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Abstract: The ecotone zone, located between the Cerrado and Amazon biomes, has been under
intensive anthropogenic pressures due to the expansion of commodity agriculture and extensive
cattle ranching. This has led to habitat loss, reducing biodiversity, depleting biomass, and increasing
CO2 emissions. In this study, we employed an artificial neural network, field data, and remote sensing
techniques to develop a model for estimating biomass in the remaining native vegetation within an
18,864 km2 ecotone region between the Amazon and Cerrado biomes in the state of Mato Grosso,
Brazil. We utilized field data from a plant ecology laboratory and vegetation indices from Sentinel-2
satellite imagery and trained artificial neural networks to estimate aboveground biomass (AGB) in
the study area. The optimal network was chosen based on graphical analysis, mean estimation errors,
and correlation coefficients. We validated our chosen network using both a Student’s t-test and the
aggregated difference. Our results using an artificial neural network, in combination with vegetation
indices such as AFRI (Aerosol Free Vegetation Index), EVI (Enhanced Vegetation Index), and GNDVI
(Green Normalized Difference Vegetation Index), which show an accurate estimation of aboveground
forest biomass (Root Mean Square Error (RMSE) of 15.92%), can bolster efforts to assess biomass
and carbon stocks. Our study results can support the definition of environmental conservation
priorities and help set parameters for payment for ecosystem services in environmentally sensitive
tropical regions.

Keywords: biomass estimation; Amazon/Cerrado ecotone; remote sensing; artificial neural network;
Google Earth Engine

1. Introduction

Brazilian biomes are recognized for their high biodiversity, with over 33,000 plant
species, constituting a staggering 26.5% of all known species on Earth [1]. More specifically,
the Amazonia/Cerrado ecotone is a unique transitional ecoregion covering more than
4000 km across the ecotone between the two greatest biomes of South America [2]. The
region is dominated by a highly seasonal climate and a wide diversity of vegetation
types. These vegetation types range from open savannas, which receive abundant solar
radiation, to dense forest formations with denser canopy and higher air humidity and soil
moisture levels.

Beyond its rich vegetation, this region of high ecological and biological significance
harbors a large array of species. However, this biodiversity faces threats as pastures and
crops expand into this ecotone, leading to massive deforestation [3,4]. The consequence
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is a notable decrease in the native vegetation and biomass stock [5] due to the increasing
deforestation rates in the Amazon and Cerrado biomes [6], a situation often worsened by
forest fires [6,7].

Forest biomass is a critical factor in assessing the carbon sequestration and carbon
balance capabilities of these ecosystems [8,9]. Accurately estimating aboveground biomass
(AGB) is crucial to understanding the carbon cycle and its effects on climate changes and on
terrestrial ecosystems and biodiversity [8–11], especially in tropical regions where reliable
data are lacking [8,9].

Biomass estimation using remote sensing data has been widely applied at global,
regional, and local scales. It has substantially improved in recent years [12], replacing
conventional AGB estimation approaches. It enables temporal analysis of the environment
and land cover [12] and, in the case of land use changes, contributes significantly to
detecting, quantifying, and understanding vegetation behavior over time [13].

Several approaches have been developed and applied to accurately estimate carbon
biomass. The authors of [14] accurately estimated aboveground biomass and stand volume
in Hinton, the USA, by applying a methodological approach based on the relationship of
forest structure attributes acquired in the field and Landsat ETM+ imagery. The authors
of [15] successfully quantified live aboveground forest biomass in the states of Arizona
and Minnesota using Landsat imagery and forest inventory data. The authors of [16]
assessed Landsat 8 imagery to estimate aboveground biomass in the Umgeni catchment,
South Africa. The authors of [17] applied boosted regression tree models, field data, and
Sentinel-2 and Synthetic Aperture Radar (SAR) combined imagery acquired on different
dates and were able to estimate aboveground biomass and forest cover.

Studies carried out by [18] combined vegetation indices retrieved from a Vegetation
Sensor onboard the SPOT-4 satellite and Moderate Resolution Imaging Spectroradiometer
(MODIS) and climate data to estimate primary production in Harvard Forest, Petersham,
MA, the USA. The study by [19] observed a strong positive correlation between vegetation
indices and biomass. Another study by [20] successfully estimated forest aboveground
biomass (AGB) by combining Landsat and MODIS imagery.

New technologies based on machine learning and artificial intelligence have improved
even more modeling approaches to predict biomass worldwide. Empirical modeling using
deep learning algorithms has achieved highly accurate results in estimating AGB based on
field sampling distributions with no assumptions. For example, [21] developed Sentinel-2
imagery and a machine learning model to estimate biomass in northern Anhui, China.
Similarly, ref. [22] applied radar and optical imagery and a deep learning-based approach
to estimate forest biomass in Tibet, China. The authors of Ref. [23] successfully combined an
Artificial Neural Network (ANN) with vegetation indices retrieved from Landsat imagery
to predict aboveground biomass for a study site in the Amazon region. However, they are
more difficult to interpret and require accurate field data as the model input [24].

In this study, we developed and applied a model to estimate aboveground biomass
in an Amazonia/Cerrado transition zone in the state of Mato Grosso, Brazil, using field
data, remote sensing, and Artificial Neural Networks (ANNs). Our goal was to accurately
estimate AGB using medium spatial resolution and freely available remotely sensed data
(Sentinel-2 imagery) with an ANN, a method not previously applied to this large ecotone
region. These study results are significant as they can facilitate further analyses of deforesta-
tion and forest fire impacts in this tropical region, which have profoundly affected forest
structure by reducing tree cover and increasing herbaceous species. These herbaceous
plants are more susceptible to water stress, making the region prone to recurrent and
intense fire events [25].

Our model showed promising results for estimating and monitoring aboveground
biomass and can play a pivotal role in supporting the implementation of payments for
ecosystem services. This represents a technological advance in environmental preservation
and conservation research, particularly in transitional zones that lack information on
biomass stocks. From a critical perspective, conserving biomass in this study area, which is
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near Brazil’s largest indigenous territory (Xingu Indigenous Land), may have significant
and positive impacts on the well-being and sustainable existence of traditional populations
in their territories [26].

2. Materials and Methods
2.1. Regional Setting

Our study area encompassed a total of 18,863.6 Km2 located in the Ecotone region
between the Amazon and Cerrado biomes in Brazil. We selected permanent long-term mea-
surement plots established and monitored by the Plant Ecology Laboratory of Mato Grosso
State University (LABEV-UNEMAT) in the study region (Campus of Nova Xavantina, State
of Mato Grosso, Brazil). The sample plots are in the municipalities of Gaúcha do Norte,
Querência, and Ribeirão Cascalheira, state of Mato Grosso.

Field measurements were conducted in 12 sample plots, each measuring 100 m × 100 m
and subdivided into 60 subplots of 100 m × 20 m (Figure 1). These measurements were
carried out during the dry season (July to October) in 2014, 2018, 2020, and 2021. We
selected this study area due to its environmental sensitivity and socioeconomic character-
istics, as it is situated in the transition zone between the Cerrado and Amazonia biomes.
The area is particularly notable for its proximity to indigenous lands and the significant
deforestation activities reported in recent decades, especially in the region known as the
“Arc of Deforestation” of the Brazilian Amazon [2].
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Figure 1. The study area is located within the ecotone zone of the Amazonia and Cerrado biomes
in the state of Mato Grosso, Brazil. Field measurements were conducted in 12 sample plots, each
measuring 10,000 m² and subdivided into 60 subplots of 2000 m2 each, in the years 2014, 2018, 2020,
and 2021. The year of sampling is indicated in black above each sample plot in the study area.

The study region features diverse soil types with distinct characteristics. These soils
are characterized by low nutrient availability and elevated levels of aluminum toxicity. In
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the interfluvial areas, medium-textured red-yellow latosols predominate, creating favorable
conditions for forest establishment. Additionally, these latosols feature patches of anthro-
pogenic soils created by ancient indigenous populations, known locally as ‘terra preta de
índio’ or Amazonian Dark Earth (ADE). ADE is rich in pyrogenic carbon, leading to a
higher concentration of organic matter on the surface and increased pH in deeper layers.
In floodplains, clay-textured fluvic neosols are prevalent, containing higher potassium
content but facing phosphorus restriction, poor drainage, and elevated aluminum and iron
levels [7,27].

The permanent plots of this study are predominantly surrounded by Seasonal Forest
(Fse) and Typical Cerrado (Sd), which are characteristic of the Central-West region of
Brazil [28]. According to the Köppen climate classification, the study region is characterized
by an Aw climate type, which is tropical seasonal [29], with two distinct seasons: a dry
season from May to October and a rainy season from November to April [30]. As described
by [7], the region’s topography varies from flat to gently undulating. It includes plateaus
and plains in the central area, mountains to the east, and residual depressions to the
south [31].

2.2. Dendrometric Variables of the Inventory

The inventories were conducted in 2014 (one plot), 2018 (three plots), 2020 (five plots),
and 2021 (three plots) by collaborators from the Forest Ecology Laboratory at the State
University of Mato Grosso. The objective was to monitor vegetation within permanent
plots across different strata, soil types, climatic zones, and regional groups. Sampling
was randomized, with 12 sampling units, each measuring 100 × 100 m. Each unit was
divided into five transects, resulting in a total of 60 subsamples measuring 100 × 20 m
(Figure 1). There was only one sample unit showing different dimensions, covering an
area of 180 × 60 m with transects measuring 36 × 60 m. We adopted the sampling protocol
proposed by [7] to ensure data reliability.

We collected detailed information on species, families, tree diameters, and heights in
each plot. To estimate basic wood density, we used the ForestPlots.net database, which in-
cludes data on over 2000 neotropical species [32,33]. Aboveground biomass was calculated
using Microsoft Excel 2016, incorporating data on diameter at breast height, total height,
and basic wood density. All data were analyzed following RAINFOR guidelines and the
methodologies outlined by these authors.

Complementarily, we conducted a statistical analysis using field-collected data to
examine variations in dendrometric characteristics within our study area. Descriptive table
analysis allowed us to summarize and describe inventory variables, enabling comparisons
with similar areas and contributing to the scientific understanding of this field.

2.3. Forest Biomass

To effectively develop methods for assessing Aboveground Biomass (AGB), it is crucial
to acquire on-site estimates of this biomass, commonly referred to as “in situ” measure-
ments. The in-situ estimates serve as essential data for the calibration and validation
of algorithms designed to calculate biomass. Additionally, field-collected data provide
valuable information to estimate various tree characteristics, including basal area and the
total aboveground and/or belowground biomass. In our analysis, the forest inventory data
were utilized to predict the aboveground biomass within the transitional area using re-
motely sensed data and an artificial neural network. This prediction considers the equation
proposed by [34] for our field samples located within the Amazon biome:

AGB = 0.0673 ×
(

Wd × Ht × DBH2
)̂

0.976 (1)

where:
AGB = Aboveground Biomass (kg);
Wd = Basic wood density for each tree species (g.cm3);
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Ht = Total height (m);
DBH = Tree diameter at 1.3 m from the ground (cm).
In addition, we calculated AGB for our field samples located within the Cerrado biome

using a specific allometric equation developed for the Cerrado environment [35], as follows:

AGB = 0.4913 + 0.0291 × DGH2 × Ht (2)

where:
AGB = Aboveground Biomass (kg);
DGH = The diameter of trees at their base (ground), specifically for trees with a

diameter equal to or greater than 5 cm;
Ht = tree height.
The biomass was estimated by applying allometric equations and utilizing tree-specific

variables for each subplot within the sample plots. Subsequently, these values were nor-
malized per unit area to calculate the results in Tons per hectare (ton·ha−1).

2.4. Sentinel-2 Imagery

We utilized images acquired by the MultiSpectral Instrument (MSI) sensor aboard
the Sentinel-2 satellite, which provided spectral information about vegetation. This sensor
captures the red band, crucial for characterizing vegetation due to the presence of chloro-
phyll in plants [36]. The satellite’s spatial resolution varies according to the spectral bands:
10 m for visible and near-infrared bands, 20 m for red edges and other infrared bands, and
60 m for water vapor and cirrus bands. Sentinel-2 features 13 spectral bands ranging from
0.442 µm to 2.202 µm, with a revisit frequency of every five days [37].

In this analysis, we used a total of five Sentinel-2 scenes acquired from 2016 to 2021, all
during August of each year, to minimize seasonal effects on the remotely sensed products.
All scenes, covering the entire study area, were level 1c orthorectified TOA (Top of Atmo-
sphere) reflectance and were acquired in the same year as the forest inventory data for 2018,
2020, and 2021. The only exception was the image acquired in 2016, which was used to
relate to field data collected in 2014 because there were no Sentinel images available for
that year. Subsequently, we retrieved vegetation indices from the Sentinel-2 images using
the Google Earth Engine (GEE) platform. The Sentinel-2 scenes’ IDs and acquisition dates
are listed in Table 1.

Table 1. Sentinel 2A sensor MSI (Multispectral Instrument) scenes acquired through Google Earth
Engine (GEE) and used for retrieving the vegetation indices applied in this analysis.

ID Sentinel-2A, Sensor MSI Data

20160807T135257_T22LBL 7 August 2016
20180802T135108_T22LCL 2 August 2018
20200801T135115_T22LBL 1 August 2020
20200803T134216_T22LCL 3 August 2020
20210813T134211_T22LDL 13 August 2021

2.5. Vegetation Indices

In this analysis, we included various vegetation indices based on different spectral
band combinations to leverage their potential sensitivity in capturing diverse vegetation
characteristics and enhancing the relationship between vegetation indices and forest AGB.
The indices utilized were NDVI (Normalized Difference Vegetation Index), EVI (Enhanced
Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), AFRI (Aerosol
Free Vegetation Index), MSAVI (Modified Soil-Adjusted Vegetation Index), NDRE (Nor-
malized Difference Red Edge Index), SAVI (Soil-Adjusted Vegetation Index), and MSAVIaf
(Modified Soil-Adjusted Vegetation Index aerosol free), all described as follows.

Normalized Difference Vegetation Index (NDVI)
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The NDVI, developed by [38], is one of the most widely used vegetation indices. It
relies on the relationship between the difference in reflectance in the near-infrared and red
spectral bands and the sum of the reflectance of these two bands. This index enables the
assessment of the photosynthetic activity of vegetation, with values ranging from −1 to 1.
In contrast, water surfaces or clouds typically exhibit values below 0 [39]. Its definition is
as follows:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(3)

where ρNIR is the reflectance in the near-infrared spectral band and ρRed is the reflectance
in the red spectral band.

Enhanced Vegetation Index (EVI)

The Enhanced Vegetation Index (EVI), developed by [40], aims to minimize atmo-
spheric effects and improve NDVI sensitivity. It is notable for its sensitivity in analyses of
canopy structural variations and densely forested areas [41]. Its definition is as follows:

EVI = G ∗ (ρNIR − ρRed)
ρNIR + (C1 × ρRed)− (C2 × ρBlue) + L

(4)

where ρNIR is the reflectance in the near-infrared spectral band, ρRed is the reflectance in
the red spectral band, ρBlue is the reflectance in the blue spectral band, G is the gain factor
(default value: 2.5), L is the canopy background adjustment factor (default value: 1.0), and
C1 and C2 are coefficients to correct aerosol effects.

Enhanced Vegetation Index 2 (EVI 2)

The Enhanced Vegetation Index 2 (EVI2), developed by [42], aims to achieve results
similar to its original version (EVI) but using only two spectral bands (excluding the blue
band). It proves particularly useful when utilizing high-quality remote sensing data with
minimal atmospheric effects. Its definition is as follows:

EVI2 = G ∗ (ρNIR − ρRed)
ρNIR + 2.4 × ρRed + 1

(5)

where ρNIR is the reflectance in the near-infrared spectral band, ρRed is the reflectance in
the red spectral band and, G is the gain factor (default value: 2.5).

GNDV (Green Normalized Difference Vegetation Index)

The Green Normalized Difference Vegetation Index (GNDVI), a modification of the
NDVI developed by [43], is used to estimate chlorophyll content in vegetation. This makes
it valuable for distinguishing between senescent vegetation and vegetation experienc-
ing various degrees of water stress. GNDVI replaces the red band with the green band
from NDVI, aiming to mitigate vegetation saturation effects in denser conditions [43]. Its
definition is as follows:

GNDVI =
ρNIR − ρGreen
ρNIR + ρGreen

(6)

where ρNIR is the reflectance in the near-infrared spectral band and ρGreen is the re-
flectance in the green spectral band.

AFRI (Aerosol Free Vegetation Index)

The Aerosol Free Vegetation Index (AFRI) was developed by [44] with the aim of
mitigating the effects of aerosols and atmospheric disturbances on vegetation index calcula-
tions. This index has the capability to penetrate the atmosphere more effectively, providing
accurate information about vegetation and other soil characteristics, even under adverse
conditions such as forest fire situations with the presence of smoke [44]. One of the main
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advantages of AFRI is its resilience to smoke interference in data acquisition, distinguishing
it from other conventional indices [44]. Its definition is as follows:

AFRI =
ρNIR − 0.5ρSWIR
ρNIR + 0.5ρSWIR

(7)

where: ρNIR is the reflectance in the near-infrared spectral band and ρSWIR is the re-
flectance in the shortwave infrared 1 band.

SAVI (Soil-Adjusted Vegetation Index)

The Soil-Adjusted Vegetation Index (SAVI) was developed by [45] with the aim of
minimizing soil interference in canopy spectral measurements. This index allows for
calibration so that variations in soil substrate are normalized in vegetation estimates [45].
Its definition is as follows:

SAVI =
ρNIR − ρRed

ρNIR + ρRed + L
× (1 + L) (8)

where ρNIR is the reflectance in the near-infrared spectral band, ρRed is the reflectance in
the red spectral band, and L is the soil adjustment factor (default value = 0.5).

MSAVI (Modified Soil-Adjusted Vegetation Index)

The Modified Soil-Adjusted Vegetation Index (MSAVI), developed by [46], was de-
signed to enhance its original version, SAVI. Both MSAVI and SAVI utilize soil adjustment
factors [46]. MSAVI proves to be a more effective option in terms of time and resources,
particularly in areas where vegetation density is uncertain or varies significantly [46]. Its
definition is as follows:

MSAVI =
NIR − ρRed

NIR + ρRed + L
× (1 + L) (9)

where ρNIR is the reflectance in the near-infrared spectral band, ρRed is the reflectance in
the red spectral band, and L is the soil adjustment calculated using Equation (10):

L = [(ρNIR − ρRed)× s + 1 + ρNIR + ρRed]2 − 8.0 × s × (ρNIR − ρRed) (10)

where s = 1.2 (slope of the soil line calculated from surface reflectance at non-forested areas).

MSAVIaf (Modified Soil-Adjusted Vegetation Index aerosol free

The MSAVIaf was developed by [12] with the aim of reducing atmospheric effects on
vegetation index estimations. It has been demonstrated to be more sensitive to vegetation
variations than the Aerosol Free Vegetation Index under anomalous atmospheric conditions
in the Amazon region [12]. Its definition is as follows:

MSAVIaf =
ρNIR − 0.5ρSWIR

ρNIR + 0.5ρSWIR + L
× (1 + L) (11)

where ρNIR is the reflectance in the near-infrared spectral band, ρSWIR is the reflectance
in the shortwave infrared spectral band (central wavelength: 1.6137 µm), and L is the soil
adjustment factor, calculated as previously presented (Equation (10)).

NDRE (Normalized Difference Red Edge Index)

The Normalized Difference Red Edge Index (NDRE), developed by [47], was designed
to measure plant physiological parameters, particularly those associated with chlorophyll
content, nitrogen concentration, and canopy structure. It can be applied in identifying and
classifying crops and land covers [48]. Its definition is as follows:
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NDRE =
ρNIR − ρRededge
ρNIR + ρRededge

(12)

where ρNIR is the reflectance in the near-infrared spectral band and ρRededge is the
reflectance in the red edge spectral band (central wavelength: 0.704 µm).

2.6. Correlation Analysis

The evaluation of vegetation indices for predicting biomass in our study area was
performed by analyzing the correlation matrix between the nine indices retrieved from
remotely sensed data and the field-measured biomass. To assess the normality of biomass
and vegetation index datasets, we applied the Shapiro–Wilk test.

2.7. Modeling of the Artificial Neural Network (ANN)

In this study, we employed a Multilayer Perceptron (MLP) type of Artificial Neural
Network (ANN), adjusted and trained using Statistica software (STATSOFT), version 12,
to estimate forest biomass using the field-sampling data of LABEV-UNEMAT. The soft-
ware utilizes the Intelligent Problem Solver (IPS) tool to optimize the network architecture,
including the number of layers, neurons, and cycles to achieve more efficient results [49].
Training is conducted using the Broyden–Fletcher–Goldfarb–Shanno quasi-Newton algo-
rithm by IPS for neural network processing, which has been shown to be highly capable
of solving optimization and prediction problems, in addition to being the most popular
quasi-Newton method [50–52].

In this analysis, the input layer of the neural network consisted of both categorical
and numerical variables. The categorical variable pertained to the two types of strata in
the study area: Perennial Seasonal Forest and typical Cerrado. The numerical variables
included the vegetation indices NDVI, EVI, EVI2, GNDV, AFRI, MSAVI, NDRE, SAVI, and
MSAVIaf. The hidden layer comprised ‘n’ neurons, while the output layer consisted of a
single neuron responsible for estimating AGB.

To train the Artificial Neural Networks (ANNs), we selected 40 subsamples, represent-
ing 70% of the total 60 field-demarked subsamples during the inventories. The remaining
20 subsamples were used for result validation and testing. Multilayer Perceptron (MLP)
ANNs calculate the weighted arithmetic mean of these inputs [53], and in this case, were
activated by an exponential function. To assess the performance of the models developed
using ANNs, we considered the parameters of the correlation coefficient (R) and root mean
square error (RMSE). These coefficients have been utilized in other research involving
ANNs to predict solar energy using weather data, as demonstrated by [54].

For the validation of the performance of the best ANNs, we conducted statistical
analyses using Student’s t-tests. To determine whether there was AGB underestimation
or overestimation, we calculated the aggregate difference in percentage terms (AD%).
The Aggregate Difference (AD%) corresponds to the difference between the sum of the
observed values and the sum of the estimated values, in percentage, obtained by the
following expression:

AD% =
∑n

i=i yi − ∑n
1=1 ŷi

∑n
i=1 yi

× 100 (13)

where AD% = Aggregate Difference; yi = observed values; ŷi = estimated values; and
n = number of observations.

The statistical analyses were performed using Microsoft Excel software, Microsoft
Office 365, Version 2408.

3. Results
3.1. Vegetation Inventory

The results in Table 2 show significant differences in the assessed variables, high-
lighting substantial variation in dendrometric characteristics between the Cerrado and the
Amazon plots. Notably, trees in forest plots showed an average aboveground biomass
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approximately eight times higher than those in Cerrado plots. This difference can be
attributed to wider trunks (37% larger in the forest compared to Cerrado) and trees that
were approximately three times taller in the forest. Interestingly, the average wood density
was quite similar in both formations (Amazon and Cerrado) within the study area (Table 2).

Table 2. Dendrometric variables calculated from forest inventory for the areas of the Plant Laboratory
(LABEV) Mato Grosso State University (UNEMAT) plots.

Cerrado Plots Forest Plots

Statistics DBH Ht WD AGB Statistics DBH Ht WD AGB

Minimum 10.0 4.0 0.41 14.35 Minimum 10.0 10.0 0.20 66.56
Maximum 39.0 13.0 0.84 23.49 Maximum 93.2 30.0 1.09 331.38
Mean 13.81 6.64 0.66 18.38 Mean 19.12 13.99 0.67 146.86
Variance 15.38 1.65 0.01 10.97 Variance 105.19 17.5 0.019 2572.76
Deviation 3.92 1.28 0.10 3.31 Deviation 10.25 4.18 0.14 50.72
CV (%) 28.4 19.33 15.43 18.02 CV (%) 53.64 29.9 20.4 34.54

Where DBH = diameter at breast height (cm), Ht = total height (m), WD = average wood density (g·cm3),
AGB = aboveground biomass (Ton·ha−1), and CV (%) = Coefficient of Variation (%).

The biomass measurements in the Forest samples showed themselves to be statistically
consistent, showing an average value of 146.84 t·ha−1. When examining a forest fragment
located on the southern edge of the study area, we observed biomass variability ranging
from 155 to 195 t·ha−1.

3.2. Correlation Analysis of Biomass and Vegetation Indices

In this study, we created a mosaic of the Sentinel-2 images acquired in August 2019 to
retrieve the vegetation indices for the study area (Table 3).

Table 3. Average of the independent variables in the study area. AFRI = Aerosol Free Vegetation Index;
EVI = Enhanced Vegetation Index; GNDVI = Green Normalized Difference Index; EVI2 = Enhanced
Vegetation Index–2; MSAVIaf = Modified Soil-Adjusted Vegetation Index aerosol free;
MSAVI = Modified Soil-Adjusted Vegetation Index; NDVI = Normalized Difference Vegetation
Index; NDRE = Normalized Difference Red Edge Index; SAVI = Soil-Adjusted Vegetation Index.

Vegetation Indices Average

AFRI 0.564
EVI 0.571

GNDVI 0.569
EVI2 0.392

MSAVIaf 0.324
MSAVI 0.545
NDRE 0.515
NDVI 0.697
SAVI 0.408

The Shapiro–Wilk test indicated non-normality of the analyzed variables (vegetation
indices and biomass). We then applied the Spearman correlation matrix, recommended
for non-parametric data analysis. The Spearman correlation results indicated positive and
significant correlations (α < 0.05) among aboveground biomass and all vegetation indices,
as well as among the vegetation indices themselves (Table 4).
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Table 4. Spearman’s correlation matrix was used to analyze the relationship between aboveground
biomass and vegetation indices of the study area.

AFRI EVI EVI2 GNDVI MSAVIaf MSAVI NDRE NDVI SAVI Biomass

AFRI 1
EVI 0.887 ** 1
EVI2 0.875 ** 0.963 ** 1
GNDVI 0.897 ** 0.902 ** 0.951 ** 1
MSAVIaf 0.948 ** 0.963 ** 0.969 ** 0.950 ** 1
MSAVI 0.868 ** 0.975 ** 0.933 ** 0.866 ** 0.942 ** 1
NDRE 0.954 ** 0.853 ** 0.882 ** 0.921 ** 0.922 ** 0.825 ** 1
NDVI 0.972 ** 0.909 ** 0.902 ** 0.907 ** 0.943 ** 0.887 ** 0.971 ** 1
SAVI 0.831 ** 0.853 ** 0.889 ** 0.863 ** 0.907 ** 0.850 ** 0.786 ** 0.820 ** 1
Biomass 0.469 * 0.443 * 0.532 ** 0.621 ** 0.555 ** 0.404 * 0.509 ** 0.466 * 0.594 ** 1

** Significant at α < 0.01; * Significant at α < 0.05. Where: AFRI = Aerosol Free Vegetation Index; EVI = Enhanced
Vegetation Index; GNDVI = Green Normalized Difference Index; MSAVIaf = Modified Soil-Adjusted Vegetation
Index aerosol resistant; MSAVI = Modified Soil-Adjusted Vegetation Index; NDVI = Normalized Difference
Vegetation Index; NDRE = Normalized Difference Red Edge Index; SAVI = Soil-Adjusted Vegetation Index.

Based on the results of the correlation matrix, we subsequently proceeded with a
stepwise regression analysis to select our predictive variables (vegetation indices). The
stepwise technique involves adding or removing independent variables from the model
one at a time, based on specific criteria such as the p-value. This procedure is implemented
automatically to identify a subset of variables that are most relevant for predicting the
dependent variable (in this case, aboveground biomass).

In contrast to the correlation matrix results, this complementary stepwise regression
analysis found that the AFRI, EVI, and GNDVI indices (Figure 2) were the most suitable
(highest statistical significance at α < 0.05) vegetation indices to be used as input neu-
rons for the ANN modeling. It is likely that retrieving vegetation indices from different
spectral band combinations (near-infrared, middle infrared, red, and blue bands) greatly
contributed to increasing their sensitivity and capturing aboveground biomass variation in
the study area.

3.3. Biomass Modeling

After training the artificial neural networks (ANNs) with the most suitable indepen-
dent variables (AFRI, EVI, and GNDVI) indicated by the stepwise regression analysis,
we selected the top five performing ANNs based on correlation coefficients (r) exceeding
0.90 and validation errors less than 16%. The selected ANN showed low variation between
training, selection, and evaluation indices, demonstrating stability during the training pro-
cess [55]. An in-depth analysis of fit and accuracy statistics revealed that Neural Network
1 showed the strongest predictive capability for aboveground biomass, as indicated by the
RMSE% values in Table 5.

Additionally, the results provided by Neural Network 1 indicated a satisfactory
distribution of residuals (Figure 3—B1 training, B2 testing, and B3 validation) and ac-
curate, consistent predictions of aboveground biomass (Figure 3—A1 training, A2 test-
ing, and A3 validation) in the study area. The model showed a good fit, which indi-
cates that it minimized the differences between observed and predicted values without
significant bias.
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Table 5. Accuracy statistics of the selected artificial neural networks (ANNs) for prediction of
aboveground biomass for the LABEV-UNEMAT plots located in the Cerrado/Amazon ecotone.

ANN Architecture
Activation Activation

Adjustment Validation Test

Nº of
Cycles RMSE% R RMSE% R RMSE% R

Hidden Output

1 MLP 3-12-1 860 Tang Tang 18.09 0.93 15.76 0.94 15.92 0.94
2 MLP 3-11-1 1630 Logistic Exponential 19.44 0.92 16.09 0.93 16.18 0.93
3 MLP 3-8-1 910 Logistic Identity 19.77 0.92 16.41 0.93 16.92 0.93
4 MLP 3-13-1 950 Tang Exponential 19.53 0.92 16.62 0.93 16.91 0.93
5 MLP 3-11-1 670 Logistic Identity 20.19 0.91 17.91 0.91 17.12 0.91

ANN Predictor
variables

Neurons per layer Adjust

Input Hidden Output TI SI AI Algorithm

1 AFRI, EVI, GNDVI 3 12 1 0.08 0.08 0.09 BFGS
2 AFRI, EVI, GNDVI 3 9 1 0.10 0.11 0.12 BFGS
3 AFRI, EVI, GNDVI 3 5 1 0.10 0.12 0.13 BFGS
4 AFRI, EVI, GNDVI 3 13 1 0.11 0.13 0.10 BFGS
5 AFRI, EVI, GNDVI 3 7 1 0.13 0.15 0.17 BFGS

ANN = artificial neural network; MLP = Multilayer perceptron; RMSE% = Root Mean Square Error Percentage; R
= correlation between observed and estimated values; TI= Training indices (network definition), SI = Selection
Indices of training stop, AI = Assessment Indices (quality assessment of trained network); BFGS = Broyden–
Fletcher–Goldfarb–Shannon.

The accuracy of aboveground biomass estimates is a crucial indicator of the model’s
effectiveness. The architecture of ANN-1 (Figure 4) comprises three layers: the input layer
with three neurons representing predictor variables (EVI, AFRI, and GNDVI), a hidden
layer of 12 neurons for data processing activated using a tangential function, and an output
layer representing the variable of interest (AGB) activated with a logistic function.

3.4. Statistical Analysis

The Student’s t-test is a statistical tool used to determine whether there is a significant
difference between the means of two independent samples. In this test, we formulate a null
hypothesis (H0) asserting that there is no difference between the means of the two samples,
and an alternative hypothesis (H1) suggesting that there is a significant difference between
them. Following the t-test, we compute a p-value. If the p-value falls below the chosen
significance level (typically 0.05), it indicates statistical evidence to reject the null hypothesis
in favor of the alternative hypothesis. In simpler terms, this means there is a significant
difference between the means of the observed values compared to the estimated values.
Conversely, if the p-value exceeds the significance level, there is not enough evidence to
reject the null hypothesis, indicating no statistically significant difference between the
observed mean values and the estimated values.

The p-value is a statistical measure that aids in interpreting the results of a hypothesis
test in statistics. It indicates the probability of obtaining a result as extreme or more
extreme than the one observed, assuming the null hypothesis is true. The null hypothesis
typically states that there is no effect or difference between the compared groups, while
the alternative hypothesis suggests the opposite. In short, the p-value provides a way to
quantify how much the results support or refute the null hypothesis.

In this analysis, the application of the Student’s t-test revealed that the calculated
p-value for the selected neural network was greater than the established significance level
(α = 0.05), specifically p = 0.952. This indicates that there is insufficient statistical evidence to
reject the null hypothesis, which shows no differences between the observed and predicted
values by the neural network for the validation plots.
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Additionally, the Aggregate Difference (AD) analysis indicated a slight tendency to
overestimate the values predicted by the neural network, with a deviation of −0.1637%.
Nevertheless, these results align with the accuracy of the information obtained during the
ANN training process, confirming its proficiency in providing precise estimates for Above-
ground Biomass (AGB). Consequently, these findings suggest that the ANN-generated
estimates are both accurate and dependable for predicting AGB in areas of biome transition.

3.5. Analyzing the Spatial Distribution of Biomass

Based on the results obtained from the training of the neural networks, we were able
to extend our estimates of AGB across the entire area covered by native vegetation in this
study region. Consequently, the total biomass of the study area, considering the land use
and land cover of native vegetation, was estimated at 109,118,121 tons. The most common
AGB values in the study area were in the range of 0 to 50 t·ha−1, followed by the range of
100 to 150 t·ha−1 (Figure 5).
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4. Discussion
4.1. Forest Biomass and Land Use and Land Cover

The amount of aboveground biomass (AGB) varies significantly within native forest
formations in the study area, predominantly ranging between 100 and 150 t·ha−1, followed
by classes of 0–50 and 50–100 t·ha−1 occupied by savanna and transitional forest formations.
This variation can be attributed to various factors, including climatic, geological, and soil
conditions, as well as distinct previous vegetation disturbances and land use patterns in
the study region [56].

The use of ANNs (Artificial Neural Networks) proved effective in estimating biomass
per unit area while eliminating the basic assumptions of conventional mathematical model-
ing, such as normality and linearity of forest attributes [57]. These attributes often require
various mathematical transformations for traditional modeling, which can result in a loss
of quality and selection of models, leading to biased estimates of the variable of interest.

One hypothesis explaining this relatively low range of total AGB in the study region
is the impact of anthropogenic activities, particularly agriculture, selective logging, fire,
and livestock farming. These disturbances can increase edge effects and forest degradation,
especially when caused by selective logging activities and forest fires [12,58]. Addressing
this requires the definition and implementation of public policies to enforce sustainable
land use management, conservation of natural ecosystems, environmental law enforcement,
climate awareness, and fire prevention measures [59].

The increase in soybean cultivation over the last few decades has had severe impacts
on natural ecosystems and the natural landscape in the study region. These impacts
may directly lead to decreased rainfall, increased land surface temperatures, and soil and
water contamination due to pesticides and chemical fertilizers. Additionally, pastures
cover nearly 16 percent of the study area and can cause significant environmental impacts,
including greenhouse gas emissions and soil and water degradation [60].
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In summary, land use and land cover in the study area comprise a complex landscape
mix of agricultural, livestock, and forestry activities. The potential environmental and social
impacts associated with these activities add complexity to achieving a balance between
economic development and the conservation of natural resources [59,61].

4.2. Selection of Independent Variables (Vegetation Indices)

The AFRI, EVI, and GNDVI indices showed the most significant correlation with
aboveground biomass in our study area. The high observed correlations among vegetation
indices and biomass are likely due to a combination of a broader range of spectral bands
within the electromagnetic spectrum (middle- and near-infrared, red, green, and blue)
required to retrieve these three vegetation indices from Sentinel-2 imagery, compared to
other assessed indices in this analysis. The broader range of spectral bands increases their
sensitivity to capture subtle vegetation variations and changes. Such sensitivity is crucial
when using remotely sensed data, especially in ecotone regions that exhibit high vegetation
variability and complexity.

The significant correlations observed between Green Reflectance (GREEN), as repre-
sented by the GNDVI (Green Normalized Difference Vegetation Index), and biomass in the
study area can be attributed to variations in chlorophyll and anthocyanin content in the
leaves [62]. These factors are closely related to vegetation development and maturity [62].
The Green Vegetation Index (GVI) and the Green Normalized Difference Vegetation Index
(GNDVI), derived from reflectance equations, exhibit stronger correlations with nitrogen
content in forest biomass leaves compared to the Ratio Vegetation Index (RVI) and the
Red Normalized Difference Vegetation Index (RNDVI), indicating a greater sensitivity
to variations in vegetation [63]. The combination of green and infrared bands plays an
important role in aboveground biomass analysis, serving as critical descriptors in this
index and providing dependable and precise information on biomass quantities at specific
locations [64].

The use of the Near-Infrared (NIR) and Shortwave Spectrum (SWIR) bands in calculat-
ing the AFRI index has demonstrated efficiency in monitoring vegetation water content and
dry biomass, particularly in regions with sparse vegetation [65]. Moreover, the AFRI index
showed a stronger correlation with biomass in the study area located within an ecotone
region between forest and savanna.

Commonly used vegetation indices such as NDVI and EVI have been applied world-
wide to assess vegetation health. However, these indices are influenced by various factors,
including terrain topography [66]. Our study showed that the soil adjustment factor
“L” may heavily impact EVI results compared to NDVI, making EVI more sensitive to
topographical conditions. This sensitivity is particularly critical in hilly terrain, where
topographic effects can significantly affect vegetation indices with a simple band-ratio
format, such as NDVI.

The choice of satellites for spectral data collection can influence the accuracy of biomass
estimation. Nevertheless, our analysis found that Sentinel-2 satellite images were suitable
for our study. The authors of [67] reported that the quality of MSI/Sentinel-2 sensor images,
particularly in bands with a 10 m resolution, highlights the utility of this satellite for
vegetation assessment research, especially when compared to aerial sensors with a spatial
resolution of 0.13 m.

4.3. Training the Neural Networks

Our results indicate that the trained Artificial Neural Networks (ANNs) showed a
satisfactory fit and high-accuracy statistics. The correlation coefficient (R) consistently
equaled or exceeded 0.9, and the root mean square estimation (RMSE) errors remained
below 14%. Among the five trained networks, Network 1 outperformed the others with an
R² of 0.94 and an RMSE% of 10.76, making it a promising choice for the intended application.
These findings underscore the feasibility of biomass estimation through remote sensing in
natural forests.
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The use of ANNs is effective in estimating biomass per unit area and does not require
the basic assumptions of conventional mathematical modeling, such as normality and
linearity of forest attributes [68]. These attributes often require various mathematical
transformations for traditional modeling, which can result in lower model quality and
selection capability, leading to biased and less accurate estimates of the variable of interest.

The authors of [68] also yielded positive results in estimating the components of
total biomass, with an R2 of 0.97 and an RMSE% of 25.04. Furthermore, the simulation of
terrain elevation data along ICESat-2 and Landsat satellite profiles demonstrated significant
potential for generating a forest biomass estimation product, achieving an R2 of 0.66 [69].

These results align with the findings of our research, highlighting the robust per-
formance of the models developed for tree biomass estimation. To assess the predictive
capacity of the selected Artificial Neural Network, we examined the relationship between
observed and predicted values. When analyzing the distribution of ANN errors, we ob-
served that most errors fell within the −1.5% to −12% and 0% to 10% ranges. Additionally,
errors exceeding the ±16% threshold were infrequent. Moreover, it was determined that a
training dataset size of approximately 60 subplots or fewer was sufficient to achieve a good
fit with the linear functional model.

5. Conclusions

Our research findings indicate that the combination of various vegetation indices
integrating different spectral bands, such as EVI, AFRI, and GNDVI, with a Multilayer
Perceptron Artificial Neural Network has led to more efficient and precise estimation
of aboveground biomass in our study area. This approach facilitated the generation of
high-resolution biomass distribution maps and provided a cost-effective and time-saving
alternative to traditional forest inventories. Accurate estimates of forest biomass are crucial
for understanding vegetation dynamics and ecological processes, as well as for formulating
effective forest resource management policies. Additionally, our study results are valuable
for forest biomass monitoring, including the assessment of environmental services and the
formulation of conservation strategies for protected areas and indigenous territories. The
advanced knowledge of forest biomass can also support sustainable forest management
practices and enable the prediction of impacts of land use and land cover changes on forest
biomass. Alternative approaches, such as deep learning and machine learning methods,
could prove effective for estimating aboveground biomass in tropical regions and should
be explored in future research endeavors.
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