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Abstract: The diameter at breast height (DBH) and crown base height (CBH) are important indica-
tors in forest surveys. To enhance the accuracy and convenience of DBH and CBH extraction for
standing trees, a method based on understory small motion clips (a series of images captured with
slight viewpoint changes) has been proposed. Histogram equalization and quadtree uniformization
algorithms are employed to extract image features, improving the consistency of feature extraction.
Additionally, the accuracy of depth map construction and point cloud reconstruction is improved by
minimizing the variance cost function. Six 20 m × 20 m square sample plots were selected to verify
the effectiveness of the method. Depth maps and point clouds of the sample plots were reconstructed
from small motion clips, and the DBH and CBH of standing trees were extracted using a pinhole
imaging model. The results indicated that the root mean square error (RMSE) for DBH extraction
ranged from 0.60 cm to 1.18 cm, with relative errors ranging from 1.81% to 5.42%. Similarly, the
RMSE for CBH extraction ranged from 0.08 m to 0.21 m, with relative errors ranging from 1.97% to
5.58%. These results meet the accuracy standards required for forest surveys. The proposed method
enhances the efficiency of extracting tree structural parameters in close-range photogrammetry (CRP)
for forestry. A rapid and accurate method for DBH and CBH extraction is provided by this method,
laying the foundation for subsequent forest resource management and monitoring.

Keywords: forest; forest DBH; forest CBH; monocular vision; close-range photogrammetry; small
motion clip

1. Introduction

Forests are limited, renewable, and important environmental resources that play a
crucial role in the carbon cycle and daily production activities [1–3]. Forest resource surveys
ensure that these resources are fully utilized in national economic development. Among
these surveys, the diameter at breast height (DBH) and crown base height (CBH) are critical
indicators. Currently, the measurement of DBH and CBH primarily relies on traditional
manual techniques, such as using calipers and hypsometers. This process is tedious,
time-consuming and prone to errors [4–6]. Therefore, the ability to quickly, efficiently,
and accurately extract tree parameters is a fundamental requirement for forest resource
surveys [7,8].

Cameras are ideal tools for forest resource surveys and are widely utilized due to
their low cost, portability, and ease of use [9]. By employing cameras for close-range
photogrammetry (CRP) on the sample plots [10–12], 3D structural information of the
forest can be obtained through methods such as spatial forward intersection and structure
from motion (SfM) [13,14]. These approaches allow for the estimation of spatial structure
information such as DBH, CBH, and tree height, thereby greatly improving the efficiency
and accuracy of forest structure parameter estimation [15].
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The estimation of DBH and CBH are the crucial parameters in forest inventory. Var-
ious methods have been proposed to extract DBH from different data types, such as air-
borne laser scanning (ALS), terrestrial laser scanning (TLS), and even smartphone images.
Popescu [16] developed a method using airborne lidar data to assess aboveground biomass
and component biomass for individual trees in forests. Bucksch et al. [17] introduced a
skeleton measurement methodology to extract DBH from forest airborne point clouds,
showing good performance in different scenarios. Bu et al. [18] presented an adaptive
circle–ellipse fitting technique for estimating DBH based on TLS data, correcting errors
caused by basic circle fitting techniques. Liu et al. [5] explored methods for estimating
individual tree height and DBH from TLS data at plot level, showing slight underestimation
of DBH and tree height in complex terrain regions. Zhou et al. [19] used a handheld mobile
light detection and ranging (LiDAR) system to extract DBH in an outdoor environment,
while Corte et al. [20] tested machine learning approaches on unmanned aerial vehicle
(UAV) lidar data for estimating DBH. Kaviriri et al. [21] investigated morphological char-
acteristics, including DBH, in a clonal trial of Korean pine for wood yield selection index
determination. Moreira et al. [22] employed the Hough transform algorithm to extract DBH
from point cloud images generated by oblique photogrammetry. The relative error of the
estimated DBH was 15%, and the RMSE was less than 3.5 cm. However, the photogramme-
try process required strict conditions, specifically at a height of 30 m and an angle of 60◦.
Mokroš et al. [23] evaluated seven different CRP data collection methods for estimating
DBH and found that only four of these methods were capable of generating dense point
clouds suitable for DBH estimation using circle fitting algorithms. The accuracies of these
methods ranged from 4.41 cm to 5.98 cm. The study concluded that future research should
prioritize improving CRP data collection techniques. Popescu et al. [24] developed a voxel-
based LiDAR method to estimate CBH for deciduous and pine trees in the southeastern
United States. Vauhkonen et al. [25] applied Delaunay triangulations and alpha shapes
to estimate tree-level CBH from airborne laser scanning data. Fu et al. [26] focused on
developing nonlinear mixed-effects crown width models for individual trees of Chinese fir,
evaluating stand and tree characteristics for model improvement.

Recent studies have focused on utilizing mobile phone technology for various forestry
applications, including estimating tree parameters, such as DBH and CBH. Clark et al. [27]
assessed the utility of a digital camera for measuring standing trees, highlighting the poten-
tial of digital cameras in tree measurement. Su et al. [28] developed algorithms to estimate
tree position, DBH, and tree height in real-time using a mobile phone with monocular
SLAM technology. This advancement allows for accurate and efficient measurement of tree
parameters using augmented reality (AR) technology. Ferreira et al. [29] utilized digital
camera images for parameter estimation, showcasing the effectiveness of digital analysis
in quantifying tree characteristics. Fan et al. [30] focused on the relationship between tree
height and DBH, introducing algorithms to estimate DBH and tree height in real-time
using mobile phone cameras. Wu et al. [31,32] proposed a passive measurement method
for tree DBH using smartphone cameras, highlighting the potential of machine vision and
photogrammetry technology in tree measurement. Furthermore, Wells et al. [33] evaluated
ground plane detection for estimating DBH in stereo images, emphasizing the importance
of automation in forest operations. Trairattanapa et al. [34] compared different fitting
algorithms for tree DBH extraction using stereo cameras, while Song et al. [35] developed
a handheld device for DBH measurement using LiDAR and deep-learning based image
recognition, showcasing advancements in contactless and automated tree measurement
techniques. Overall, current methods mainly involve capturing multiple images from
different perspectives with a mobile camera over a large scale, indirectly obtaining depth
maps from these multi-view images. However, these methods have high requirements for
image capture positions and still encounter challenges related to the complexity of data
collection and inefficiencies in data processing, particularly in complex forest environments.

To address the challenges of CRP data collection and the efficiency requirements for
forest parameter extraction, particularly for measuring DBH and CBH in forest resource
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surveys, the paper proposes a novel method that employs small motion clips for data col-
lection. By making slight camera adjustments during recording, small motions are induced,
generating a series of images with minimal angle variations. This approach produces a data
format that lies between traditional video and still images. Unlike conventional CRP meth-
ods, small motion clip data collection eliminates the need for additional calibration plates
or extensive camera movements, thereby improving collection efficiency. Smartphones can
be used to capture these small motion clips in forest environments, facilitating feature point
extraction, image registration, depth map recovery, and point cloud reconstruction, achiev-
ing precise DBH and CBH extraction. The proposed method offers a quick and efficient
solution for forest resource surveys, providing valuable insights for the development and
implementation of forest management policies.

2. Materials and Methods
2.1. Study Area

The study area is the urban forestry demonstration base located in Harbin, Hei-
longjiang Province (45◦43′10′ ′ N, 126◦37′15′ ′ E), covering a total area of 43.95 hectares
(hm2) with an elevation ranging from 136 m to 148 m (Figure 1). It is characterized by
a typical temperate continental monsoon climate, with long, cold winters and short, hot
summers, experiencing significant temperature differences between day and night and
distinct seasonal changes. Precipitation is concentrated in the summer and autumn, with
July’s average temperature around 25.9 ◦C and rainfall accounting for 60% of the annual
total. In contrast, January’s average temperature is approximately −18.7 ◦C, with snowfall
being predominant.
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2.2. Collection Data

In the study, 6 sample plots were selected within the study area, each representing a
distinct forest type: Betula platyphylla, Pinus tabuliformis var. mukdensis, Quercus mongolica,
Fraxinus mandshurica, Picea and Pinus sylvestris var. mongolica. The size of each sample plot
is 20 m × 20 m, characterized by uniformly distributed trees, minimal shrub interference,
and sparse herbaceous vegetation. The DBH and CBH of all individual trees within each
plot was measured using a diameter tapes and hypsometers. The reference data for each
sample plot are provided in Table 1.
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Table 1. Sample plot properties.

Plot ID Dominant
Tree Species Mean DBH/cm Stem

Density (Stems/ha) Understory Conditions

1 Betula platyphylla 17.79 725 More miscellaneous wood and
good brightness

2 Pinus tabuliformis
var. mukdensis 27.10 900 Non-miscellaneous tree and

normal brightness

3 Quercus mongolica 16.36 825 Non-miscellaneous tree and
normal brightness

4 Fraxinus mandshurica 33.53 675 Fewer miscellaneous tree and
good brightness

5 Picea 26.38 900 Non-miscellaneous tree and
good brightness

6 Pinus sylvestris
var. mongolica 19.16 900 Non-miscellaneous tree and

good brightness

2.3. Small Motion Clip Data

In this study, we utilized the monocular camera of an iPhone 12 Pro smartphone to
capture small motion clip images of individual trees within the sample plots. The key
specifications of the device are detailed in Table 2.

Table 2. Monocular camera specifications.

Parameters Value

Resolution 3840 × 2160
Frame rate 30 Hz

Maximum Measurement Distance 20 m
Field of View 120◦

Exposure Time 1/4000~30 s
Focal Length x: 3005.0, y: 3002.3

On the day of data collection (11 May 2023), the weather was initially cloudy but
cleared up later, with winds shifting from the southwest to the north at speeds of 3 to 4.
The temperature ranged from 10 ◦C to 25 ◦C. During the image collection process, there
were no pedestrians, and the forest floor was unobstructed, providing good brightness and
visibility, making it suitable for image capture. To ensure more accurate depth images, the
algorithm selected the first 50 frames from each small motion clip for depth calculation,
requiring a frame rate of over 30 frames per second. The duration of each clip was at
least 2 s, avoiding both overexposure and underexposure. The camera was positioned
at an appropriate height and angle to capture the tree roots and branches, with small
motion clips recorded from a certain distance L(m) from the target tree. The distance L(m)
to the target tree was measured using the smartphone’s built-in measurement software
(Figure 2a). During recording, the device was slightly rotated and moved horizontally or
vertically (Figure 2b). In the study, the distance L(m) from the target tree is set to 3 m, with
the camera’s rotation angle approximated within ±45◦, and both horizontal and vertical
movements approximated within 5 cm.

In forest resource monitoring, data collection is typically conducted in plots without
mobile obstacles, such as pedestrians or vehicles. However, fixed obstacles like shrubs and
obstructing trees can be present within these plots. These fixed obstacles can be avoided
by collecting data from different perspectives around the trees, provided that at least one
direction between the camera and the trees is free of obstacles. The proposed algorithm
remains effective under these conditions. It is also important to note that obstacles below
the DBH of 1.3 m can be ignored, as they do not impact the final mapping or the extraction
of DBH and CBH parameters.
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A total of 197 small motion clips were collected, distributed as follows: 29 clips for
plot 1, 36 clips for plot 2, 33 clips for plot 3, 27 clips for plot 4, and 36 clips for plot 5 and 6.

2.4. DBH and CBH Extraction Method Based on Small Motion Clip

The study aimed to extract structural parameters, such as DBH and CBH, from trees
within the sample plots using small motion clips. The key steps in the process include
feature point extraction and registration, depth image recovery from the small motion clips,
point cloud reconstruction, DBH extraction, CBH extraction, and accuracy validation. The
overall technical workflow is illustrated in Figure 3.
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2.4.1. Feature Point Extraction and Registration

Oriented FAST and Rotated BRIEF (ORB) features [36] are widely used descriptors in
computer vision, particularly for feature matching, object detection, and tracking. In corner
detection, ORB utilizes the Features from Accelerated Segment Test (FAST) algorithm to
identify key points, while the Binary Robust Independent Elementary Features (BRIEF)
algorithm [37] is employed for feature description. ORB features are known for their
excellent computational speed and feature matching accuracy, making it especially suitable
for environments with limited computational resources. It has been widely applied in
image stitching, Simultaneous Localization and Mapping (SLAM) and 3D reconstruction.

Traditional feature point extraction algorithms frequently encounter challenges, such
as feature point mismatching and redundancy, largely due to variations in canopy leaf gaps
caused by wind and the repetitive textures of understory trees. To address these issues, the
paper employs histogram equalization using the cumulative distribution function (CDF)
for image preprocessing. Histogram equalization enhances image quality by improving
contrast and detail visibility, which in turn aids in better image visualization. The method
redistributes the grayscale levels of the input image pixels, achieving a more uniform
brightness and improved contrast. The cumulative distribution function is defined by
Equation (1):

f (DA) =
Ld
A0

∫ DA

0
HA(D)dD (1)

where Ld represents the grayscale depth; D denotes the grayscale value of a pixel; A0
stands for the number of pixels; f (DA) is the grayscale value of the corresponding pixel
after histogram equalization of image A; and HA(D) represents the histogram distribution
function of image A.

Traditional ORB algorithms often extract feature points concentrated in texture-rich
areas, leading to feature point redundancy, which negatively impacts pose estimation
and the accuracy of depth images. The more evenly the feature points and the more
layers distributed in space, the more accurately feature matching can express spatial
geometric relationships, resulting in more accurate depth images and extracted forest
structure parameters. To increase the uniformity of feature extraction, the study proposes
using the quadtree method to average and distribute feature points within image layers.

During the feature point extraction process, a pixel p is selected, assuming its bright-
ness is Ip. A threshold T is set and 16 pixels on a circle with a radius of 3 centered on
the pixel p are considered. To ensure the real-time performance of the algorithm, the im-
proved method only selects 4 corner points out of the 16 peripheral pixels as surrounding
points. If the number of surrounding points that meet the brightness condition specified by
Equation (2) exceeds 3, the pixel p can be determined as a feature point. This process
is repeated iteratively, applying the same operation to each pixel, thereby extracting all
feature points in the image.

Ip + T ≤ Ip(Pending test)or Ip(Pending test) ≤ Ip − T (2)

2.4.2. Depth Estimation of Small Motion Clip

In small motion clips, the movement distances between image sequences are minimal,
which simplifies feature point matching but also increases the uncertainty in image depth.
This results in suboptimal point cloud reconstruction when using traditional SfM algo-
rithms. This results in suboptimal point cloud reconstruction when using traditional SfM
algorithms. To address this issue, the study employs the D–U distortion model [38] to cor-
rect for camera distortion and reprojection errors. By assuming initial intrinsic parameters
and distortion coefficients of the camera, bundle adjustment is used to iteratively minimize
reprojection errors. This process refines the camera’s intrinsic and extrinsic parameters, as
well as the corresponding 3D spatial coordinates of the feature points.

With the obtained intrinsic and extrinsic parameters, dense stereo matching is per-
formed using the plane sweeping method. The Winner Takes All (WTA) strategy is then
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applied, which coarsely replaces row-by-row or column-by-column depth values with the
best available depth value, creating an initial rough depth map. To further refine this depth
map, a color image is used as a guide, ultimately leading to the reconstruction of the point
cloud. This approach is designed to improve the accuracy and quality of the reconstructed
3D structure

The study employs the plane sweeping method based on a minimization variance
cost function to generate depth images. The plane sweeping method [39] is a widely used
algorithm in computer graphics for converting 2D graphics into bitmaps composed of
pixel points. The algorithm begins by scanning the graphic from a fixed point along a
straight line, creating a bitmap by scanning line by line and determining the position of
each pixel point.

In the study, the plane sweeping method is applied for depth estimation and the
construction of depth maps. Initially, a plane network is established between the camera
and the object, divided into several small blocks, and scanned along the rows or columns
of the plane. Depth estimation is performed for each small block, followed by smoothing
the depth values to reduce noise. Finally, the depth information from all small blocks is
combined to generate a complete depth image.

During the implementation of the plane sweeping method, a variance-based cost
function is utilized to measure the depth variation between adjacent pixels. The variance-
based cost function is defined as follows:

C = CI + λ(Cδu + Cδv) (3)

CI(u, wk) = VAR
([

I0k(u), . . . , I(n−1)k(u)
])

(4)

Cδu(u, wk) = VAR
([

δI0k
δu

(u), . . . ,
δI(n−1)k

δu
(u)
])

(5)

where Cδu and Cδv are two additional costs introduced to enhance the fidelity of image
edge region matching, corresponding to the horizontal and vertical gradient directions,
respectively. VAR(P) represents the variance of the vector P. Iik denotes the k-th scan depth
of the i-th image. δI

δu indicates the image gradient in the horizontal direction. Similar to Cδu,
Cδv is calculated using the vertical gradient.

2.4.3. Point Cloud Map Reconstruction and Parameter Extraction

The measurement device utilized in this study is a monocular camera, which generates
depth maps containing relative depth values for each pixel. Consequently, scale recovery is
required to convert these relative depth values into absolute measurements. Once the scale
recovery process is completed, a coordinate system is established, as depicted in Figure 4.
Using the pinhole imaging model, the coordinates corresponding to the image points are
calculated, enabling the measurement of the tree’s diameter at any specified height. The
formulas for the pinhole imaging model used in these calculations are provided below:

Xi =
L(xi − cx)

fx
(6)

Yi =
L
(
yi − cy

)
fy

(7)

where Xi and Yi represent the offsets of the image pixel from the camera optical axis, xi and
yi denote the image pixel coordinates, cx and cy are the coordinates of the image center, fx
and fy are the focal lengths, and L(m) is the distance from the shooting point to the tree to
be measured.
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In this study, after acquiring the depth map of the corresponding image, the pixel
coordinates and depth values from the depth map are transformed into 3D coordinates to
generate a corresponding 3D point cloud map. By slicing the point cloud at a height of 1.3 m
above the ground and measuring its diameter, the DBH can be determined. Converting the
depth map into a 3D point cloud map enhances the visualization and accuracy of the forest
model, enabling the direct extraction of tree stem characteristics, DBH, and CBH of the
target trees. This method provides more scientific and effective support for the protection
and management of forest resources.

2.5. Evaluation Indicators

To verify the accuracy of the DBH and CBH extraction method based on small motion
clips under the forest canopy, the DBH is measured using a diameter tape as the measured
value, and the CBH is measured using hypsometers as the measured value. The accuracy of
the observed values was assessed using five metrics: Bias (BIAS), Root Mean Squared Error
(RMSE), Relative Bias (rBIAS), Relative Root Mean Squared Error (rRMSE), and Relative
Error (η). The calculation formulas are as follows:

BIAS =
1
n

n

∑
i=1

(di − dir) (8)

rBIAS =
BIAS

1
n ∑n

i=1 dir
(9)

RMSE =

√
∑n

i=1(di − dir)
2

n
(10)

rRMSE =
RMSE

1
n ∑n

i=1 dir
(11)

η =
1
n

n

∑
i=1

|di − dir|
dir

× 100% (12)

where di, dir are the estimated and measured DBH (cm) or CBH (m) of the i-th tree, respectively.

3. Results

According to the method proposed in the paper for extracting DBH and CBH from
small motion clips, the final point cloud results are displayed in Figure 5. The process begins
by converting each frame of the small motion clip into images, with the original images
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being transformed into grayscale, as shown in Figure 5b. Next, the proposed histogram
equalization preprocessing algorithm is applied to perform grayscale equalization on the
images, as depicted in Figure 5c. Uniform feature point extraction is achieved through the
feature point extraction and quadtree uniformization algorithm, as illustrated in Figure 5d,e.
Subsequently, the D–U model is employed to generate the depth map. The initial rough
depth map is obtained using the WTA strategy, as shown in Figure 5f, and unreliable depth
values are filtered out, as indicated in Figure 5g. The original color image is then used as a
guide image to further refine the depth map, as seen in Figure 5h. Ultimately, a detailed
depth map and the corresponding point cloud are generated, as shown in Figure 5i. The
DBH and CBH measurement results are obtained by performing elevation slicing on the
point cloud.
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3.1. Accuracy Assessment and Error Analysis of DBH Estimation

In the study, the DBH of standing trees was extracted from each set of small motion
clips. A linear fitting analysis was conducted between the measured DBH values (x) and
the DBH values (y) extracted from point clouds. The scatter plot illustrating the fitting
results is presented in Figure 6.
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The R2 values for these sets of one-dimensional linear regression models are 0.949,
0.992, 0.979, 0.971, 0.983, and 0.985, indicating a strong correlation between the measured
DBH data and the DBH data extracted from point clouds. The slopes of the regression
models are 0.942, 0.990, 1.059, 1.001, 1.015, 0.979, with corresponding intercepts of 0.995,
0.007, −1.135, −0.192, −0.819, −0.441, respectively. These results suggest that the DBH
values obtained using the small motion clips extraction method are consistent with those
measured using traditional standard tools, within an acceptable margin of error.

The accuracy analysis of the extracted DBH values for plots 1 to 6 is presented in
Table 3 and Figure 7. The RMSE values of the estimated DBH for the six plots are 0.85 cm,
0.60 cm, 0.70 cm, 0.90 cm, 0.91 cm, and 1.18 cm, with corresponding relative errors of
3.39%, 1.81%, 3.89%, 2.38%, 3.19%, and 5.42%, respectively. As shown in Figure 7, the
close alignment between the measured and estimated accuracies demonstrates that the
DBH extraction method proposed in this study is robust against variations in tree species,
lighting conditions, and understory environments. This robustness ensures the method’s
adaptability to different tree species, varying brightness conditions, and diverse under-
story settings.
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Table 3. Accuracy assessment chart for DBH estimation.

Plot ID BIAS/cm rBIAS/% RMSE/cm rRMSE/% η/%

1 0.05 0.27 0.85 4.76 3.39
2 0.25 0.94 0.60 2.22 1.81
3 0.17 1.03 0.70 4.30 3.89
4 0.14 0.43 0.90 2.70 2.38
5 0.41 1.56 0.91 3.46 3.19
6 0.87 4.55 1.18 6.16 5.42

Mean 0.32 1.46 0.86 3.93 3.35
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3.2. Accuracy Assessment and Error Analysis of CBH Estimation

In the study, the CBH of standing trees was extracted from each set of small motion
clips. A linear fitting analysis was conducted between the measured CBH values (x) and
the CBH values (y) extracted from point clouds. The scatter plot illustrating the fitting
results is presented in Figure 8.

The R2 values for these sets of one-dimensional linear regression models are 0.979,
0.956, 0.959, 0.976, 0.898, and 0.981, indicating a strong correlation between the measured
CBH data and the CBH data extracted from point clouds. The slopes of the regression
models are 0.942, 0.990, 1.059, 1.001, 1.015, and 0.979, with corresponding intercepts of
−0.267, 0.032, 0.034, 0.976, 0.898, and 0.981, respectively. These results suggest that the
CBH values obtained using the small motion clips extraction method are consistent with
those measured using traditional standard tools, within an acceptable margin of error.
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Figure 8. Plots of linear regression fit for CBH. The red line is the regression line of the estimated vs.
measured CBH. The dashed line is the ideal 1:1 relationship line.

The accuracy analysis of the extracted CBH values for plots 1 to 6 is presented in Table 4
and Figure 9. The RMSE values of the estimated CBH for the six plots are 0.19 m, 0.13 m,
0.21 m, 0.18 m, 0.08 m, and 0.21 m, with corresponding relative errors of 4.87%, 2.48%, 5.50%,
2.74%, 1.97%, and 5.58%, respectively. As shown in Figure 9, the close alignment between
the measured and estimated accuracies demonstrates that the CBH extraction method
proposed in this study is robust against variations in tree species, lighting conditions, and
understory environments. This robustness ensures the method’s adaptability to different
tree species, varying brightness conditions, and diverse understory settings.

Table 4. Accuracy assessment chart for CBH estimation.

Plot ID BIAS/m rBIAS/% RMSE/m rRMSE/% η/%

1 0.08 2.10 0.19 5.06 4.87
2 −0.002 0.046 0.13 2.75 2.48
3 0.08 2.69 0.21 7.04 5.50
4 −0.03 −0.62 0.18 3.61 2.74
5 0.02 0.63 0.08 2.52 1.97
6 0.17 4.54 0.21 5.69 5.58

Mean 0.05 1.56 0.17 4.45 3.86



Forests 2024, 15, 1635 13 of 19Forests 2024, 15, 1635 14 of 20 
 

 

a. Betula platyphylla b. Pinus tabuliformis var. mukdensis c. Quercus mongolica

d. Fraxinus mandshurica e. Picea f. Pinus sylvestris var. mongolica
 

Figure 9. Comparison of measured CBH and estimated CBH. 

4. Discussion 
4.1. Impact of Tree Species Characteristics on the Accuracy of DBH and CBH Estimation and 
Error Analysis 

Different characteristics of different tree species can lead to deviations in the estima-
tion of DBH. The trunk of the Pinus sylvestris var. mongolica is deeply fissured with scales, 
and the reconstructed trunk depth map appears serrated (as shown in Figure 10). When 
measuring the DBH, if the measurement is taken at a depression, the value will be lower 
and, if taken at a protrusion, the value will be higher. Therefore, there is some error in the 
DBH extraction algorithm for Pinus sylvestris var. mongolica forests. 

Figure 9. Comparison of measured CBH and estimated CBH.

4. Discussion
4.1. Impact of Tree Species Characteristics on the Accuracy of DBH and CBH Estimation and
Error Analysis

Different characteristics of different tree species can lead to deviations in the estimation
of DBH. The trunk of the Pinus sylvestris var. mongolica is deeply fissured with scales, and the
reconstructed trunk depth map appears serrated (as shown in Figure 10). When measuring
the DBH, if the measurement is taken at a depression, the value will be lower and, if taken at
a protrusion, the value will be higher. Therefore, there is some error in the DBH extraction
algorithm for Pinus sylvestris var. mongolica forests.

In the estimation of CBH, the errors were most significant in sample plot 6 (Pinus
sylvestris var. mongolica) and sample plot 3 (Quercus mongolica). This is primarily due to
the branches’ tendency to extend in a specific direction, making the photo-taking angle
critical. If the branches are concealed directly behind the trunk, the algorithm’s extracted
CBH can differ from the actual measured height, leading to large errors in CBH estima-
tion. Additionally, the broadleaf canopy of the Quercus mongolica is prone to occlusion,
causing misidentification (as shown in Figure 11). In contrast, the Pinus sylvestris var. mon-
golica canopy is slender and elongated, with branches frequently interlacing (as shown in
Figure 10). Although the depth map can analyze the branches’ depth differences to identify
the corresponding trees, the photo-taking angle remains crucial. Therefore, the errors in
CBH extraction are significantly influenced by the characteristics of Pinus sylvestris var.
mongolica and Quercus mongolica forests.
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Overall, the relative error in DBH and CBH for different tree species remains within a
controllable range, and the estimated DBH and CBH values are still reliable.

4.2. Error Distribution and Key Influencing Factors in DBH and CBH Estimation

Additionally, we analyzed the errors associated with different ranges of DBH and
CBH, as shown in Figure 12. The point cloud obtained from small motion clip restoration
is not complete; instead, the cross-sections of the tree trunks appear as semicircles, with the
diameter of these semicircles representing the DBH. The estimation error tends to be smaller
for trees with smaller DBH. This phenomenon can be attributed to the uneven growth of the
tree trunk, influenced by factors such as sunlight exposure and soil conditions, which leads
to an irregular circular shape. The larger the DBH, the longer the tree has been growing,
making this irregularity more pronounced (Figure 12a).
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The estimation errors are more significant for trees with either too low or too high
branch height. For trees with low branches, the branch heights can easily blend with
the understory shrubs, making them difficult to distinguish in the reconstructed point
cloud, which leads to larger errors. On the other hand, trees with high branches often
have canopies that entangle with those of nearby trees, also resulting in increased errors
(Figure 12b).

The proposed method in the study achieves an accuracy close to the traditional
forestry measurement standards. Compared to the SfM algorithm, which requires multi-
angle photography to generate a complete point cloud map of the tree, the DBH and
CBH extraction algorithm proposed in the study is simpler in terms of both operation and
computational complexity.

4.3. Comparison of DBH Extraction Algorithm Accuracy and Efficiency with Existing Methods

Table 5 compares the extraction accuracy and processing time of various photogram-
metric methods for extracting tree DBH, including the algorithm proposed in the paper.
The results reveal that the average relative error of the DBH extraction algorithm proposed
in the study (3.35%) is lower than that of Sun’s [40] spatial forward intersection algorithm
(10.0%), Wang et al.’s [41] SfM algorithm (5.4%), and Su et al.’s [28] SLAM algorithm
(3.59%). This demonstrates that the proposed algorithm achieves comparable or even
superior accuracy in DBH extraction compared to other similar methods.

Table 5. Comparative analysis of DBH with existing algorithms.

Reference Sample Plot
Size/m2

Acquisition
Devices Methodologies Data Type

Average
Image

Acquisition
time/s

Average
Image

Processing
time/s

η/%

The study 20 × 20 Monocular camera
Small motion clip

point
cloud recovery

Small motion
clip 1~2 16 3.35%

Sun [40] 20 × 20 Monocular camera Space Intersection ≥2 60 - 10.0%
Wang et al. [41] 62 × π Monocular camera SfM ≈5 45 322 5.4%

Su et al. [28] 7.5 × π Monocular camera Visual Odometry Ordered image
sequences - - 3.59%
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Compared to other similar algorithms, the DBH extraction method proposed in the
paper is simpler in terms of operational procedures and computational complexity, while
also excelling in both image acquisition and processing. Regarding image acquisition
time, the algorithm improves the feature point extraction method, enhancing its robustness
to changes in image brightness and increasing the success rate of feature point match-
ing. Additionally, the algorithm uses small motion clips which do not require auxiliary
equipment [28] or extensive camera movement for multi-angle shooting [41]. The image
acquisition takes only 1–2 s, making the process highly efficient and straightforward.

In terms of image processing, the use of small motion clips enables depth map calcu-
lation by extracting features, which reduces the need for extensive computational work
typically required during post-processing. The processing time for each tree image is
approximately 16 s, making it more efficient compared to the SfM algorithm. This demon-
strates the effectiveness of the proposed method in reducing both operational complexity
and processing time.

4.4. Comparison with LiDAR-Based Methods

In order to provide a comprehensive evaluation of our proposed method, we have
compared its performance with that of LiDAR-based approaches, which are widely used in
tree studies. This comparison is crucial for understanding the strengths and limitations of
our method relative to LiDAR.

In terms of advantages, our method offers notable cost-effectiveness. The image
acquisition requires only a camera or a mobile phone with a camera, which is considerably
less expensive and more convenient than a LiDAR sensor [42], making it more feasible
for large-scale forest monitoring projects with limited budgets. Additionally, the data
processing for the image-based method is relatively straightforward, whereas LiDAR
typically requires complex algorithms to handle the large volumes of point cloud data [43].

However, our method also has certain disadvantages when compared to LiDAR. One
limitation is accuracy, especially in dense or cluttered forest environments, where LiDAR’s
ability is to penetrate vegetation and generate detailed point clouds [44]. Furthermore,
LiDAR systems generally have a longer effective range compared to cameras, which
restricts the applicability of our method in larger or more distant forest plots [45].

5. Conclusions

The method proposed in the paper for extracting DBH and CBH in forests using
small motion clips allows for the rapid and accurate measurement of these parameters. By
comparing the DBH and CBH extraction results across 6 sample plots with different tree
species, the study analyzed and discussed the sources of errors in the proposed algorithm.
The conclusions are as follows:

(1) To address the issues of large stereo matching errors, long acquisition times and
extensive computational demands for generating 3D point cloud maps in traditional
CRP, small motion clips are employed to estimate image depth, and the feature point
extraction algorithm is optimized to reduce the mismatch rate of feature points. As a
result, the relative error in DBH extraction is reduced to 3.35%, while the relative error
in CBH extraction is 3.86%, achieving accuracy comparable to similar algorithms.

(2) Different tree species can influence errors in DBH measurement. The DBH relative
errors across different sample plots ranged from 1.81% to 5.42%, with Plot 6 exhibiting
the highest accuracy due to the fact that the trunk of camphor pine has deep, scaly
fissures, leading to a jagged depth map of the reconstructed trunk. The overall error
trend indicates a correlation between tree species and extraction accuracy.

(3) The estimation error of CBH is closely related to branch height variability. When
branches are too low, they merge with understory shrubs, making them difficult to
distinguish. When branches are too high, they overlap with nearby tree canopies,
complicating segmentation. Both cases increase estimation errors, especially in plots
with dense vegetation.
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The proposed method has several practical applications. It can be used in large-scale
forest monitoring projects to quickly and cost-effectively assess parameters, offering a more
accessible alternative to expensive equipment like LiDAR. This makes it valuable for forest
resource managers, who need frequent updates on forest conditions. Furthermore, it can
be integrated with UAVs or handheld devices equipped with depth cameras, providing a
flexible solution for data collection in remote or hard-to-access forest areas.

The algorithm proposed in this paper demonstrates the potential of monocular vision
technology in forestry applications. However, compared to the technical regulations for
continuous forest inventory [46], there is still the need for improvement in the accuracy of
forest stand structure parameter measurements. In future research, to address the errors
in DBH and CBH measurements using a monocular vision sensor, we plan to explore
the integration of single-line or multi-line LiDAR with cameras. By integrating multiple
sensors for joint measurements, the algorithm’s errors can be reduced, thereby enhancing
both the feasibility and accuracy of the measurement approach.
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