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Abstract: Various error factors influence the inversion of forest canopy height using GEDI full-
waveform LiDAR data, and the interaction of these factors impacts the accuracy of forest canopy
height estimation. From an error perspective, there is still a lack of methods to fully correct the
impact of various error factors on the retrieval of forest canopy height from GEDI. From the modeling
perspective, establishing clear coupling models between various environments, collection parameters,
and GEDI forest canopy height errors is challenging. Understanding the comprehensive impact of
various environments and collection parameters on the accuracy of GEDI data is crucial for extracting
high-quality and precise forest canopy heights. First, we quantitatively assessed the accuracy of
GEDI L2A data in forest canopy height inversion and conducted an error analysis. A GEDI forest
canopy height error correction model has been developed, taking into account both forest density and
terrain effects. This study elucidated the influence of forest density and terrain on the error in forest
canopy height estimation, ultimately leading to an improvement in the accuracy of forest canopy
height inversion. In light of the identified error patterns, quality control criteria for GEDI footprints
are formulated, and a correction model for GEDI forest canopy height is established to achieve
high-precision inversion. We selected 19 forest areas located in the United States with high-accuracy
Digital Terrain Models (DTMs) and Canopy Height Models (CHMs) to analyze the error factors of
GEDI forest canopy heights and assess the proposed accuracy improvement for GEDI forest canopy
heights. The findings reveal a decrease in the corrected RMSE value of forest canopy height from
5.60 m to 4.19 m, indicating a 25.18% improvement in accuracy.

Keywords: GEDI L2A; forest canopy height; error factors; assessment; accuracy improvement

1. Introduction

Forest canopy height, as the most crucial forest structural parameter, serves as the
basis for estimating carbon sequestration and has become a significant aspect of forest
monitoring. Spaceborne LiDAR plays a crucial role in forest parameter retrieval due to
its extensive coverage and ability to acquire vertical structural information of forests. The
Global Ecosystem Dynamics Investigation (GEDI), an on-orbit full waveform LiDAR, is the
primary instrument for this purpose. Full waveform LiDAR records continuous waveform
signals changing over time, of which the most typical systems are ICESat/GLAS and GEDI.
Compared with airborne LiDAR, GEDI can invert forest height on a national scale and even
globally. In addition, this waveform LiDAR can visually display the vertical structure of the
forest, unlike photon cloud data. For full waveform LiDAR, the height difference between
the starting position of the signal and the corresponding position of the last peak [1,2] or
the stronger of the last two peaks [3,4] is usually considered as the maximum forest canopy
height within the footprint.
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Numerous researchers have confirmed the accuracy of GEDI products. For example,
Adam et al. evaluated the accuracy of ground elevation and canopy height estimates of
the GEDI V1 product in two temperate regions in Thuringia, Germany, using airborne
LiDAR data. They reported mean absolute errors (MAE) of 2.55 m for terrain and 3.10 m
for canopy height [5]. Guerra et al. evaluated forest dynamics in Spain using ALS data
and GEDI V1 product and assessed the accuracy of GEDI-derived terrain with a root mean
square error (RMSE) of 4.48 m [6]. Fayad et al. used the inventory data to assess the
stand-scale dominant heights of Eucalyptus plantations in Brazil. They also compared
the accuracy differences between the stand-scale dominant heights obtained by different
models [7]. Dorado-Roda et al. evaluated the accuracy of GEDI forest height estimates in
the Mediterranean forest area [8]. They classified the tree species in this area and assessed
the difference in accuracy between different tree species [8]. Quirós et al. compared the
RH100 derived from GEDI products to reference forest heights generated from the ALS
LiDAR in Spain. Ten zones showed that the RH100 achieved an RMSE of 3.56 m [9].
Liu et al. evaluated the accuracy of ground elevation and canopy height estimates of
GEDI V2 product in the United States using airborne LiDAR data from the National
Ecological Observatory Network (NEON), showing that the RMSE of ground elevation
was 4.03 m in mid-latitude regions [10]. Their study also analyzed the error factors of the
GEDI V2 canopy height product, showing that the accuracy was affected by numerous
error factors. In addition, Wang et al. comprehensively evaluated the effects of various
error factors on GEDI forest height products and gave the important indicators of these
error factors [11]. In complex terrain areas, ground signal waveforms would be extended,
causing an overlap between the canopy signal and ground signal, impacting the accuracy
of forest canopy height extraction. Additionally, as canopy coverage increases, ground
signals weaken, and the probability of multiple scattering increases, which poses greater
challenges to extracting forest canopy height. Although the above existing studies explored
the error factors of GEDI forest height, most of them were only verified in a small-scale
area. In addition, the above existing studies focused on the effects of environmental error
factors such as slope, vegetation coverage, and vegetation type on GEDI forest height.
Some error factors related to the data processing algorithm and the instrument itself are
not quantitatively analyzed. Exploring the influence of more comprehensive error factors
on GEDI forest height inversion and quantitatively analyzing the importance of these error
factors is crucial for the subsequent improvement in GEDI forest height accuracy.

To address the two main error effects mentioned above, researchers can refer to
previous methods used for decomposing GLAS waveforms. Various techniques have been
suggested to enhance the precision of forest canopy height estimation using full-waveform
LiDAR data. These techniques fall into two main categories: statistical regression models
and physical geometric models. Statistical regression methods can be divided into Digital
Elevation Model (DEM)-assisted approaches and waveform feature-assisted approaches.
The Digital Elevation Model (DEM)-assisted methods [12,13] typically utilize global DEM
products to mitigate terrain effects. The waveform feature-assisted methods [14,15] extract
waveform characteristics related to terrain, such as waveform length, distance of peaks,
leading edge, and trailing edge of the waveform, and train the model with field data to
correct forest canopy height. These methods can typically reduce the impact of terrain on
forest canopy height accuracy, but they are suitable for small areas and cannot be widely
implemented. To overcome the limitations of statistical regression methods, scholars have
proposed physical geometric-based models. They explored the influence of factors such as
terrain slope, aspect, footprint size, footprint shape, orientation, and laser pointing angle
on forest canopy height based on geometric optics and radiative transfer models [16–21].
For example, Lee et al. introduced a terrain correction method to quantify the influence of
terrain and laser footprint size on the retrieval of forest canopy height [16]. Subsequently,
Allouis et al. proposed a refined forest height retrieval method based on GLAS waveform
modeling and slope effect correction, which can weaken the influence of terrain on forest
canopy height [17]. Nie et al. considered that the actual shape of the laser spot on the
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ground is elliptical, so the accuracy of the inversion of the understory terrain will be
affected by factors such as the shape of the laser spot, the orientation, and the aspect of
the terrain [18]. Therefore, a new error correction method that considers the influence of
slope, the actual shape of the laser spot, aspect, and orientation were proposed to estimate
forest canopy height [18]. Wang et al. designed a novel idea of a geometric physical model,
which simulated the ground echo through the auxiliary data as new waveform features to
reduce the impact of slope on forest parameter inversion [21].

The above physical geometric-based models can quantitatively express the influence
of certain factors, making them suitable for large-scale forest canopy height retrieval. These
methods provide a good research basis for the subsequent forest height refinement based
on GEDI. However, the above existing methods mainly solved the slope error factor when
retrieving forest height from waveform data. The GEDI waveform is affected by various
factors, such as terrain, land cover type, canopy cover, and so on. Under different conditions,
the accuracy of the GEDI forest height product is highly uncertain. The influence of these
error factors on GEDI forest height is nonlinear. It is difficult to express the relationship
between these error factors and GEDI forest height through a determined mathematical
model. Establishing a clear relationship between these variables and GEDI forest canopy
height is challenging.

The purpose of this paper is to refine the existing GEDI forest height products and
improve the accuracy of existing forest height products. We are facing two key issues:
(1) what factors are related to GEDI forest height importantly? (2) What model can we
use to establish the relationship between the error of GEDI forest height and various
factors? In this paper, we attempt to explore GEDI performance for forest canopy height
estimation, analyze the influence of various factors on forest canopy height retrieval,
and establish a correction model by introducing machine learning algorithms. First, the
accuracy performance of GEDI L2A forest canopy height is analyzed for overall and each
site, respectively. Then, we assess the influence of various environments and acquisition
parameters on the accuracy of GEDI L2A forest height products and establish criteria for
footprint data filtering. On this basis, an error correction model is constructed using the
random forest algorithm to obtain high-precision forest canopy heights.

2. Materials
2.1. Study Area

As shown in Figure 1, we selected 19 forest areas located in various regions of the
United States to conduct this research. The study areas are 19 sites of the NEON (National
Ecological Observatory Network), spanning from 29◦ N to 46◦N and from 71◦ W to 122◦

W, covering a total area of approximately 3010 km2. The elevation ranges from 29 m to
3042 m, exhibiting significant terrain variations, with average slopes ranging from 3.5◦ to
19.7◦. The climate in these study areas varies greatly, with annual average temperatures
ranging from 0.30 ◦C to 22.50 ◦C and annual average precipitation ranging from 509 mm
to 2530 mm [11]. Due to the coverage of various climate zones and vegetation types,
significant differences exist in canopy structure. The diversity of study areas enhances the
variability and facilitates the investigation of the accuracy of GEDI forest canopy height
under different conditions. Some high-precision reference data provided by NEON sites
were usually used for large-scale verification [10,11].
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Figure 1. Overview of the study area and distribution of each site.

2.2. GDEI L2A Data

The GEDI LiDAR system was launched by the National Aeronautics and Space Ad-
ministration (NASA) in December 2018 on board the International Space Station (ISS) [22].
The system comprises three lasers, one of which is split into two beams (Coverage Beam),
while the other two lasers remain at full power (Full Beam), resulting in 4 beams at one time.
Each of the beams is dithered every other shot, generating 8 tracks on the Earth’s surface,
separated by about 600 m across the track. Each footprint has a diameter of approximately
25 m and is separated by 60 m along the track [22,23]. NASA produces different levels of
GEDI products, including L1, L2, L3, and L4. The L1 product is the raw and geolocated
waveforms. The L2 product is processed to identify ground elevation and relative height
(RH) metrics of the vertical profile, which includes two types of products: L2A and L2B.
The L2A product involving longitude, latitude, elevation, and RH indicators from the
growing seasons of 2019 to 2022 were downloaded for consistency with validation data
(https://e4ftl01.cr.usgs.gov/GEDI/GEDI02_A.002/, accessed on 10 March 2023).

2.3. NEON LiDAR Data

We evaluated the accuracy of forest canopy height using the Canopy Height Model
(CHM) generated by airborne LiDAR data obtained from the National Ecological Obser-
vatory Network (NEON), with a spatial resolution of 1 m (https://data.neonscience.org/
data-products/explore, accessed on 12 April 2023). The NEON LiDAR data were collected
using the Riegl LMS-Q780 laser scanning sensor, operating at a wavelength of 1064 nm,
with a pulse repetition frequency ranging from 100 to 400 kHz [24]. NEON LiDAR data
were acquired in the peak greenness of growing seasons, with maximum horizontal and
vertical accuracies of less than 0.4 m and 0.36 m, respectively [24]. The CHM products
used for this study were mainly collected in 2021, with missing data replaced by data from
adjacent years. Specific information about the 19 NEON sites used in this study is provided
in Table 1.

https://e4ftl01.cr.usgs.gov/GEDI/GEDI02_A.002/
https://data.neonscience.org/data-products/explore
https://data.neonscience.org/data-products/explore
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Table 1. Detailed information for each NEON site.

Site Latitude Longitude Area (km2)
Mean

Elevation
(m)

Mean Slope
(◦)

Mean Forest
Height (m)

Mean
Canopy
Cover

Dominant Plant

ABBY 45.76 −122.33 72.60 363 15.00 34 0.80 Pseudotsuga menziesii

BART 44.06 −71.29 115.90 232 15.60 23 0.95 Fagus grandifolia|Tsuga canadensis|Acer rubrum

CLBJ 33.38 −97.78 156.60 274 5.20 13 0.41 Quercus stellata|Quercus marilandica

GRSM 35.69 −83.50 32.70 575 25.96 30 0.94 Liriodendron tulipifera|Acer rubrum

HARV 42.54 −72.17 303.80 351 7.50 26 0.88 Quercus rubra|Tsuga cadensis

JERC 31.19 −84.47 320.30 44 3.50 27 0.40 Quercus falcata|Pinus palustris

ORNL 35.96 −84.28 57.40 344 34.07 28 0.70 Acer rubrum|Nyssa sylvatica|Quercus monta

OSBS 29.69 −81.99 226.70 45 4.50 23 0.57 Quercus laevis|Pinus palustris

RMNP 40.28 −105.55 46.50 2742 17.21 19 0.68 Pinus contorta|Abies lasiocarpa|Pseudotsuga menziesii

SCBI 38.89 −78.14 112.90 361 13.20 16 0.85 Liriodendron tulipifera|Fraxinus americana

SERC 38.89 −76.56 111.90 15 6.50 38 0.55 Liriodendron tulipifera|Fagus grandifolia|Liquidambar styraciflua

SOAP 37.03 −119.26 170.40 1160 17.80 32 0.68 Quercus chrysolepis

TALL 32.95 −87.39 134.80 135 12.20 25 0.86 Quercus montana|Liriodendron tulipifera|Cornus florida

TEAK 37.01 −119.01 185.40 2147 16.40 35 0.59 Abies magnifica|Abies concolor|Pinus contorta

TREE 45.51 −89.59 231.40 481 6.30 20 0.82 Acer saccharum|Acer rubrum |Alnus incana

UKFS 39.04 −95.19 135.10 335 5.20 19 0.40 Fraxinus americana|Celtis occidentalis

UNDE 46.23 −89.54 172.80 518 5.90 24 0.85 Acer saccharum|Abies balsamea|Acer rubrum

WREF 45.82 −121.95 183.40 407 19.70 50 0.96 Psuedotsuga menziesii|Tsuga heterophylla

YELL 44.95 −110.54 239.40 2116 13.20 14 0.65 Pseudotsuga menziesii|Pinus contortas
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2.4. Ancillary Data

We introduced the land cover type data from the National Land Cover Database
(NLCD) to extract forest areas, which is released by the United States Geological Survey
(USGS). The latest version of the 30 m NLCD dataset provides land cover information for the
United States in 2019 and defines 20 land cover classifications (https://www.mrlc.gov/data,
accessed on 22 March 2023). Using the nearest neighbor method, we interpolated the land
cover data to 1 m as the NEON LiDAR data and determined the land cover type within
the GEDI footprint by majority. Our study only focused on the forest areas; therefore, only
data from forest areas were retained, specifically classified as deciduous, evergreen, and
mixed forests.

NEON DTM product was used to calculate the slope. Information on canopy cover
comes from the Global Forest Cover Change Dataset 2015 (GFCC), which has a spatial
resolution of 30 m. This product was obtained from the Google Earth Engine (GEE).

3. Accuracy Assessment
3.1. Pre-Processing of GEDI L2A Data

A filtering process was employed to achieve high-quality GEDI data utilizing the
quality metrics within the GEDI L2A product. The steps are delineated as follows [11,25]:

(1) Footprint data meeting the following criteria were retained: quality_flag = 1; drade_flag = 0;
rx_algrunflag = 1; and sensitivity > 0.9. The quality_flag, degrade_flag, rx-algrun_flag,
and sensitivity are parameter fields from GEDI L2A data, which are important in-
dicators to measure the quality of the GEDI spot. The quality_flag with a value of
1 represents a selection of the most useful data. The drade_flag with non-zero values
indicates the shot occurred during a degraded period. The rx_algrunflag with a value
of 1 indicates the GEDI laser signal was received, and the signal process algorithm
ran successfully. The sensitivity larger than 0.9 indicates that the maximum canopy
cover can be penetrated, considering the SNR of the waveform;

(2) To mitigate the influence of cloud cover, the ground elevation (elev_lowestmode) of
the footprint was extracted alongside the corresponding elevation from the TanDEM-
X and SRTM DEM products. Footprints exhibiting a discrepancy exceeding 50 m
between the GEDI ground elevation and the TanDEM-X or SRTM DEM elevation
were systematically excluded;

(3) Footprints satisfying either of the following conditions were preserved: leaf_off_flag = 0|
pft_class = 1 or 2, where leaf_off_flag and pft_class are parameter fields from GEDI
L2A data. The leaf_off_flag and pft_class represent the type of ground object where
the laser spot is located. The forest area is the object of this research, so we chose the
GEDI spot located in the vegetation area. This criterion ensures that the remainings
pertain to evergreen forests or align with the forest growth period, thereby ensuring
phenological consistency with airborne LiDAR data. Figure 2 shows the flowchart of
the Pre-processing of GEDI L2A.

Forest canopy height derived from full-waveform LiDAR is typically determined by
calculating the relative height (RH), which represents the difference between the eleva-
tions of the detected ground signal and the n% accumulated waveform energy, where
n varies from 1 to 100 (e.g., RH95, RH100, etc.). For the GEDI L2A product, six values
corresponding to the RH parameter are generated by distinct algorithms that use different
thresholds for waveform smoothness and detecting the start and end of the signal; mean-
while, the product provides an optimal algorithm [26,27]. We extracted RH values, such
as RH80, RH85, RH90, RH95, RH96, RH97, RH98, RH99, and RH100, generated by the
six algorithms. By removing the maximum and minimum values of the six algorithms,
the arithmetic mean of the remaining was computed to yield the corresponding RH, de-
noted as Trimean_RH80, Trimean_RH85, Trimean_RH90, Trimean_RH95, Trimean_RH96,
Trimean_RH97, Trimean_RH98, Trimean_RH99, and Trimean_RH100. Concurrently, the
recommended optimal algorithm values were extracted and designated as Optimum_RH80,
Optimum_RH85, Optimum_RH90, Optimum_RH95, Optimum_RH96, Optimum_RH97,

https://www.mrlc.gov/data
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Optimum_RH98, Optimum_RH99, and Optimum_RH100. The reference CHM data were
resampled to 25 m, and the percentile height from the 25 m × 25 m grid was extracted as
the reference RH. Correlation analysis was conducted between GEDI RH and the reference
RH. The RH value showing the highest correlation was chosen as the forest canopy height
within the GEDI footprint. As a result, 69,036 GEDI footprint data were extracted from the
forest regions. Statistics of GEDI footprint data for each NEON site are provided in Table 2.
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Table 2. Statistics of GEDI data by each NEON site.

Site Number of Samples
Percentage of Slope (%) Percentage of Canopy Cover (%)

<10◦ 10–20(◦) 20–30(◦) >30(◦) <0.3 0.3–0.5 0.5–0.7 >0.7

ABBY 917 31.52 52.56 12.87 3.05 8.94 3.49 3.27 84.30
BART 1088 20.13 40.53 34.28 5.06 1.47 1.10 1.84 95.59
CLBJ 3586 81.87 14.00 3.96 0.17 51.03 17.35 16.65 14.97

GRSM 799 8.76 23.15 33.17 34.92 1.75 0.38 1.50 96.37
HARV 4657 73.50 24.03 2.08 0.39 2.23 0.88 1.55 95.34
JERC 3699 99.65 0.35 0.00 0.00 26.82 27.82 22.65 22.71

ORNL 419 0.00 0.00 1.67 98.33 7.64 1.43 3.10 87.83
OSBS 3922 99.13 0.84 0.03 0.00 27.87 9.54 9.56 53.03

RMNP 15354 23.54 43.91 26.88 5.67 32.30 30.94 15.19 21.57
SCBI 1204 28.74 57.31 12.54 1.41 4.49 1.16 2.16 92.19
SERC 904 68.36 29.76 1.88 0.00 10.62 3.54 4.76 81.08
SOAP 9880 19.34 45.20 28.37 7.09 5.36 13.73 21.70 21.74
TALL 704 35.37 58.38 6.11 0.14 2.70 1.99 2.56 92.76
TEAK 9704 26.38 48.75 19.51 5.36 20.72 9.30 8.35 61.63
TREE 1609 65.82 31.76 2.42 0.00 3.73 2.05 3.23 90.99
UKFS 1527 56.32 40.60 3.08 0.00 31.24 11.00 13.10 44.66
UNDE 1822 71.35 27.28 1.37 0.00 0.93 0.71 1.87 96.49
WREF 5461 26.00 30.01 24.72 19.26 0.26 0.37 0.60 98.77
YELL 1780 27.25 35.96 25.06 11.74 36.52 36.52 13.93 13.03

3.2. Performance Analysis
3.2.1. Accuracy Metrics

NEON LiDAR CHM data were employed to assess the accuracy of GEDI L2A forest
canopy height. Performance analysis was conducted by calculating the six metrics, includ-
ing RMSE, R2, Bias, MAE, %Bias and %RMSE. The formula for each metric is delineated
as follows:

RMSE =

√
∑n

i = 1 (xi − yi)
2

n
(1)
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R2 = 1 − ∑n
i = 1 (xi − yi)

2

∑n
i = 1 (yi − y)2 (2)

Bias =
∑n

i = 1 (xi − yi)

n
(3)

MAE =
∑n

i = 1|xi − yi|
n

(4)

%Bias =
Bias

y
∗ 100% (5)

%RMSE =
RMSE

y
∗ 100% (6)

where xi is the canopy height obtained from GEDI; yi is the reference canopy height derived
from NEON LiDAR data, and y is the average of the reference values.

3.2.2. Error Factors

To assess the influence of potential factors on the accuracy of GEDI forest canopy
height, we selected several characteristics of beam, terrain, and canopy structure for analysis.
The error factors are outlined in Table 3.

Table 3. Potential factors affecting the accuracy of GEDI data.

ID Variable Data Source Resolution
(m) Variable Type

1 Sensitivity GEDI L2A beam characteristic
2 Beam type GEDI L2A beam characteristic
3 Acquisition time GEDI L2A beam characteristic
4 Number of peaks GEDI L2A beam characteristic

5 Forest type National Land Cover
Database 30 canopy characteristic

6 Canopy cover Landsat 30 canopy characteristic
7 Elevation NEON DTM 1 terrain characteristic
8 Slope NEON DTM 1 terrain characteristic

To determine the primary factors influencing the accuracy of GEDI forest canopy
height and provide guidance for high-quality footprint selection and the development of
error correction models, we utilized the Random Forest (RF) algorithm [28] to evaluate the
significance of these potential factors. The RF algorithm assesses the significance of each
factor by measuring the percentage increase in mean square error (% IncMSE). A higher
% IncMSE value indicates greater importance of the variable. Subsequently, the impact of
various factors on the GEDI forest canopy height was comprehensively examined based on
the importance analysis.

3.3. Results and Discussion of GEDI Forest Height
3.3.1. Performance of GEDI Forest Canopy Height

We analyzed the correlation between relative height metrics extracted from the GEDI
L2A product and the corresponding reference RH metrics from NEON LiDAR data, as
shown in Figure 3. Overall, there is a relatively high correlation between them, and from
RH80 to RH100, exhibit an increasing trend followed by decreasing, with the correlation of
RH metrics from the optimal algorithm generally higher than that of the truncated mean of
six different algorithms. It can be observed that the RH90 of the optimal algorithm has the
highest correlation with the airborne average canopy height, denoted as Hmean. Therefore,
these two RH values are selected as the footprint forest canopy height of GEDI and the
airborne reference values, respectively.
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Figure 3. Correlation coefficients between GEDI forest canopy height and the reference value.

Figure 4a shows the scatter plot for the overall performance of GEDI forest canopy
height, which includes all GEDI footprints in forest areas acquired under different condi-
tions. The results demonstrate a relatively high correlation between the GEDI forest canopy
height estimation and the reference values, with an R2 value of 0.74 and an RMSE of 6.49 m.
Combined with Figure 4b, which depicts the statistical distribution of differences between
GEDI forest canopy heights and the reference forest canopy heights, it is apparent that there
is an overestimation of forest canopy height extracted by GEDI, which may be attributed to
multiple scattering of signal in forest areas.
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Figure 4. Scatter plot and difference statistics of forest canopy height estimation of GEDI. (a) Scatter
plot between GEDI forest heights and NEON forest heights. (b) The frequency of difference statistics
of forest canopy height estimation of GEDI.

Performance statistics were conducted for each NEON site, as shown in Figure 5. It
can be seen that there is significant variability in the accuracy among different sites, with
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RMSE values ranging from 3.36 m to 10.37 m. Among these, the sites CLBJ, TREE, RMNP,
OSBS, and JERC exhibit relatively low RMSE values, with values of 3.36 m, 4.06 m, 4.28 m,
4.64 m, and 4.73 m respectively. Their commonality is that the terrain is relatively flat,
with average slopes not exceeding 6◦. Additionally, the overall RMSE values for the sites
ABBY, ORNL, TEAK, WREF, and GRSM, show significant terrain variations with average
slopes exceeding 15◦, all exceeding 8 m. Among these, ABBY and TEAK have relatively
sparse vegetation cover, while WREF and ORNL have denser vegetation cover. Sparse
vegetation reduces the probability of laser beam covering the top of the forest and limits
the ability to retrieve precise forest canopy height, whereas, in densely vegetated areas,
the detection ability of ground elevation is limited, thus affecting the accuracy of forest
canopy height retrieval. This suggests that the accuracy of GEDI forest canopy height is
highly dependent on terrain and vegetation characteristics. The overall trend of RMSE and
%RMSE values across sites is similar. However, for sites YELL, CLBJ, and RMNP, although
the RMSE values are low, the %RMSE values exceed 50%. These sites have relatively low,
sparse vegetation, predominantly composed of coniferous forests, indicating the limited
capability of GEDI L2A products to extract forest canopy height in areas with low, sparse
vegetation.
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3.3.2. Analysis of Factors Affecting GEDI Performance

Figure 6 illustrates the accuracy of GEDI forest canopy height under different beam
types and acquisition time. The RMSE for full power beams and coverage beams are
6.40 m and 6.61 m, respectively, with R2 of 0.76 and 0.71. Both have similar accuracy, but
full-power beams exhibit slightly higher accuracy. The reason may be that full-power
beams are more likely to penetrate through the canopy and reach the ground, resulting
in higher precision in ground elevation extraction and, consequently, higher accuracy in
forest canopy height estimation.
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Figure 6. Effects of beam type and acquisition time on the accuracy of GEDI forest canopy height.

Table 4 presents the accuracy statistics of forest canopy height under different condi-
tions of beam types and acquisition time. Data collected during the day generally exhibit
lower accuracy compared to data collected at night. Among them, data collected during the
day using coverage beams show the lowest accuracy, with an RMSE of 7.35 m. However,
there is no significant difference in accuracy for data collected at night, and the beam type
does not play a decisive role. The accuracy of data collected at night using coverage beams
is slightly higher than that collected using full-power beams, with RMSE values of 5.96 m
and 6.13 m, respectively. To ensure quality, GEDI data collected during the day under the
coverage beam were subsequently removed.

Table 4. Accuracy statistics under different beam types and acquisition time.

Condition of Collection RMSE (m) R2 Bias MAE %Bias %RMSE

Full beam and day 6.71 0.75 0.49 4.52 3.43% 47.08%
Coverage beam and day 7.35 0.69 −1.17 5.14 −7.77% 48.64%

Full beam and night 6.13 0.78 0.75 4.03 5.46% 44.79%
Coverage beam and night 5.96 0.74 −0.18 4.06 −1.30% 42.99%

GEDI footprint data are divided into 11 groups based on the number of peaks: 1; 2; 3; 4;
5; 6; 7; 8; 9; 10; and ≥11. Figure 7a displays the accuracy of forest canopy height estimation
under different numbers of peaks. When the number is 2, the retrieval forest canopy height
exhibits the highest accuracy, with an RMSE of 4.86 m. As the number exceeds 2, the error
in forest canopy height estimation gradually increases. When the number exceeds 11, there
is a significant increase in RMSE value. This may be attributed to the complexity of the
vertical canopy structure reflected by the number of peaks. The peak number greater than
2 indicates that the laser has penetrated multiple layers of vegetation before reflection.
With an increasing peak number, the vertical canopy structure becomes more complex,
and reflection interference makes it difficult to determine the exact layer where vegetation
height lies, leading to an increased error in forest canopy height estimation. It is worth
noting that when the peak number is 1, the RMSE is 7.05 m. Compared to the peak number
of 2, the error shows an increasing trend. This may be related to vegetation coverage and
terrain complexity. The peak number of 1 indicates that there is only one reflection peak
in the waveform, suggesting that the vegetation coverage in that area is low or the forest
canopy height is too low to distinguish the canopy signal from the ground signal, both of
which could lead to an increase in estimation error. Overall, there is a strong correlation, and
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R2 shows a trend of increasing followed by decreasing. Therefore, to ensure the accuracy
of forest canopy height estimation, subsequent selection of GEDI footprint data with the
number of peaks between 2 and 11 is recommended.
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The sensitivity of the beam refers to the maximum canopy cover that a beam can
penetrate, considering the signal-to-noise ratio of the waveform. It is a measure related
to canopy cover and signal-to-noise ratio, indicating whether the waveform has sufficient
energy to penetrate the canopy and reach the ground. During pre-processing, only foot-
prints with a sensitivity greater than 0.9 are retained. Therefore, based on sensitivity values,
the data are divided into 10 groups with intervals of 0.01, ranging from [0.90, 0.91) to
[0.99, 1.00]. The error of forest canopy height estimation for each group was analyzed. As
shown in Figure 7b, there is a strong correlation overall. With an increase in sensitivity
value, the RMSE exhibits a fluctuating upward trend, suggesting that higher sensitivity
does not always result in greater accuracy. This may be because sensitivity is positively
correlated with penetration, increasing the probability of multiple scattering and thereby
reducing accuracy;

Canopy cover is divided into 10 groups with intervals of 10%. Figure 7c illustrates
the accuracy under different canopy covers. Overall, as canopy cover increases, the RMSE
shows a trend of initially decreasing and then increasing, albeit with slight fluctuations.
When the canopy cover is between 20% and 30%, the RMSE reaches its minimum value
of 5.22 m. In areas with lower vegetation cover, laser beams may potentially miss the top
of the canopy, leading to estimation error. Conversely, in areas with higher vegetation
cover, laser beams are more likely to be obstructed by the canopy, making it difficult
to penetrate through to the ground; terrain complexity is a crucial factor affecting the
retrieval of forest canopy height. Terrain slope values are divided into seven groups with
intervals of 5◦. The RMSE values are calculated for each group, as shown in Figure 7d. In
general, regions with flat terrain exhibit higher accuracy in forest canopy height estimation.
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Initially, the RMSE shows a slow increase with slope increase, which is consistent with
findings from previous studies [10]. However, when the slope exceeds 30◦, there is a
significant increase in RMSE values. In steep terrain areas, ground signals may broaden,
leading to overlap with canopy signals, which can impact the accuracy of canopy height
estimation. Furthermore, the geographic positioning error of the GEDI footprint has a more
pronounced impact in regions with steeper slopes, resulting in heightened errors in forest
canopy height estimation;

Table 5 presents the accuracy of forest canopy height estimation across different
forest types. There is no significant difference in accuracy between deciduous forests and
mixed forests, with RMSE of 5.69 m and 5.75 m, respectively. However, the accuracy of
evergreen forests is significantly lower than that of the other two types (RMSE = 7.33 m).
In evergreen forests, the laser beam may be reflected and scattered multiple times due to
the dense distribution of tree leaves and branches, which may lead to signal attenuation
and distortion, ultimately increasing the estimation errors. In contrast, the distribution of
leaves in deciduous and mixed forests is relatively sparse, allowing for more laser energy
to penetrate the canopy and reach the ground.

Table 5. Accuracy of forest canopy height estimation for different forest types.

Forest Type Mean Forest
Height (m)

RMSE
(m) R2 Bias

(m) MAE (m) %RMSE

Deciduous forest 15.49 5.69 0.77 −0.43 3.82 36.73
Evergreen forest 13.46 7.33 0.74 2.40 5.06 54.43

Mix forest 17.85 5.75 0.63 1.10 4.02 32.27

3.3.3. Importance of Error Factors

Figure 8 illustrates the importance of error factors affecting the accuracy. Among them,
the factors with the highest ranking are the number of peaks and canopy cover, significantly
higher than the others, explaining 46% of the difference between GEDI and the reference
forest canopy height. These two factors reflect the vertical canopy structure, indicating
that the complexity of the canopy structure is the most important factor influencing the
accuracy of forest canopy height retrieval. Beam type, sensitivity, elevation, and acquisition
time are similar and important. Compared to large-footprint LiDAR, the impact of terrain
on forest canopy height estimation accuracy is relatively reduced. Wang et al. also found
that the slope has little effect on the accuracy of GEDI forest heights [11]. Forest type is the
least influential factor.
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4. Accuracy Improvement
4.1. Methodology
4.1.1. Criteria for Selecting High-Quality GEDI Footprints

To select high-quality GEDI footprints and improve the accuracy of forest canopy
height estimation, combinations of influencing factors were used for footprint selection.
The importance analysis indicates that the number of peaks has a significant impact, which
is consistent with Wang et al. [11]. When it exceeds 11, the accuracy of forest canopy height
estimation significantly decreases. Therefore, only footprints with a peak number less
than or equal to 10 were retained. Although beam type and acquisition time do not play a
decisive role in forest canopy height retrieval, the accuracy is lower for coverage beams
collected during the daytime. Therefore, to ensure data accuracy, footprints collected under
these conditions would be removed. Figure 9 and Table 6 show the accuracy comparisons
before and after filtering. Through footprint filtering, the number of GEDI footprints has
been reduced to 43,377, representing a decrease of 37.17%. The difference in R2 is not
significant, with the RMSE decreasing from 6.49 m to 5.60 m, resulting in an improvement
in accuracy of 0.89 m. It can be observed from Figure 9 that there are many underestimated
forest heights before we select high-quality GEDI footprints, which is consistent with
Liu et al. [10]. These underestimated forest heights may be caused by steep topography.
After we selected high-quality GEDI footprints, many underestimated forest heights were
removed.
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Table 6. Comparison of accuracy before and after filtering.

N RMSE (m) R2 Bias (m) MAE (m) %RMSE %Bias

Before 69036 6.49 0.74 0.08 4.38 45.89 0.55
After 43377 5.60 0.75 2.06 3.83 41.39 15.22

4.1.2. Error Correction Model Based on Random Forest

The interaction between GEDI signals and canopy and ground is quite complex. Al-
though high-quality footprints are selected in the previous step, some errors still exist in the
retrieval of forest canopy height in GEDI L2A products. Some research has made progress
in improving the accuracy of LiDAR-derived forest canopy height. Correction methods
based on machine learning have overcome the limitations of physical geometric models and
statistical regression models. Machine learning methods can establish robust error correc-
tion models that are adaptable to relationships between various factors that are difficult to
define clearly. Therefore, we chose the RF algorithm, which is easy to use, highly nonlinear,
and robust to outliers in training data, to establish a forest canopy height error prediction
model [28]. The core idea of the RF algorithm is to create an ensemble of decision trees, each
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trained on a random subset of the dataset. By aggregating the predictions of multiple trees,
random forest can reduce overfitting, improve prediction accuracy, and ultimately achieve
high-precision forest canopy height estimation. Based on the importance analysis of each
factor, the top 80% of factors were selected as the initial feature parameters for model
training. The RF algorithm captures complex relationships between predictor variables and
response variables by generating a large number of decision trees to improve prediction
accuracy and control overfitting. During the training process, two main parameters need
to be adjusted: the number of decision trees and the tree depth. More trees generally lead
to better performance because they reduce overfitting by averaging out the predictions
from all trees. However, too many trees can lead to longer training times and increased
computational costs. By adjusting the number of decision trees, we can determine the
optimal number of trees that minimize the model error. The tree depth, which represents
the maximum number of variables considered when building the optimal random forest
decision tree model, controls the maximum depth of each tree. This parameter is usually
set to the square root of the number of available features. The difference between GEDI
forest canopy height and the corresponding NEON canopy height is used as the response
variable, while the selected factors are used as the prediction variables to train the optimal
error prediction model. Figure 10 displays the flowchart of the method.
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4.2. Results and Discussion

Figure 11 illustrates the model error variation with the change in the number of
decision trees. It can be observed that when the number of decision trees is small, the model
error varies greatly. When the number of decision trees exceeds 25, the error decreases,
and when it surpasses 100, the error tends to stabilize. To ensure model accuracy while
improving computational efficiency, the number of decision trees was set to 100, and the
tree depth was set to the square root of the number of available factors.
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Figure 12 and Table 7 display scatter plots and accuracy statistics before and after
correction. Before correction, the RMSE is 5.60 m, with an R2 of 0.75. After correction,
the error in forest canopy height is significantly reduced, with R2 improving to 0.91 and
RMSE decreasing to 4.19 m. The accuracy improves by 25.18%, and the mean absolute
error decreases from 3.83 m to 3.18 m. It can be seen that both the overestimation and
underestimation have been corrected to a certain extent. Overall, the error correction model
based on the RF algorithm can effectively reduce the influence of error factors on forest
canopy height retrieval, resulting in good consistency between the model calibration results
and validation data.
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Table 7. Accuracy Comparison of GEDI forest canopy height before and after correction.

R2 Bias (m) MAE (m) RMSE (m) %Bias %RMSE

Before 0.75 2.06 3.83 5.60 15.23 41.39
After 0.91 2.69 3.18 4.19 19.88 30.97

To verify whether the error correction model is overfitted to specific training areas,
NEON site data were retained as validation data each time, while the others were used for
model training, resulting in the training of 19 random forest models. Figure 13 shows the
accuracy validation results of each model. The RMSE in each validation area is reduced
to some degree. The overall RMSE decreased from 6.54 m to 4.52 m, with an accuracy
improvement of 30.88%. Additionally, the R2 increased from 0.63 to 0.77. The result
indicates that the correction model constructed by the RF algorithm did not overfit specific
training areas, exhibiting good robustness and generalization ability.
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5. Conclusions

High-accuracy forest height is important essential data for forest management and
carbon sequestration research. The GEDI can provide a large number of forest height and
vertical structure parameters for global forest management and forest carbon sink research.
The accuracy of forest canopy height estimation from GEDI is influenced by various factors.
In this study, we evaluated the accuracy of the GEDI L2A forest canopy height product
and explored the mechanisms of various factors affecting its accuracy. Based on this, a
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comprehensive error correction model considering multiple error factors was constructed
using the random forest algorithm. We found the following:

(1) A relatively high correlation was found between the GEDI forest canopy height
estimation and the reference CHM, with an R2 value of 0.74 and an RMSE of 6.49 m;

(2) The potential error factors with the highest importance are the number of peaks and
canopy cover, significantly higher than the others, explaining 46% of the difference
between GEDI and the reference forest canopy height;

(3) GEDI footprints with a peak number less than or equal to 10 obtained by full power
beam during nighttime are recommended when retrieving forest canopy height;

(4) The error correction model based on the RF algorithm can effectively reduce the
influence of error factors on forest canopy height retrieval, with RMSE decreasing
from 5.60 m to 4.19 m, improving accuracy by 25.18%, and the model demonstrates
good geographical generalization ability.

These findings are expected to provide practical guidance on the use of GEDI for
forest structure estimations. Using the proposed method in this study, we will improve the
accuracy of GEDI forest height data on a global scale and provide important data support
for subsequent forest biomass mapping and forest carbon sink research.
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