
insights for local forest fire management, promoting data-based decision-making pro-
cesses and providing a scientific basis for fire prevention and management efforts in the
Liangshan area.

2. Materials and Methods

In this section, we present the study area and data sources and analyze the factors
influencing the growth rate of forest fire areas, including terrain factors, vegetation factors,
meteorological factors, human activity factors, and fire risk assessment factors. We then
provide a detailed introduction to the proposed GWO-XGBoost model, including data
preprocessing methods and the construction of the GWO-XGBoost model.

2.1. Study Area

Liangshan Yi Autonomous Prefecture, located in the southwestern part of Sichuan
Province, is an area with beautiful natural scenery and rich ecological resources. The pre-
fecture covers an area of 60,423 square kilometers and had a population of 5.3103 million
at the end of 2019. Geographically, Liangshan is situated on the northeastern edge of
the Hengduan Mountains in southwestern Sichuan, between the Sichuan Basin and the
central Yunnan Plateau [24]. The terrain is high in the northwest and low in the southeast,
resulting in varied topography and landforms. The climate is classified as subtropical
monsoon, with distinct wet and dry seasons, creating a unique ecological environment.
The vegetation mainly consists of Yunnan pine and alpine pine, with a forest coverage rate
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of 43%, making it an important forestry and pastoral area in Sichuan Province. However,
these geographical features and climatic conditions also make the region prone to forest
fires, especially during the dry season from November to April each year, when the risk
of forest fires is high [21,25]. The geographical location of the research area is shown in
Figure 1.

Sichuan province

Figure 1. Study area.

2.2. Data Sources

The forest-fire-related data used in this study can be categorized into independent-
variable data and dependent-variable data. The independent-variable data include common
fire influencing factors: elevation, slope, aspect, Normalized Difference Vegetation Index
(NDVI), temperature, relative humidity, precipitation, wind speed, roads, and popula-
tion. To further enhance the quality of dataset features and better explain the key factors
of forest fire growth rate, fire risk assessment indicators were extracted from the CFF-
DRS [26], the NFDRS [27] of the United States, and the Australian Fire Danger Rating
System (AFDRS) [28].

From the CFFDRS, we extracted the Build-Up Index (BUI), danger-risk, Drought Code
(DC), Duff Moisture Code (DMC), Daily Severity Rating (DSR), Fine Fuel Moisture Code
(FFMC), Fire Weather Index (FWI), and Initial Spread Index (ISI). From the AFDRS, we
collected the Fire Danger Index (FDI) and Keetch–Byram Drought Index (KBDI). From the
NFDRS, we extracted the Burning Index (BI), Energy Release Component (ERC), Ignition
Component (IC), and Spread Component (SC).

The study area was divided into 0.2◦ × 0.2◦ (latitude and longitude) grids using
ArcMap 10.2 software [20], resulting in a total of 140 grids. We then collected forest fire
data for each grid from 2006 to 2019, a span of 14 years, and summarized them by month.
The variations in the burned area for the same months across different years within the
corresponding grid were calculated. If the burned area in the following year was larger
than that of the current year, it was considered an increase in the burned area, and the
change value was labeled as 1; otherwise, the change value was 0, indicating no increase in
the area. Generally, the larger the burned area, the higher the reliability of the fire points
detected by remote sensing images. Therefore, to obtain more reliable data on forest fire
burned areas, only fire points with a burned area greater than 20 hectares were selected for
recording [29]. There were only 365 samples with a change value of 1. To obtain a sufficient
dataset [30], 730 samples with a change value of 0 were randomly selected, resulting in a
total of 1095 data points for the dataset on changes in burned areas. The specific factors are
shown in Table 1.
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Table 1. Multicollinearity analysis for relevant factors.

Data Type Category
Data Range

Minimum Value Maximum Value

Terrain Factors Altitude 302 5439
Vegetation Factors NDVI 0 0.9

Meteorological Factors

MT (K) 247.21 294.5
MH (Monthly Humidity, kg·kg−1) 0 0.017

MP (Monthly Precipitation, kg·m−2·s−1) 0 4.43 × 10−4

MSR (Monthly Solar Radiation, W·m−2) 161.99 1362.15
MW (Monthly Wind Speed, m·s−1) 0.25 2.61

Human Activity Factors PD (people/km2) 0 609.38

Fire Risk Assessment Factors

BUI 0 178.7
Danger-risk 1 5.31

DC 0 547.73
DMC 0 163.56
DSR 0 26.38

FFMC 15.57 94.39
FWI 0 48.11
ISI 0 17.06
FDI 0 13

KBDI 0 58
BI 0 53

ERC 0 56
IC 0 38.83
SC 0 9.52

2.2.1. Fire Point Extraction

The fire point data involved in this study were obtained from NASA’s Fire Information
for Resource Management System (FIRMS). FIRMS is an important part of NASA’s Earth
Observing System Data and Information System (EOSDIS) and focuses on providing real-
time information on active fire points and thermal anomalies globally (https://www.
earthdata.nasa.gov/learn/find-data/near-real-time/firms/active-fire-data, accessed on
5 March 2024). This system utilizes data collected by the Moderate Resolution Imaging
Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS)
onboard NASA satellites. VIIRS, with its 375 m spatial resolution [31], offers finer and
more sensitive monitoring capabilities for small-scale fire incidents. FIRMS integrates data
from both MODIS and VIIRS, providing real-time, high-value information resources for
global fire management and related research; it particularly excels at the identification and
analysis of smaller fire sources.

In this study, fire incidents in the Liangshan region from 2006 to 2022 were extracted.
Data from 2006 to 2022 were extracted from the MODIS sensor, and data from 2012 to 2022
were extracted from the VIIRS sensor. To avoid duplicate fire points, ArcMap 10.2 software
was used to remove redundant fire points.

The satellite sensor data include “scan” and “track” indicators, which represent the
pixel sizes of the scan and track, respectively. Based on the resolutions of 1000 m for
the MODIS sensor and 375 m for the VIIRS sensor, combined with specific pixel sizes,
the burned area at the time of fire point observation was calculated [32]. Most fire prediction
studies focus on whether a fire incident occurs at a fire point, whereas this study focuses
on the burned area after a fire incident. To improve the accuracy of the area measurement,
only fire incidents with a burned area greater than 20 hectares were selected.

2.2.2. Vegetation Factors

Surface vegetation is the main source of fuel for fires and plays a crucial role in forest
fire research. Different vegetation types and coverage directly affect the characteristics

https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms/active-fire-data
https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms/active-fire-data
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and quantity of surface fuels, significantly influencing the occurrence and spread of fires.
The NDVI is a remote sensing measurement index that is widely used in forest fire research
to measure vegetation density and health.

The NDVI data used in this study were obtained from the “Monthly 1KM Res-
olution Vegetation Index Spatial Distribution Dataset of China”, provided by the Re-
source and Environment Science and Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/, accessed on 9 March 2024). This dataset is generated from 1 KM
resolution vegetation index data on SPOT/VEGETATION satellite images, which are pro-
cessed using the maximum value composite method to create monthly vegetation index
data, with negative values treated as zero. NDVI is calculated as the ratio of the differ-
ence in the sums of the reflectances in the near-infrared (NIR) and red (RED) bands [33],
as shown in Equation (1).

NDVI = (NIR − RED)/(NIR + RED) (1)

NDVI values range from −1 to 1. Values closer to 1 indicate denser vegetation, values
closer to −1 generally indicate water bodies, and values near 0 may represent bare soil or
sparsely vegetated surfaces. This index effectively reveals vegetation coverage, providing
crucial information for understanding potential wildfire risks and spread paths.

2.2.3. Topographic Factors

Topographic factors are important indicators affecting fires [34]. Due to the limitations
of large-scale research, this study selects the average altitude of the study area as a topo-
graphic factor. Altitude directly influences climatic conditions, particularly temperature
and humidity, which indirectly affect the dryness and combustibility of vegetation. Gener-
ally, the higher the altitude, the lower the temperature, the higher the humidity, the lower
the vegetation’s combustibility, and the lower the probability and burning area of fires.

This study extracts the average altitude from the Digital Elevation Model (DEM). DEM
data come from the ASTER GDEM 30M product of the Geospatial Data Cloud Platform,
which is generated based on ASTER satellite data and has a high resolution of 30 m
(https://www.gscloud.cn/search, accessed on 6 March 2024).

2.2.4. Meteorological Factors

Meteorological factors are key in triggering wildfires [35]. Long-term climate patterns
influence local fire behavior and patterns. This study selects the monthly average temper-
ature, monthly average humidity, monthly average precipitation, and monthly average
solar radiation as meteorological factors in the study area. An increase in the monthly
average temperature typically causes vegetation and other combustibles to lose moisture,
making them drier and more easily ignitable. Higher temperatures make it easier for fires
to occur and spread, potentially leading to larger forest fires. A decrease in humidity
means less moisture in the air, making vegetation and other combustibles more flammable.
Under low-humidity conditions, even small ignition sources can quickly develop into large-
scale fires; thus, the monthly average humidity and changes in forest fire burning areas are
interrelated. An increase in precipitation increases the moisture content of the ground and
vegetation, thereby reducing the probability of fire occurrence and spread. Higher monthly
average precipitation usually results in smaller fire burn areas. Increased solar radiation
accelerates the drying process of the ground and vegetation, increasing the flammability
of combustibles. High solar radiation not only raises the vegetation temperature but may
also further reduce vegetation humidity by accelerating moisture evaporation, thereby
increasing fire risk and the potential burn area.

The monthly average meteorological data come from the ERA5 near-surface meteoro-
logical reanalysis dataset provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF) (https://cds.climate.copernicus.eu/, accessed on 15 March 2024).
These data have been altitude and monthly scale bias-corrected by the Global Precipitation

https://www.resdc.cn/
https://www.gscloud.cn/search
https://cds.climate.copernicus.eu/
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Climatology Centre (GPCC) and the National Centre for Atmospheric Science (NCAS),
ensuring high reliability.

2.2.5. Fire Risk Assessment Factors

Fire risk assessment is a complex process involving multiple key indicators essential for
comprehensively understanding the probability of fire occurrence and its potential spread
in a given area. Currently, countries such as the United States, Canada, and Australia have
developed advanced fire warning systems. These include the Canadian Forest Fire Danger
Rating System (CFFDRS), the United States National Fire Danger Rating System (NFDRS),
and the Australian Fire Danger Rating System (AFDRS). These systems provide critical
scientific bases for fire prevention and management by integrating various meteorological
factors and environmental conditions [36]. The European Forest Fire Information System
(EFFIS) integrates the fire danger indices from the above-mentioned three models and
utilizes ERA5 reanalysis data from the European Centre for Medium-Range Weather
Forecasts (ECMWF) to calculate fire risk indices. The fire assessment data used in this
study mainly originate from the ERA5 global atmospheric reanalysis dataset produced by
ECMWF (https://cds.climate.copernicus.eu/, accessed on 11 March 2024).

The Build-Up Index (BUI) reflects the accumulation of combustible materials in an area
and is closely related to the duration and intensity of a fire. The danger-risk index directly
assesses the likelihood of fire occurrence. The Drought Code (DC) and Duff Moisture
Code (DMC) indicators evaluate soil moisture conditions, where dry soil is more likely to
contribute to fire spread. The Daily Severity Rating (DSR) relates to the potential damage
caused by a fire. The Fine Fuel Moisture Code (FFMC) focuses on the flammability of
surface fine fuels, which is crucial for initial fire ignition and spread. The Fire Weather
Index (FWI) is a composite indicator that assesses fire risk under current meteorological
conditions. The Initial Spread Index (ISI) evaluates the potential speed of fire spread under
given conditions. The Fire Danger Index (FDI) combines multiple factors to provide a
comprehensive assessment of fire risk. The Keetch–Byram Drought Index (KBDI) addresses
the impact of long-term drought on soil dryness. The Burning Index (BI) and Energy
Release Component (ERC) evaluate the potential severity and energy release of a fire.
The Ignition Component (IC) is related to the ease of ignition, while the Spread Component
(SC) predicts the potential speed and extent of fire spread.

2.2.6. Human Activity Factors

Human activities are critical factors influencing fire occurrence [20]. Around forest
areas, the frequency of human activities directly impacts the rate of human-caused fires,
such as due to dropped cigarette butts and outdoor cooking, which can easily ignite fires.
Additionally, the presence of roads not only facilitates the extension of human activities
into forest areas but also becomes a significant cause of forest fires. People tend to engage
in various activities near roads, making these areas high-risk zones for human-caused fires.
People in vehicles on roads might accidentally drop cigarette butts, or accidents might
cause open flames, further increasing the risk of forest fires.

This study selects population density as an indicator to measure the impact of human
activities on the changing trend of fire burn areas. The higher the population density in a
region, the more frequent human activities are likely to be. Frequent human activities may
lead to an increase in human-caused fires in the area, resulting in larger fire burn areas.
These data come from the Gridded Population of the World, Version 4 (GPWv4) dataset
produced by the Center for International Earth Science Information Network (CIESIN) at
Columbia University’s Earth Institute (https://sedac.ciesin.columbia.edu/, accessed on
16 March 2024). This dataset provides global population density estimates for the years
2000, 2005, 2010, 2015, and 2020, with a spatial resolution of 1km×1km in raster format.
By matching the fire occurrence times with population density data in adjacent periods,
this study obtained population data closely related to specific fire events.

https://cds.climate.copernicus.eu/
https://sedac.ciesin.columbia.edu/


Forests 2024, 15, 1493 9 of 22

2.3. Research Method

This study establishes a binary classification model to explore the relationship be-
tween the fire growth rate and fire influencing factors in the study area. The choice to
use a classification method rather than regression models for handling wildfire data was
primarily based on the following considerations: Firstly, regression models have strin-
gent requirements regarding the distribution, characteristics, and quantity of the dataset.
In wildfire data, the recorded burn area often contains certain inaccuracies, and due to the
unpredictability of wildfires, occasional large-scale fires may result in burn areas that far
exceed the total burn area of multiple smaller-scale fires. These highly skewed data make
it difficult for regression models to provide effective predictions. Additionally, there is a
problem of inconsistent dimensions in the wildfire dataset, necessitating normalization
when using regression analysis. Although common methods like applying logarithmic
transformations for exponential normalization can address dimensional issues, such trans-
formations may alter the intrinsic regularities in the numerical distribution of the original
data. For instance, logarithmic transformations are less sensitive to high-value data com-
pared to low-value data, which may prevent the model from effectively capturing the
characteristics of large-scale wildfires. Therefore, considering these data characteristics and
the potential issues arising from data processing, we opted for a classification method rather
than attempting to precisely predict the exact burn area. This approach better accommo-
dates the data’s characteristics and analytical needs while avoiding potential information
loss due to data preprocessing.

To facilitate the extraction of fire area data in the study area, Liangshan Prefecture in
Sichuan Province was selected as the research area. To improve the accuracy of fire point
extraction, fire points with an area greater than 20 hectares were screened. In total, 828 fire
points were extracted from the region between January 2006 and December 2019, each
with time and burn area information. The study area was divided into 140 grids with a
resolution of 0.2◦ × 0.2◦, and the total burn area of all fire points in each grid was counted
monthly. Finally, the study observed whether the total burn area of fire points in the same
grid increased in the following year compared to the current year for the same month. If the
area increased compared to the current year, the variable “change” was assigned a value of
1; otherwise, it was 0. In total, 365 grid points with a “change” value of 1 were obtained,
and based on temporal and spatial randomness, 1000 grid points with a “change” value of 0
were selected. These two types of data were then oversampled using the SMOTE algorithm
and were divided into training and test sets. The Grey Wolf Optimizer (GWO) algorithm
was used to optimize the parameters of the XGBoost model, establishing the GWO-XGBoost
model, which was then compared with RF, XGBoost, and LR models. Finally, the model
results were visualized, and a fire growth rate map of the study area was plotted.

2.3.1. Data Preprocessing

In this study, we use the influencing factors of forest fire burned areas as features and
the trend of burned area change as labels to construct a prediction model for the growth
rate of forest fire burned areas. The data processing and analysis are primarily conducted
using ArcMap, MATLAB R2023a, and PyCharm following these general steps:

(1) Determination of influencing factors for forest fire burned areas: Given the large
grid area and time scale, we select 22 factors influencing forest fire burned area, including
monthly average temperature, monthly average humidity, monthly average precipitation,
monthly average wind speed, monthly average solar radiation, altitude, normalized vege-
tation index, population density, buildup index, fire danger index, soil moisture, surface
soil moisture, fire severity rating, fine fuel moisture code, fire weather index, initial spread
index, fire danger index, Keetch–Byram drought index, burning index, energy release
component, ignition component, and spread component. We handle missing values and
outliers in the extracted data.

(2) Collinearity check for influencing factors: Given the high dimensionality of the
extracted data, especially fire assessment-related indicators, there may be high collinearity.
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We perform correlation analysis on the 22 features, as shown in Figure 2, where the
horizontal axis represents the log-transformed values of the Variance Inflation Factor
(VIF) for each feature. Figure 2 shows significant collinearity among fire-assessment-
related indicators, as they are all evaluation values of fire-related indices. Collinearity is
unavoidable in this context. Based on VIF values, we sequentially delete features from
high to low VIF values, prioritizing the deletion of fire-assessment-related indicators when
VIF values are similar. Finally, we obtain features that satisfy collinearity checks, as shown
in Figure 3, where all VIF values are below 10, meeting the requirements of the forest
fire dataset.

Figure 2. Log-transformed VIF values of original features.

Figure 3. VIF Values of features after selection.

(3) Pearson correlation analysis for influencing factors: We conduct a correlation
analysis on the factors that pass the collinearity check [37]. The results are shown in
Figure 4, where clear correlations exist among fire-assessment-related indicators, as they
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are all used to assess fire risk after reanalysis. Correspondingly, their correlations with the
label indicating area growth change are also higher than for other factors. For instance,
in Figure 4, the correlation between monthly average humidity and monthly average
temperature is 0.9, indicating that humidity varies with temperature, possibly due to the
unique climate of the study area. Liangshan Prefecture primarily has a subtropical humid
climate, where high temperatures and humidity may coexist during the summer.

Figure 4. Heatmap of correlation analysis.

(4) Oversampling using the SMOTE: Given a 1:2 ratio of positive to negative samples,
we use the SMOTE from the imblearn library to oversample positive class samples to
achieve better model fitting [38]. By setting sampling_strategy=auto, the number of
minority class samples increases to match the majority class, resulting in a 1:1 ratio of
positive to negative samples.

(5) Model construction and data preparation: Using the train_test_split method
from the sklearn library, we randomly split 30% of the dataset to be the test set and 70%
as the training set, setting random_state=42 to ensure all training models use the same
dataset. We extract relevant data from 140 grids in the study area that meet the training
set requirements. The data for March of historically fire-prone years are selected for final
fitting and prediction and are used to draw the fire burned area growth rate warning map
for the study area.

2.3.2. GWO-XGBoost Model

The XGBoost model [39] includes numerous hyperparameters that significantly impact
its performance. Given the abundance of hyperparameters and the model’s inherent
robustness, optimizing these parameters is typically done through empirical judgment,
grid search, or random search methods. In this study, the Grey Wolf Optimization (GWO)
algorithm [40] is employed to optimize the hyperparameters of the XGBoost model.
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Initially, a random population of grey wolves is generated, with each wolf representing
a set of XGBoost hyperparameters. The accuracy obtained from three-fold cross-validation
is used as the fitness function to evaluate the performance of each parameter set. During the
iteration process of the algorithm, the behaviors of the wolf pack (including encircling,
tracking, and attacking prey) are simulated to update the position of each wolf, with the
prey representing the optimal hyperparameter combination. Through this method, the wolf
pack searches within the solution space and continuously adjusts its position to approach
the optimal solution. The algorithm stops once the convergence condition is met. The final
result is the XGBoost model optimized by the GWO algorithm, which is then evaluated on the
validation set for performance. This study primarily uses PyCharm 2023.2.1 and the sklearn
library in Python to build the models. Figure 5 is a flowchart of the improved algorithm.

GWO-XGBoost model GWO-XGBoost model 

Data processing

Initialize parameters, convert position 

vectors to hyperparameter values, and 

calculate fitness values to evaluate 

parameter performance.

Perform selection, crossover, and mutation 

operations to improve parameter 

combinations and update parameters based 

on fitness evaluation results.

Final model with optimized 

parameters

70% - Training set 30% - Validation set

Fit historical year data

Optimal parameter 

combination?

Yes

No

Draw a warning map for 

the growth of the burned 

area

Fire point dataset

Monthly meteorological(MH、MT、MW、MP、MSR)

Fire assessment indices(IC、DC、SC、KBDI、FFMC)

Vegetation (NDVI)、Population density (PD)

Terrain (Altitude)

Figure 5. Flowchart of the GWO-XGBoost algorithm.

The specific steps are as follows:
(1) Define parameter boundaries: Establish feasible search ranges for each hyperpa-

rameter by setting minimum and maximum values, which constrain the search space of the
algorithm. These ranges should be broad enough to include possible optimal parameter
values but not too wide in order to avoid an excessively large search space.
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(2) Initialize parameters: Initialize a set of candidate hyperparameter combinations
based on the defined parameter boundaries.

(3) Decode parameters: The GWO algorithm optimizes the problem by simulating
the social behavior of grey wolves. The decode function converts the solutions (position
vectors) in the GWO algorithm to actual hyperparameter values of the XGBoost model,
mapping points in the search space to specific values in the hyperparameter space.

(4) Calculate fitness: For each candidate parameter combination, evaluate its perfor-
mance using the fitness_function. This typically involves training the XGBoost model with
the candidate parameters and assessing its performance on the validation set. Performance
metrics (such as accuracy) are used as fitness values to guide the subsequent search process.

(5) Selection, crossover, and mutation: Mimicking the natural selection mechanism, the al-
gorithm selects better-performing solutions as parents for the next generation. Crossover and
mutation operations introduce diversity into the solutions to explore new parameter com-
binations. The crossover operation allows solutions to share information, while mutation
introduces new features.

(6) Iterative optimization and selection of the best solution: The algorithm repeatedly
executes the above steps until the stopping condition is met, ultimately selecting the
parameter combination with the highest fitness value as the optimal solution.

3. Results and Discussion

In this section, we present the performance of the proposed GWO-XGBoost model
and conduct an in-depth analysis of the trends in forest fire burned area changes in the
Liangshan Prefecture. Our model reveals several key factors that significantly influence
the variations in burned area. Specifically, the Ignition Component (IC), Mean Monthly
Temperature (MT), and Population Density (PD) exhibit a strong correlation with the
increase in forest fire burned area. Furthermore, we have gained new insights into fire
risk and prevention strategies in the study area. The results indicate that the southern
region of Liangshan Prefecture is a critical area for fire prevention and control, with a high
probability of an increasing rate of burned area. Additionally, areas with high ignition
component values are also key areas for fire prevention, as a high IC is a crucial factor
influencing the growth of forest fires in the Liangshan region.

3.1. Model Performance Analysis

In previous studies using XGBoost prediction models, the intrinsic generalization
ability of XGBoost often led to the neglect of parameter selection, with parameters mostly
adjusted based on simple empirical values. However, parameter settings still have a
significant impact on improving the performance of the XGBoost model. In this study,
the default parameters of XGBoost were chosen as the baseline model, and the conventional
tuning range was used as the optimization boundary [41]. Seven key parameters were
selected, with their default values, tuning ranges, and optimized values shown in Table 2.

Table 2. Comparison of initial and optimized parameters for the XGBoost model.

Parameter Description Default Value Optimization
Range

Optimized
Value

max_depth Maximum tree depth 3 (3, 10) 7
learning_rate Learning rate 0.1 (0.01, 0.3) 0.058
n_estimators Number of trees 100 (100, 500) 115

gamma Minimum loss reduction 0 (0, 0.7) 0.231
min_child_weight Minimum sum of instance weight (Hessian) 1 (1, 7) 1.632

subsample Subsample ratio of the training instances 1 (0.6, 1.0) 0.765
colsample_bytree Subsample ratio of columns when constructing each tree 1 (0.6, 1.0) 0.967

Additionally, to gain a deeper understanding of the effect of model optimization,
the model was run 50 times, and we recorded the accuracy and AUC values each time.
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The kernel density plots comparing the results before and after optimization are shown
in Figures 6 and 7, which visually demonstrate the differences in the two indicators.
The results indicate that the GWO-optimized XGBoost model (GWO-XGBoost) shows a
significant improvement in accuracy, as accuracy was used as the fitness function for the
GWO algorithm. The optimized model also exhibits superior performance in AUC values,
indicating enhanced generalization capability.

Figure 6. Kernel density plot of accuracy before and after optimization of the XGBoost model.

Figure 7. Kernel density plot of AUC before and after optimization of the XGBoost model.
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Table 3 summarizes the mean results of these 50 runs, which are presented in numerical
form. It is obvious that the GWO-optimized XGBoost model exhibits better overall perfor-
mance. This study illustrates that even with the strong generalization ability of the XGBoost
model, appropriate parameter optimization can further enhance model performance, which
has a direct and positive impact on its practical application. By comprehensively evaluating
the model’s performance before and after parameter optimization, this study provides a
better understanding of the importance of parameter adjustment in the model optimization
process, offering a reference and guidance for future research and applications.

Table 3. Average accuracy and average AUC values before and after optimization of the XG-
Boost model.

Model Average Accuracy Average AUC Value

XGBoost 0.7986 0.8901
GWO-XGBoost 0.8154 0.8929

The study also compared the GWO-XGBoost model with RF and LR models, which
are widely used in forest fire prediction research. Performance evaluation metrics included
precision, accuracy, recall, F-value, and AUC, and we focused primarily on the models’
performance on the test set. Using the “train_test_split” function from sklearn, the dataset
was split into training and test sets in a 7:3 ratio, with “random_state = 42” specified to
ensure reproducibility, ensuring all models were trained and evaluated under the same
data conditions. The evaluation metrics derived from the confusion matrix are summarized
in Table 4, and Figure 8 shows the comparison of ROC curves.

Figure 8. ROC curves of four models.

As seen in Table 4, the GWO-XGBoost model outperforms other models across all
metrics. While the XGBoost model generally outperforms RF, the RF model scores higher in
the recall metric, indicating it can better identify actual forest fire events, though it may also
predict more non-fire events as fires. The LR model performs the worst; despite its lower
computational cost and ease of understanding and implementation, it underperforms when
dealing with high-dimensional and complex data. This indicates that more complex and
refined models are needed to capture intricate relationships in forest fire prediction data.
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Table 4. Comparative evaluation metrics of four models.

Model Precision Recall F-Value Accuracy

LR 0.6975 0.7186 0.7079 0.7158
RF 0.7406 0.8528 0.7928 0.7863

XGBoost 0.7659 0.8355 0.7992 0.7988
GWO-XGBoost 0.7752 0.8658 0.8180 0.8154

In the ROC curve comparison, the GWO-XGBoost model has the highest AUC value,
indicating its superior classification performance and ability to effectively distinguish
between positive and negative samples. The GWO algorithm plays a crucial role in enhanc-
ing the performance of the XGBoost model. Through parameter adjustment, the model
can more accurately predict the trends in forest fire area changes, which is vital for early
warning and prevention efforts.

3.2. Feature Importance Analysis Based on SHAP Method

In 2017, Lundberg et al. [42] introduced the SHAP (SHapley Additive exPlanations)
method, which is based on the concept of Shapley values from game theory, to explain
the behavior of machine learning model predictions. The SHAP method evaluates feature
importance by accurately calculating the Shapley value of each feature’s contribution to
the model prediction. The SHAP value calculation formula is as follows:

ϕi = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! [ f (S ∪ {i})− f (S)] (2)

In Equation (2), ϕi represents the contribution of feature i to the model output, S is
a subset of features, |S| is the number of features in S, N is the total number of features,
f (S ∪ {i}) is the prediction with feature i included, and f (S) is the prediction without
feature i.

Additionally, SHAP defines a linear function g based on binary features, where the
core idea is to decompose the model’s prediction into the sum of each feature’s independent
contributions, represented by their SHAP values. This function is based on the following
additive feature attribution method:

g(z′) = ϕ0 +
M

∑
i=1

ϕiz′i (3)

In Equation (3), ϕ0 is the model output baseline (the prediction when no feature values
are present), ϕi is the SHAP value of feature i, z′i is a binary value indicating whether
feature i is present (1 if present; 0 if not), and M is the total number of features in the
model. The core value of this method lies in its fairness, as it mathematically distributes
each feature’s influence on the model’s prediction fairly, ensuring precise and highly
interpretable evaluations. This is particularly useful in binary classification problems, as it
not only quantifies each feature’s contribution to positive (e.g., increased burn area growth
rate) or negative predictions but also reveals which features play a more significant role in
predicting the two possible outcomes.

In this study, SHAP analysis was performed on the GWO-optimized XGBoost model.
Using the TreeExplainer function from the shap library, the contribution of each feature
to the prediction of forest fire area change trends was quantitatively analyzed. Figure 9
is a swarm plot, where the x-axis SHAP values represent the feature’s contribution to
the model prediction, and the color indicates the relative value of the feature. Addition-
ally, Figure 10 illustrates the feature importance ranking based on the average absolute
SHAP values, providing an intuitive comparison of the different features’ impacts on the
model predictions.
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Figure 9. Feature beeswarm plot based on SHAP analysis.

Figure 10. Feature importance chart based on SHAP analysis.

Figure 10 shows that the feature with the most significant impact on the trend of
burn area change is IC, followed by MT and PD, which are the ignition component values
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from the NFDRS, monthly average temperature, and population density, respectively.
The ignition component value represents the probability that an ember will start a fire that
requires human intervention to suppress and ranges from 0 to 100. When the ignition
component value is 100, it indicates that every ember will start a fire that needs intervention,
while a value of 0 indicates that embers will not start fires that need suppression. Thus,
the IC value reflects the potential threat of fire and contributes most to the changes in burn
areas in Liangshan Prefecture. Local fire management departments can incorporate this
indicator to improve future fire prevention plans.

Figure 9 shows that the IC indicator has both positive and negative impacts on the
burn area change trend. The red dots representing high IC values are concentrated on the
right side of the positive value range, indicating that when the ignition component value is
high, its impact on the burn area change trend is positive; that is, the larger the IC value,
the more likely the burn area will increase. The blue low-value points are distributed on
both sides, indicating that low IC values have a more complex impact on the label, while
the red dots are more concentrated, showing a significant positive correlation between high
IC values and the label. Local fire prevention departments should focus on areas with high
IC values because the larger the IC value, the more likely the burn area will increase.

The MT indicator represents the monthly average temperature of the area. Figure 9
shows that most low-temperature values have a positive impact on the trend of burn area
changes, indicating that in areas with lower monthly temperatures, the burn area tends
to increase with rising temperatures. PD represents the population density of the area,
with its distribution skewing towards the positive value range on the right side, indicating
that population density has a positive impact on the trend of burn area changes; that is,
the higher the population density, the more likely the burn area will increase.

In the study by Xie et al., precipitation is identified as the most important triggering
factor for wildfires in Liangshan [21], as their research focuses on using integrated machine
learning models for wildfire risk assessment. In contrast, factors such as IC, MT, and PD,
which are more significant in this study, reveal key drivers of long-term dynamic changes
in fire areas. This indicates that the roles of both natural and human factors become more
critical in a long-term dynamic perspective, offering new insights into the interactions
of various factors influencing wildfire dynamics. Li et al.’s research also recognizes the
significant impacts of temperature and population density on forest fire risk [22], which
aligns with our findings.

Figure 10 demonstrates that in the study of large-scale forest fire area change trends,
reanalysis indicators extracted from fire risk assessment systems play a crucial role in
prediction models. These indicators contribute more to the model output than other
conventional forest fire factors. This emphasizes the importance of integrating highly
relevant and influential specific risk assessment indicators when constructing prediction
models. These indicators not only provide deeper insights into the impact on the burn
area but also enhance the model’s ability to predict dynamic changes in fires. Therefore,
effective data integration and feature selection are vital for predicting forest fire areas,
and integrating such unconventional forest fire factors in future fire warning models can
improve model accuracy.

3.3. Fire Prevention and Control Zoning in the Study Area

The coordinates of the centers of 140 grids in the study area were used to extract
13 indicators that met the collinearity test criteria at corresponding time points, as detailed in
Section 2.3. These indicators were used to construct the dataset for fitting. After fitting the
dataset, the trained GWO-XGBoost model was used to plot the fire burn area growth rate
warning map for March in historical years for the study area. The results were classified using
the natural breaks method in ArcMap software, as shown in Figures 11 and 12. Figure 12
shows the statistics after the natural breaks classification of the original data, while Figure 11
shows further classification after calculating the average probability of forest fire area
growth within each county.
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Figure 11. Fire area growth rate warning map for the study area.

Figure 12. Proportion of fire area growth rate warning levels in the study area.

Figure 11 shows that the southern regions of Liangshan Prefecture, specifically Huili
County, Huidong County, Ningnan County, and Dechang County, should be prioritized for
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forest fire prevention work. These areas have a high probability of fire burn area growth.
Figure 12 illustrates the proportions of fire area growth warning levels, where the high-level
threshold is set at 0.41, and the very high-level threshold is set at 0.66. The combined area of
these two levels accounts for 31.4% of the total region, indicating the severe fire prevention
and control situation in Liangshan Prefecture. Due to the complex terrain and climate
conditions in Liangshan Prefecture, relevant departments should focus on fire prevention
work in the southern region in March each year with proactive allocation of firefighting
resources and fire drill exercises.

4. Conclusions

Forest fire risk management is a crucial task. In recent years, many researchers
have used factors such as terrain, climate, vegetation, and socio–cultural aspects to create
accurate fire risk maps for specific areas using advanced machine learning techniques.
These studies typically focus on predicting the immediate probability of fire occurrence
at specific grid points (often high resolution). Creating fire risk maps is highly valuable
for disaster prevention and mitigation. However, this approach has certain limitations,
mainly because it is challenging to accurately predict the specific starting locations and
timing of fires. Currently, fire detection relies primarily on satellite imagery, but due to the
Earth’s rotation, satellites can only periodically monitor specific locations through remote
sensing, making real-time fire monitoring impossible. For dynamic factors like climate,
most studies use monthly averages to substitute for the actual conditions when fires occur.
Related research has shown that the closer these dynamic climate data are to the real-time
conditions during fire occurrences, the better the model’s performance.

Given the periodic nature of remote sensing satellite detection, this study adopts a
novel approach, exploring whether the burn area at a specific grid point in the same month
of the next year increases on an annual cycle. Although this method is similar to traditional
fire risk mapping, its uniqueness lies in the broader temporal dimension consideration
and its focus on the interannual changes in cumulative burn areas within a region. This
approach provides a new perspective for understanding and predicting fire risk, aiding
with more effective forest fire prevention and management. It is crucial to emphasize that,
while our model is trained on monthly aggregated data, the training process, optimization
method, and model structure are still applicable to daily or weekly data. Such predictive
capability is essential for effective forest fire management and provides both short-term
and long-term benefits. This dual capacity enhances both the rapid response to potential
fire outbreaks and the strategic planning for future fire prevention and mitigation.

This study focuses on predicting the burn area growth rate in Liangshan Prefecture,
Sichuan Province. During data extraction, in addition to common fire-related factors,
a series of reanalysis data from a national-level fire assessment system were introduced, and
we selected 22 potential influencing factors in total. After collinearity testing and correlation
analysis, 13 key indicators were screened out as input features for the machine learning
model. The GWO algorithm was used to optimize the parameters of the XGBoost model,
establishing the GWO-XGBoost model, and we compared its performance with those of
RF, XGBoost, and LR models. Model evaluation results indicate that the GWO-XGBoost
model outperforms the other models in multiple performance metrics, demonstrating good
classification fitting ability. To further explain the model’s prediction results, the SHAP
value analysis method was applied to quantify the contribution of each influencing factor
to the model output. The analysis results show that IC, MT, and PD are the most significant
indicators affecting the burn area growth trend. Finally, by fitting the March data of
historical fire years in Liangshan Prefecture, a fire burn area growth warning map was
plotted and validated with the fire risk difference map of the Luzhou area. The results
indicate that the study of burn area growth rate prediction in this study is reasonable.
Through in-depth analysis of these key indicators, this study provides data-driven insights
for local forest fire management, promotes data-based decision-making, and provides a
scientific basis for fire prevention and management in Liangshan Prefecture.
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