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Abstract: In the field of forestry ecology, image data capture factual information, while literature is
rich with expert knowledge. The corpus within the literature can provide expert-level annotations
for images, and the visual information within images naturally serves as a clustering center for
the textual corpus. However, both image data and literature represent large and rapidly growing,
unstructured datasets of heterogeneous modalities. To address this challenge, we propose cross-
modal embedding clustering, a method that parameterizes these datasets using a deep learning
model with relatively few annotated samples. This approach offers a means to retrieve relevant
factual information and expert knowledge from the database of images and literature through
a question-answering mechanism. Specifically, we align images and literature across modalities
using a pair of encoders, followed by cross-modal information fusion, and feed these data into an
autoregressive generative language model for question-answering with user feedback. Experiments
demonstrate that this cross-modal clustering method enhances the performance of image recognition,
cross-modal retrieval, and cross-modal question-answering models. Our method achieves superior
performance on standardized tasks in public datasets for image recognition, cross-modal retrieval,
and cross-modal question-answering, notably achieving a 21.94% improvement in performance on the
cross-modal question-answering task of the ScienceQA dataset, thereby validating the efficacy of our
approach. Essentially, our method targets cross-modal information fusion, combining perspectives
from multiple tasks and utilizing cross-modal representation clustering of images and text. This
approach effectively addresses the interdisciplinary complexity of forestry ecology literature and the
parameterization of unstructured heterogeneous data encapsulating species diversity in conservation
images. Building on this foundation, intelligent methods are employed to leverage large-scale data,
providing an intelligent research assistant tool for conducting forestry ecological studies on larger
temporal and spatial scales.

Keywords: forestry ecology; meta-analysis; cross-modal; question-answering; embedding clustering

1. Introduction

Deep learning-based image captioning models represent a relatively mature approach
to cross-modal generation from images to language. Upon inputting an image, these
models can generate a brief description, as illustrated in Figure 1. Such models are trained
on internet data, and the descriptions they generate often fail to meet the specialized
requirements of forestry ecology and do not support follow-up queries. When additional
knowledge or information is sought, these models cannot provide further assistance.
To enable deep learning models to generate specialized descriptions for images in the
field of forestry ecology, it is necessary to construct a dataset for training, which requires
annotating a large number of images with expert knowledge. It is evident that literature on
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forestry ecology provides an excellent interpretation of the image of natural conservation.
However, the task of extracting expert knowledge relevant to specific images from the
literature is immense and surpasses manual efforts, necessitating the use of artificial
intelligence methods. As shown in Figure 2, we propose a deep learning model designed to
extract factual information from natural conservation imagery and learn expert knowledge
from forestry ecology literature. Users can query the model in a question-and-answer
manner to extract the acquired information and knowledge, providing an intelligent tool for
researchers in forestry ecology to leverage large-scale data and conduct scientific research
on broader temporal and spatial scales in less time. When integrating image and language
data, the core scientific problem we face is how to cluster the data effectively to facilitate
knowledge and information extraction through question-answer reasoning. We will now
proceed to discuss this in further detail, starting with the scale of natural conservation
image data.

A scenic view of a 

mountain range with a 

lake in the background.

Deep Learning Model 

for Image Captioning

Figure 1. Examples of generations from image captioning model.
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Figure 2. AI-assisted Meta-analysis.

Images are a crucial component of monitoring data in nature reserves, which can be
spatially categorized into aerial, terrestrial, and ground levels [1]. With the widespread
deployment of cameras in nature conservation and continuous shooting, the volume of
ground-level image data is increasing daily. A single field-deployed camera can capture up
to 40,000 photos per day triggered by events [2], and the number of images from cameras
monitoring areas as vast as tens of thousands of square kilometers for forest fire monitoring
is astronomical [3,4]. Each image from a nature reserve captures visual information of a
specific time and a local area of the earth’s surface, limited by time and space. Although
monitoring, management, and research should be closely integrated, monitoring without
scientific research is insignificant [5]. However, these image data are fragmented, with
relatively limited information, making the research value for auxiliary monitoring and
management limited when studying fixed-point or small-area ground images. Conducting
cross-regional research by aggregating multiple nature reserve image datasets is more



Forests 2024, 15, 1670 3 of 30

conducive to uncovering the scientific value within these data, thereby forming a closed
loop with the monitoring and management of nature reserves, mutually promoting and
developing positively. However, image data from ground-based cameras in nature re-
serves are vast in quantity, diverse in sources, rapidly growing, and involve numerous
species, making the pre-processing workload far beyond the scope of human capability.
Deep learning offers a method to leverage large-scale data with relatively small labeled
datasets, yet this method heavily relies on the quality and quantity of pre-labeled datasets.
Given the massive scale of nature reserve image data and the need for expert knowledge,
labeling these data is costly. For example, a project mentioned in [6] enlisted thousands
of technical volunteers, working for three months, to label 48 species in the image data
from 125 camera traps. By this estimate, labeling 5000 species and 10,000 cameras would
require over 30 million person-months of work. With such labor demands, expanding
this to multiple nature reserve monitoring areas or even globally makes manual labeling
nearly impossible, leading to a dilemma where data remain untapped. In forestry ecology
meta-analyses, image and literature data sources are often combined to conduct studies
such as landmark discovery, species diversity prediction, and habitat analysis. Through
cross-verification of factual information within images and expert knowledge in literature,
further conclusions or predictions are derived [7–11]. During meta-analyses, image and
literature retrieval are frequent and fundamental operations, yet there is a lack of efficient
technical means to search across these two heterogeneous databases. Furthermore, forestry
ecology involves interdisciplinary knowledge integration across biology, environmental
science, and geography, making the classification of the corpus within forestry ecology
literature necessary for improving retrieval efficiency. The knowledge contained within
forestry ecology literature provides ready-made annotations for nature reserve image data,
while the objects of interest within images naturally classify the corpus of knowledge
within the literature. Establishing effective connections between these two data types
could resolve the bottleneck of manual image annotation and enhance the cross-modal
retrieval (for instance, using images to search for text or employing language descriptions
to retrieve images) efficiency for forestry ecology researchers across the image and literature
heterogeneous databases.

To address this challenge, we propose a novel method: cross-modal embedding
clustering (CMEC). This technique employs a dual-encoder (a pair of encoders, one for
image encoding and the other for language encoding) architecture, representing species
images and the knowledge corpus within the literature in a shared vector space aligned
cross-modally, solving the computational problem of cross-modal heterogeneous data.
Building on this, we integrate information from a multi-task perspective, combining image
recognition, cross-modal retrieval, and cross-modal question-answering, designing a multi-
task, cross-modal reasoning model supported mainly by cross-modal clustering with image
factual information as the centroid. Through this cross-modal clustering, images can be
annotated with expert knowledge from the literature. For example, a photograph of a
specific tree species can be annotated with ecological significance, growth patterns, and
other information from forestry ecology literature. Simultaneously, the factual information
within images can serve as natural clustering centers for textual data, aiding in organizing
and retrieving relevant literature.

Our research aims to integrate unstructured heterogeneous data in the field of forestry
ecology, providing intelligent data services for scientific research in this field, and helping
researchers quickly locate relevant content. As illustrated in Figure 2, we first design a
model to parameterize the forestry ecology literature collection and nature reserve im-
age collection. We then use this model to search for the required knowledge or images
through a series of questions. Unlike keyword retrieval, this AI-assisted meta-analysis
method allows researchers to maintain cognitive continuity, improving the efficiency of
knowledge retrieval and organization by eliminating the need to pause, read, organize
the retrieved pages and literature, think about the next search keyword, and frequently
interrupt their train of thought. In this process, the deep learning model acts like a re-



Forests 2024, 15, 1670 4 of 30

search assistant, having pre-learned and organized forestry ecology literature, allowing
researchers to ask questions as needed, and the model infers and answers based on the
learned literature knowledge.

In summary, the main contributions of our research include the following: providing
an effective approach for cross-modal information fusion of conservation image data
and forestry ecology literature; supporting the parameterization of these two types of
heterogeneous and unstructured data, which facilitates the integration of multi-source data
in forestry ecological research; and offering an efficient method for intelligent, large-scale
forestry ecology research, designed to handle cross-regional, long-term time series data.

2. Related Works

Meta-analysis is a statistical method used to synthesize the results of multiple indepen-
dent studies to enhance the reliability and generalizability of conclusions. Its underlying
logic is based on two core principles: first, by aggregating samples from multiple studies, it
increases statistical power and reduces the impact of random errors inherent in individual
studies; second, it quantifies the heterogeneity among study results to explore potential
underlying causes, thereby providing a more comprehensive understanding of the subject
matter [12–14].

The basic steps of a meta-analysis typically include: (1) identifying the research
question and retrieval strategy; (2) conducting a systematic literature search and screening
for eligible studies; (3) extracting key data and assessing study quality; (4) integrating
and analyzing the data using appropriate statistical methods; (5) evaluating heterogeneity
and interpreting the results in the context of their significance. The advantage of meta-
analysis lies in its ability to synthesize a large number of study outcomes, offering more
robust conclusions. However, its limitations include susceptibility to selection bias and
heterogeneity issues, and the interpretation of results depends heavily on the quality of the
included studies [15–17].

In the field of forestry ecology, meta-analysis has gradually become an important
quantitative review tool to reveal the dynamics and changes of complex ecosystems. By
integrating research data across multiple locations and temporal scales, meta-analysis can
uncover patterns related to forest management, climate change, biodiversity conservation,
and more. For example, meta-analyses have enabled scholars to more accurately assess the
correlation between deadwood volume and biodiversity in forest ecosystems [18], the im-
pact of forest management on bird community conservation in Eastern North America [19],
and the effects of fire on soil microbial metabolic quotient [20].

However, conducting meta-analysis in forestry ecology also faces several challenges.
First, research heterogeneity is high; the complexity and diversity of ecosystems often result
in poor comparability across studies [21,22]. Second, data sources are scattered; many
ecological studies are case-based, with inconsistent data collection methods and statistical
analyses, making data integration difficult [23,24]. Additionally, limitations in sample size
and spatial scale may lead to bias, affecting the generalizability of the conclusions [25].
Existing studies often overlook the impact of temporal scales on ecological processes, and
meta-analysis still faces challenges in handling long-term series data [26].

With advancements in artificial intelligence (AI) technology, AI-assisted meta-analysis
aimed at improving efficiency is emerging. The main research methods include AI-assisted
literature search and screening, data extraction, data analysis, and heterogeneity detection,
as well as result interpretation and visualization [27–30]. In terms of cross-modal represen-
tation of image and language data, AI has empowered researchers to handle larger-scale
datasets. For instance, integrating global conservation image data to overcome spatial
limitations and aggregating decades of forestry ecology literature to transcend temporal
constraints. To achieve both, cross-modal representation techniques for images and lan-
guage are essential. CLIP [31] laid the foundation in this field, followed by developments
such as BLIP [32], BEITv3 [33], and COCA [34], establishing the groundwork for cross-
modal representation learning of images and literature. After the model has parameterized
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the information and knowledge from images and literature, it often requires the application
of chain-of-thought techniques (a method that guides AI models to perform reasoning
based on a coherent sequence of logical cues) [35] to facilitate on-demand retrieval through
a question-answering approach.

Literature reviews and meta-analyses are indispensable steps in scientific research. The
more literature reviewed, the less biased the conclusions, and the more images analyzed,
the more comprehensive the facts. The integration of large-scale conservation image
data with forestry ecology literature represents a cross-validation of facts and knowledge,
thereby enhancing the reference value of literature reviews and meta-analyses. Table 1
summarizes the representative literature at key technological milestones relevant to our
proposed method. From this, we can outline the primary statistical approaches for data and
knowledge in the field of forestry ecology, which include: human+algorithm integration,
software management, statistical machine learning, expert systems, unimodal (primarily
language modality) AI-assisted methods, and multimodal AI-assisted methods. AI-assisted
models are further divided into support for statistical analysis and support for reasoning.

Compared with related work, our proposed question-answering cross-modal retrieval
method for forestry ecology and conservation image data achieves the parameterization
of large-scale, heterogeneous(as discussed in this paper, refers to data from different
sources, with different structures, and of different types, which are inherently incompatible),
and unstructured data from conservation images and forestry ecology literature, while
simultaneously improving visual recognition accuracy and literature classification efficiency.
This method is designed to function as an intelligent assistant, enabling researchers in the
field of forestry ecology to harness large-scale data. As a result, they can conduct research
on a larger spatiotemporal scale with less time investment.

Table 1. Key Methodologies and Insights.

Reference Proposed Finding Limitation

Meng et al., 2020 [26]
Long-term forest ecosystem

resilience assessment based on the
DTW algorithm.

Elimination of phenological and
spectral noise by combining the
effects of sudden changes and

gradual transitions.

Focusing solely on remote sensing
indices may lead to the omission
of important dynamic features

due to incomplete data.

Urbano et al., 2024 [23] data management of nature
reserves based on software tools.

structured datasets are organized
for ease of research use. High costs and low efficiency.

Zhu et al., 2023 [24]

Literature meta-analysis
conducted using a machine
learning model guided by

personal experience.

Avoiding statistical biases known
from prior experience.

A limited sample of 148 papers
was analyzed.

Graham et al., 2021 [25]
Crowdsourcing to integrate

expertise from interdisciplinary
groups.

A guiding framework built from
expert knowledge.

Lack of openness and
interactivity.

Roy et al., 2024 [30]
AI-assisted insect biodiversity

monitoring based on visual
analysis.

Automated and intelligent
biodiversity monitoring.

AI tools for single-modality
assistance.

Radford et al., 2021 [31]
Cross-modal representations in

vision-language learning based on
contrastive learning.

A base encoder for cross-modal
alignment.

Lack of cross-modal reasoning
capability.

Wei et al., 2022 [35] Proposal for guiding inference
through introductory prompts.

Guiding models to generate
longer descriptions following

logical cues.

Limited to language-based
single-modality reasoning.

3. Preliminary and Methods

This section primarily explains how we leverage cross-modal clustering as a key
method to design deep learning models from a multi-task perspective. In brief, we project
both textual and visual data into a shared vector space, fuse their features, and then input
the combined representation into a language generation model to generate answers to user
queries. The overall workflow is illustrated in Figure 3. For model training, we constructed
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the NACID dataset based on the iNaturalist 2017 dataset, as shown in Tables 2 and 3, and
further detailed in Table 4. We then compared our proposed cross-modal clustering method
(Figure 4) with image classification methods represented by ImageNet (Figure 5). To ensure
accurate alignment of the image and literature embeddings in the shared space, we trained
a momentum encoder using contrastive learning, as depicted in Figure 6. To guide the
model in question-answering reasoning, we built a corresponding dataset, as shown in
Figure 7. To fully integrate the information from both the literature and image modalities,
we designed a dedicated deep network, as illustrated in Figure 8. The modular structure of
our model during deployment is shown in Figure 9.

Language 

Generator

Table2text

Dataset

Learning to Process Tables

Language 

Generator

Literature

Dataset

Parameterization of 

Literature Datasets

Ve Te

Momentum 
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for Text

Momentum 

Encoder 

for Image

Text

(Ti)

Image

(I)

ITC

Image-Text Pair Dataset

Feature Fusion

Momentum 

Encoder 

for Text

Momentum 
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for Image

Text Component of 
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Image Component 

of the Question
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Language 
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Figure 3. The process of model training and fine-tuning.
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that the regenerative capacity of 
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Long-term studies have shown 

that the regenerative capacity 

of fir is closely linked to soil pH, 

nutrient availability, and the 

competitive dynamics of 

surrounding plant communities.

The density of the fir canopy plays 

a crucial role in regulating 

microclimates within forests, 

particularly by effectively lowering 

ground temperatures during the 

summer months.

With global warming, the 

distribution range of fir trees is 

shifting towards higher 

elevations and more northerly 

regions, posing challenges to the 

stability of global ecosystems.

Figure 4. Visual facts as the centroid for clustering.

Table 2. The category details of the iNaturalist 2017 dataset.

Super Category Category Count Train Images Val Images

Plantae 2101 158,407 38,206
Insecta 1021 100,479 18,076
Aves 964 214,295 21,226

Reptilia 289 35,201 5680
Mammalia 186 29,333 3490

Fungi 121 5826 1780
Amphibia 115 15,318 2385
Mollusca 93 7536 1841
Animalia 77 5228 1362

Arachnida 56 4873 1086
Actinopterygii 53 1982 637

Chromista 9 398 144
Protozoa 4 308 73

Total 5089 579,184 95,986
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Abies 

balsamea

Figure 5. Species name as the centroid for clustering.

Table 3. The instances of the iNaturalist 2017 dataset.

Category Name Image

Asplenium flaccidum

Marmota flaviventris

Rhus aromatica

Strymon istapa
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Table 4. The instances of the NACID dataset.

Annotation Images

A butterfly (Catasticta nimbice) perches on a floss flower (Ageratum
houstonianum). Catasticta nimbice is commonly found in tropical and
subtropical regions of South America, typically active during dawn and
dusk; Ageratum houstonianum is a dwarf shrub with oval or elliptical
leaves, boasting a lengthy flowering period and thriving in warm,
moist climates.

Heterotheca subaxillaris, native to North America, is a perennial herba-
ceous plant belonging to the Asteraceae family. Its leaves are elongated
or lanceolate, and its flowers display a yellow or golden hue. This
species is characterized by its drought resistance, heat tolerance, and
strong adaptability, making it a valuable ornamental plant.

Mesembryanthemum crystallinum, known as the ice plant, is native to
South Africa and is a drought-resistant and salt-tolerant perennial
plant. Its leaves are thick and fleshy, with a gray–green color and
sometimes reddish or purplish edges. The flowers of the ice plant are
white or pink, and they produce hard capsules as fruits. It is suitable
for horticultural beautification.

Myrsine australis, a small evergreen shrub or tree native to New Zealand,
is extensively utilized in horticulture and ecological conservation. Its
leaves typically exhibit an elliptical or lanceolate shape, and the plant
demonstrates rapid growth and high adaptability, yielding red or black
berries upon maturity.

Vm Te

Vm1，Vm2，Vm3  

queue of visual momentum embedings

Text

Encoder

Image

Momentum

Encoder

TextImage

ITC

Ve

Image

Encoder

Image

ITC

Figure 6. The training process of the momentum encoder.

To achieve cross-modal question-answering, we integrated perspectives from multiple
tasks, including image recognition, cross-modal retrieval, and visual question-answering.
By considering the characteristics of large-scale, fragmented conservation image data and
the complexity of cross-disciplinary knowledge integration in forestry ecology literature,
we proposed a novel method that centers cross-modal clustering around factual information
within images. This approach not only enhances the model’s understanding of images (as
reflected in improved accuracy in image recognition and cross-modal retrieval) but also
provides cross-modal validation for meta-analyses in forestry ecology, thereby improving
the interpretability of the model’s outputs. The specific details will be elaborated in
Section 3.2 in conjunction with the construction of the dataset.
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Question:Which type of tree species is 

more likely to dominate in a shaded forest 

understory?  

Options: (A) Shade-tolerant species (B) 

Shade-intolerant species

Autoregressive 

Language Generator

Step2: Shade-tolerant species are adapted to grow under 

the canopy of other trees, where light levels are lower.  

Step1: Tree species can be categorized into shade-

tolerant and shade-intolerant species based on their 

ability to survive and grow in low-light conditions.  

Step5: Therefore, shade-tolerant species are more 

likely to dominate in a shaded forest understory 

because they are adapted to survive in low-light 

environments.  

Final Step:  The answer is detected.

Step3:Shade-intolerant species, on the other hand, 

require high light levels for optimal growth and are often 

found in open or disturbed areas.  

Step4: In a shaded forest understory, where the canopy 

blocks much of the sunlight, the environmental conditions 

favor species that can thrive with limited light.  

Text

Encoder

Image

Encoder

Figure 7. The instances of question-answering.
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Layer Normalization

Feature Split

Image Embeddings

Asymmetric Co-Attn

Connected Attention

×S

×N

Text Embeddings

Figure 8. Deep neuro network for fusion of image and text features.

In summary, we employ a pair of CLIP-based cross-modal encoders to project image
and text data into a shared vector space for unified processing. Once the deep learning
model has been trained to capture the statistical patterns within the data, it can handle
larger-scale datasets, enabling the exploration of forestry ecology literature and images
across longer time spans and broader spatial scales. Furthermore, by leveraging chain-of-
thought techniques, the model can learn to perform reasoning, allowing users to retrieve
the information and knowledge acquired by the model through a question-and-answer
manner. To illustrate how we leverage deep learning techniques for on-demand extraction
of forestry ecology knowledge through question-answering using images and text as inputs,
we have designed a pipeline, as shown in Figure 3, divided into four stages. The content of
forestry ecology literature primarily comprises three data formats: text, illustrations, and
tables. We retained only the text and tables, converting the tables into text for uniform
processing, as depicted in stage 1 of Figure 3. The “Language Generator” in the figure
represents the natural language generator responsible for parameterizing forestry ecology
literature and providing readable natural language output for users. After processing
in stage 1, the Language Generator learns how to handle tables within the literature.
Subsequently, in stage 2, the Language Generator learns all content from the forestry
ecology literature(the literature dataset we used is detailed in Appendix A.3) except for
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illustrations, completing the initial parameterization process. In stage 3, we introduce
image data. To enable the model to process both images and text simultaneously, we project
the data from these two modalities into a unified vector space using a pair of momentum
encoders. These two encoders are trained jointly using a contrastive learning approach,
wherein they are compared to each other during training. The goal of contrastive learning
is to ensure alignment between image-text pairs after vectorization, such as aligning
images of various species with their corresponding textual descriptions after projection
(see Section 3.4 for details). To ensure that the encoders capture the features of the data
rather than the differences between the encoders themselves, we employed a momentum
encoding method. This method allows the encoders to learn from each other’s evolving
process, rather than simply learning the final outcomes. Essentially, this involves taking a
moving average of the encoders’ long-term changes (see Section 3.5 for more details). stage
4 involves training the forestry ecology question-answering model. In this stage, the input
images and text for the question-answering task are first processed by the encoders from
stage 3 to achieve cross-modal information fusion. The fused information is then passed
to the language generator for decoding, producing a natural language output, i.e., the
“answer”, which users can directly read. In summary, the entire process involves the model
autonomously reading forestry ecology literature, projecting images and text in the forestry
ecology domain into a shared vector space for computation, and generating a professional
forestry ecology answer through the model by fusing the cross-modal information of the
input images and text during the question-answering phase.

ResAtt

Text

Encoder

Image

Encoder

GPT-2

Image Component 

of the Question

Text Component of 

the Question

Response

Figure 9. Model Structure During Inference.
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3.1. Problem Definition and Preparation

In this section, we predefine the variables shown in Figure 3 from the perspective of
deep learning and lay the groundwork for the corresponding model design details. The
input question consists of both an image and text. The image is fed into a cross-modal
image encoder to extract features, which are then combined with the corresponding token
sequence of the text and fed into a language model to generate the answer. Let the language
model be denoted as LM, the input image as I, the token sequence of the input text as Ti,
the cross-modal image encoder as Encoderv, and the generated answer as A. Therefore,
the QA (question-answering) process can be expressed as A = LM(Encoderv(I), Ti), as
illustrated in Figure 3 stage 3.

The three main forms of data within the literature include text, images, and tables. To
address this, we performed a two-stage preprocessing on the language generation model,
as shown in stages 1 and 2 in Figure 3. The language model we utilized is GPT-2 [36]. In
stage 1, we fine-tuned GPT-2 following the method proposed in Reference [37]. In stage
2, we trained the language model GPT-2 in an autoregressive manner to parameterize the
literature dataset. The method we propose is implemented by the momentum encoder
shown in stage 3, and its effectiveness is validated through experiments on the question-
answering model shown in stage 4. Specifically, after stage 1, the model gains the ability
to convert tables into text. In stage 2, we fine-tuned the language model with the text and
tables from the literature. At this point, the text and tabular data from the literature are
parameterized into the knowledge of the language model. The next step is how to extract
information on demand in a question-answering manner. To enable the question-answering
model to understand the context formed by images and language, we mapped them into a
shared semantic space. This step is achieved by the momentum encoder shown in stage 3.
To train this pair of encoders, we constructed an image-text pair dataset containing images
of animals and plants along with their corresponding species names and descriptions, refer
to Section 3.2 for details.

3.2. Underlying Logic of NACID Dataset Construction

To ensure that our designed deep learning model can accurately identify species
within images and provide corresponding forestry ecology descriptions, we made im-
provements to publicly available species datasets. Specifically, we utilized the iNaturalist
2017 dataset [38], which consists of 5089 species, with 579,184 training set images and
95,986 validation set images. The sample sizes for each species classification and the distri-
bution of samples in the training and validation sets are presented in Table 2. Examples of
the original sample instances from the iNaturalist 2017 dataset are shown in Table 3.

However, the dataset does not include text descriptions corresponding to the images.
In order to generate text descriptions paired with images we followed the pipeline of Laion
COCO 600 M [39] to curate our Nature Conservation Image-text Pair Dataset (NACID). For
specific details, please refer to Appendix A.4. Sample examples are shown in Table 4.

Training the encoder pair shown in Figure 3 directly on the native iNaturalist 2017
dataset, as illustrated in Table 3, yields cross-modal embedding results as depicted in
Figure 5. This type of embedding is suitable only for image classification. However, to fully
integrate images and literature, a more richly annotated image-text pair dataset, such as
the one shown in Table 4, is required. The challenge lies in determining how the textual
content of forestry ecology literature should be correlated with image content, which is
currently unknown. This uncertainty is the reason for introducing a multi-task perspective,
as language models (e.g., GPT-2) are inherently aware of correlations between textual
data. This serves as the basis for our approach to classifying literature based on factual
information present in images. As the model is applied and receives user feedback, further
refinement of the cross-modal representation clustering, as shown in Figure 4, can be
achieved through expert calibration, leading to clusters centered on factual content within
images. The primary motivation behind our effort to enrich image annotation with more
diverse corpora is to leverage the knowledge embedded in models trained on various tasks
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for cross-modal information fusion. Our objective is to achieve cross-modal clustering
centered on visual facts.

3.3. Cross-Modal Embedding Clustering

Language expression is inherently ambiguous; the same image can be interpreted
differently across various disciplines, and even within the same discipline, different per-
spectives can yield different interpretations. Given that the factual information contained
within an image remains constant, we use this as the centroid (clustering center) to optimize
the cross-modal shared space. Specifically, various interpretations centered around the
same visual information are clustered together. This approach mitigates the impact of
ambiguity on the performance of the forestry ecology question-answering model.

To map the image-text pairs depicted in Table 4 into a shared semantic space, we
utilized a contrastive learning approach to train a pair of encoders. The visual encoder is
responsible for extracting image features, while the language encoder extracts text features.
The purpose of contrastive learning is to bring similar feature points closer together in the
representation space, and conversely, to push dissimilar points farther apart. Specifically,
the text description corresponding to an image serves as a positive sample, while all other
text descriptions act as negative samples. Through training, the model can measure the
degree of match between images and their corresponding textual descriptions. We begin by
elucidating the contrastive learning loss function, followed by a discussion on the design
process of the cross-modal momentum encoder.

3.4. Contrastive Learning Loss Function

For a deep learning model to effectively integrate image data with forestry ecology
literature, the foundation is cross-modal alignment. Specifically, the species information
contained in an image needs to be aligned with the professional terminology of the forestry
ecology field. For instance, the image information of an ice plant needs to be aligned
with the term Mesembryanthemum crystallinum. In this section, our goal is to align the
information of interest within the images to their interpretations in forestry ecology.

Following ConVIRT [40], the image-text contrastive learning loss function (ITC) is
formulated based on InfoNCE [41]. As illustrated in Table 4, assuming there are N pairs
of image-text pairs in the dataset, corresponding to N pairs of vectors, where the vectors
for the image are denoted as V1, V2, . . . , VN and for the text as T1, T2, . . . , TN (an arbitrary
query text). We denote the vector for the i− th image-text pair as (Vi, Ti), where Ti is the
positive sample for Vi, and Tj(j ̸= i) is the negative sample for Vi. We calculate the visual-to-
language loss by multiplying V by T, as shown in Equation (1); and the language-to-visual
loss by multiplying T by V, as shown in Equation (2). Because cross-modal contrastive
learning is asymmetric, we perform vector similarity calculation in two directions. The
contrastive loss for the i− th pair in the image→ text direction:

ℓ
(V→T)
i = − log

exp (SC(Vi, Ti)/τ)

∑N
k=1 exp (SC(Vi, Tk)/τ)

, (1)

where SC(·) is the cosine similarity, i.e., SC(a, b) = a⊤b/(∥a∥∥b∥), and τ is a temperature
hyperparameter. Similarly, an image-to-text loss for a single pair is calculated as follows:

ℓ
(T→V)
i = − log

exp (SC(Ti, Vi)/τ)

∑N
k=1 exp (SC(Ti, Vk)/τ)

. (2)

where k ∈ {1, 2, . . . , N}, while i is a specific value within {1, 2, . . . , N}.
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Finally, the training objective is a weighted sum:

LITC =
1
N

N

∑
i=1

(
λℓ

(V→T)
i + (1− λ)ℓ

(T→V)
i

)
, (3)

where λ ∈ [0, 1] is a hyperparameter to balance vision and language in the total loss
function, and in practice N refers to the batch size.

3.5. Cross-Modal Momentum Encoder

As shown in stage 3 of Figure 3, the role of the pair of encoders is to project the data
features of each modality into a shared space based on their relevance. For example, the
image features of an ice plant should be similar to the descriptions related to Mesembryan-
themum crystallinum in forestry ecology literature, while being marked as unrelated to
descriptions of other species. This is achieved through contrastive learning of the outputs
from the two encoders. However, in practical implementation, the updates of these two
encoders are asynchronous, leading to the model learning the differences between the en-
coders rather than the differences in the data itself. To improve the accuracy of cross-modal
feature comparison, we employ momentum encoding to suppress the update speed of the
encoders, ensuring that the model learns the inherent relevance of the data itself rather
than the discrepancies between the encoders.

CLIP [31] stands as a seminal work in training image-text cross-modal encoders using
the contrastive learning method described in Section 3.4, serving as the foundational model
in this domain. We utilized the rich open-source resources of openCLIP [42] and followed
the momentum encoding concept of MoCo [43] to design our cross-modal momentum
encoder. The visual encoder utilized ViT-B/32 [44], while the language encoder employed
BERT [45]. Both encoders consisted of 12 layers of transformers.

The pre-trained models we employed, including the language generator GPT-2 and
the cross-modal encoder CLIP, were trained on large-scale internet datasets. For instance,
CLIP’s training set comprises 400 million image-text pairs, encompassing a vast array
of prior linguistic knowledge. One result of this is that for the same image, the model
can generate descriptions from multiple perspectives, such as physics, biology, sociology,
and so forth. These descriptions are intertwined in the language representation space,
compounded by the compressed nature of language, which exhibits polysemy across
different contexts. Furthermore, question-answering poses a challenging reasoning task,
presenting significant challenges to generative models.

In our proposed method, the language generation model serves as both an extractor
from the model’s learned knowledge and a crucial human–computer interaction module.
Therefore, enhancing the accuracy of the language generation model is pivotal for on-
demand extraction of parameterized literature.

The contrastive learning described in Section 3.4 is a widely adopted method. How-
ever, when two encoders engage in mutual contrastive learning and one of them exhibits
unstable representation outputs, such as rapid changes in the representation of certain
samples, it leads to the other encoder learning only the differences between the encoders
rather than the differences between the samples themselves. This ultimately causes the
model to converge via shortcuts. The consequence is that the encoders fail to capture
the crucial information in the data, thereby affecting the quality of feature vectors in the
embedding space and the relationships between them.

Therefore, we adopted the momentum encoder concept, as shown in Equation (4):

θ ← mθk + (1−m)θq, (4)

where m ∈ [0, 1) is the momentum hyperparameter. The query encoding θq is updated
based on gradient backpropagation. Typically, m takes a value greater than 0.9, which is
equivalent to taking a moving average of the encoding updates. In other words, over 90%
of the features extracted by the encoder in the next iteration are inherited from the previous
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iteration. This concept enables one of the two encoders engaged in contrastive learning
to generate stable, continuously changing features as pseudo-labels for the other encoder.
And it minimizes the interference of encoder noise on sample features.

Like most deep learning methods, the essence of contrastive learning lies in classi-
fication. The difference between classification tasks lies in whether the centroids are set
manually or based on comparisons between samples. For contrastive learning, the num-
ber of samples determines the number of categories. However, image-text pair datasets
comprise two modalities: images and text. Therefore, the first consideration is whether to
use the image modality or the text modality as centroids. Given that photographs in the
natural world contain factual information, whereas scientific and technological knowledge
in literature is predominantly encoded in text. Considering the high degree of information
compression, polysemy, and diverse perspectives in language, we opt to use images as cen-
troids, enabling knowledge to cluster around facts. Building upon these ideas, we propose
a cross-modal embedding clustering method. The specific steps are outlined as follows:

1. Utilize a pair of ViT-B/32 image encoders to initially classify images in the NACID
dataset. One of the encoders adopts momentum updates and stores its outputs in a
first-in-first-out (FIFO) queue q in chronological order as pseudo-labels;

2. Train the other image encoder using contrastive learning methods based on the
pseudo-labels in q;

3. Train a language encoder using contrastive learning methods based on the pseudo-
labels in q.

Ideally, when extracting features from each sample using contrastive learning methods,
it is preferable to compare it with all samples, i.e., the length of the queue q should equal
the number of samples in the training set. However, as the training set size increases, the
batch size differs significantly from the length of q, making it impractical to train an online
momentum encoder based on contrastive learning. To address this issue, we store the
queue q offline and load it during training, thus decoupling a large queue from a small
training batch. The training method for the cross-modal momentum encoder is illustrated
in Figure 6.

In Figure 6, Ve represents visual embedding, Vm represents visual momentum encod-
ing, Te represents text embedding, and ITC represents the contrastive learning loss function.
Taking q with a length of 4096 and a batch size of 32 during training as an example, in the
training process, the momentum encodings of the 32 samples learned are removed from the
queue according to the FIFO principle, and the newly generated momentum encodings are
added to the queue. The encoder learns samples with semantic consistency in chronological
order, thereby reducing interference caused by encoder fluctuations. This method not only
enhances the quality of feature extraction but also ensures a reasonable distribution of
feature points in embedding space. Continuing, we feed the prepared encoder with visual
and language features extracted from the question part into an autoregressive language
generator. The language generator predicts subsequent expressions based on the input
question encoding.

3.6. Autoregressive Language Generator

We selected an autoregressive language model to learn from forestry ecology literature
and employed a human–machine question-answering format for knowledge extraction.
Specifically, we supplemented the ScienceQA dataset [46] with 2000 forestry ecology visual
question-answering (VQA) samples to train our model to extract knowledge and informa-
tion in a question-and-answer format. An example of our augmented dataset is shown in
Figure 7.

Letting the textual part of the question be denoted as Qt, the image part as Qv, and the
subsequent expressions generated word by word by the autoregressive language model as
w1, w2, . . . , wk, the generation of any word wi(i > 2) is represented as Equation (5).

LLM = log p(wi|Qt, Qv, w1, w2, . . . , wi−1). (5)
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In the context of Figure 7, let Step 1 be denoted as S1, Step 2 as S2, and so forth. Then, the
generation of any macroscopic Step Si can be represented as shown in Expression 6.

LLM = log p(Si|Qt, Qv, S1, S2, . . . , Si−1). (6)

In other words, from the macroscopic perspective of human–computer interaction, autore-
gressive generation proceeds step by step, while from the microscopic perspective, it is
generated word by word.

Due to the large number of pixels required to carry a certain amount of information in
image data, which exhibits sparsity, compared to images, language has a significantly higher
degree of information compression. In the question-answering process, as the language
sequences within the context become longer, sparse visual information is overwhelmed. To
leverage the centroid role of visual representation and improve the accuracy of language
generation model predictions, we performed fusion before feeding the encoded image-text
pairs to the language generation model. For this purpose, we designed a cross-modal
feature fusion deep neural network.

3.7. Cross-Modal Feature Fusion Network

Building on the aforementioned cross-modal representation, we project the images
and text input by the user into a shared space. Before feeding this input into the language
generation model, we perform cross-modal feature fusion to enable the model to generate
a more accurate response based on the input data. Following mPLUG [47], we designed
the cross-modal feature fusion deep neural network as shown in Figure 8.

The primary modules as shown in the middle of Figure 8 include the asymmetric
co-attention block (referred to as AC) and the connected attention block (referred to as
CA), where every S layer of AC is followed by a CA to form a skip-connection module. In
practice, a cross-modal feature fusion network is constructed by stacking N skip-connection
modules. In the AC block, visual features are predominantly considered, while language
features are supplementary. Through multiple residual connections and gradual fusion,
the output comprises visual features integrated with language information. The repeated
residuals enhance the weight of sparse visual information during the feedforward process,
ensuring that visual information remains prominent despite module stacking and increas-
ing language context. In the CA block, visual and language features exchange information
in the feedforward attention network, ultimately yielding fully integrated visual and lan-
guage feature outputs. In practice, these outputs take the form of vector sequences. We
refer to the feature fusion network shown in Figure 4 as ResAtt (residual and attention).

3.8. Cross-Modal Question-Answering Model

The model architecture during usage is illustrated in Figure 9. When the user inputs
an image and text, these inputs are processed by an image encoder and a text encoder,
respectively, to extract their features. These features are then projected into a shared space.
After cross-modal feature fusion, the combined features are fed into a language generation
model (GPT-2) to generate an answer for the user.

3.9. Settings

The experimental setup includes 4 Nvidia RTX 3090 24 G GPUs, with a learning
rate of 1 × 10−4, temperature coefficient of 0.07, loss function coefficient λ set to 0.75,
momentum queue of 4096, the momentum set to 0.999, batch size set to 32 and the AdamW
optimizer [48] chosen for optimization. We conducted further manual optimization on
the NACID dataset proposed in Section 3.2. For forestry ecological question-answering,
we created templates for questions and curated question-answer samples to fine-tune the
model for knowledge extraction in forestry ecology. Additionally, we created a vector
database for the abstract content and BibTeX format data of each document, as detailed
in Appendix A. In summary, to validate the effectiveness of the proposed method and
facilitate comparison with previous approaches, we selected the image classification task
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on the iNaturalist 2017 dataset to test the efficacy of our image encoder. We assessed its
performance by calculating recognition accuracy and compared it with other methods on
this dataset. To evaluate the cross-modal alignment performance of our image encoder
and text encoder, and to facilitate comparison with similar methods, we selected the Cross-
modal Retrieval task on the MS COCO dataset. We employed Recall at K (R@K) as the
standard evaluation metric for retrieval tasks. This metric measures the proportion of
queries where the correct matches are found within the top K retrieved results. A higher
R@K value indicates better performance.

4. Experiments and Results Analysis

In this section, we conducted experiments on standardized tasks using public datasets,
verifying the effectiveness of the basic modules through performance comparisons with
similar models. Specifically, to assess the impact of cross-modal alignment, we performed
species image recognition experiments on the iNaturalist 2017 dataset, as shown in Table 5,
and cross-modal retrieval experiments on the MSCOCO dataset, as shown in Table 6.
This set of experiments aims to verify whether the alignment between images and text is
achieved after projecting them into a shared space using a pair of momentum encoders.
We also conducted multi-species text-to-image retrieval on the NACID dataset, as shown
in Table 7. The purpose of this set of experiments is to validate the clustering of language
descriptions around images in the cross-modal space through cross-modal correlation
search. After validating the fundamental functionality of the model, we performed cross-
modal question-answering experiments on the public ScienceQA dataset and compared our
results with leading models on this dataset, as shown in Table 8. Finally, we demonstrated
the performance of our proposed method in completing cross-modal question-answering
tasks in forestry ecology, as illustrated in Figure 10. The purpose of this set of experiments
is to validate the ability of a pair of momentum encoders and the language generation
module to collaboratively perform question-answering inference.

Table 5. Comparison of image classification on iNaturalist 2017 (%).

Method Top1 Accuracy

MetaFormer [49] 80.4
FixSENet-154 [50] 75.4

SEB+EfficientNet-B5 [51] 72.3
TransFG [52] 71.7

IncResNetV2 SE [38] 67.3
SpineNet-143 [53] 63.6

MetaSAug [54] 63.3
Graph-RISE [55] 31.1

PaMA 82.1

Table 6. Quantitative analysis of cross-modal retrieval on MS COCO (%).

Method Retrieval I2T Retrieval T2I
R@1 R@5 R@10 R@1 R@5 R@10

Oscar [56] 57.5 82.8 89.8 73.5 92.2 96.0
METER [57] 57.1 82.7 90.1 76.2 93.2 96.8
ViSTA [58] 52.6 79.6 87.6 68.9 90.1 95.4

ALADIN [59] 51.3 79.2 87.5 64.9 88.6 94.5
PaMA 60.8 83.8 91.3 75.7 92.6 96.3
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Table 7. Top 3 Cross-Modal Retrieval Instances from Text to Image.

Query

Close-up Images of
Lotus Corniculatus
Flowers Showing
Morphological
Variations.

Interactions between
Lotus Corniculatus and
Pollinators in Its
Natural Habitat.

Lotus Corniculatus
Coexisting with Other
Species.

Top1 Result

Top2 Result

Top3 Result

Table 8. Model Evaluation Results on ScienceQA Test Split (%).

Model NAT SOC LAN TXT IMG NO G1-6 G7-12 AVG

Human [46] 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40
GPT-3.5 [46] 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.17
GPT-4 [60] 84.06 73.45 87.36 81.87 70.75 90.73 84.69 79.10 82.69
LLaMA-
Adapter [61] 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19

MM− CoTBase
[62] 87.52 77.17 85.82 87.88 82.90 86.83 84.65 85.37 84.91

PaMA 95.63 85.84 91.32 93.19 89.37 94.15 93.92 89.62 91.63

4.1. Main Results

We abbreviate the method proposed as PaMA (Parameterization before Meta-Analysis).
To validate the effectiveness of the model, we conducted experiments on standardized
tasks using public datasets and compared them with state-of-the-art (SOTA) models on
the Leaderboard. Firstly, to validate the effectiveness of the image encoder, we performed
image classification tasks on the iNaturalist 2017 dataset [38] and compared them with
SOTA models on the Leaderboard. Secondly, to validate the effectiveness of the cross-modal
encoder, we conducted image-text cross-modal retrieval experiments on the MSCOCO
dataset [63] and compared them with SOTA models on the Leaderboard. Lastly, to validate
the effectiveness of the question-answering model, we conducted experiments on the
ScienceQA dataset [46] and compared them with SOTA models on the Leaderboard.
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What is in the picture?

The PaMA Cross-

Modal Forestry 

Ecology Question 

Answering Model 

Response 2 : Ageratum houstonianum typically 

grows in warm climates, such as the tropical and 

subtropical regions of the Americas, including Central 

and South America, Mexico, and the southern United 

States. They prefer well-drained soil with ample 

sunlight and are commonly found growing in lawns, 

alongside roads, in fields, or among shrubbery.

The PaMA Cross-

Modal Forestry 

Ecology Question 

Answering Model 

Response 3: The growth areas of Ageratum 

houstonianum may attract various species of 

butterflies, depending on the distribution and feeding 

habits of the butterfly species. Some common 

species may include white butterflies from the 

Papilioninae subfamily, as well as other butterfly 

species that may be interested in the nectar or pollen 

of Ageratum houstonianum flowers.

Question 3: What species 

of butterflies are found in 

the areas where Ageratum 

houstonianum grows?

The PaMA Cross-

Modal Forestry 

Ecology Question 

Answering Model 

Response 4:Temperature and precipitation changes 

directly impact the symbiotic relationship between 

butterflies and plants. Higher temperatures can lead 

to mismatches in plant flowering and butterfly feeding 

times, while changes in precipitation affect plant 

health and nectar availability, both of which are 

crucial for butterfly survival. These climatic shifts can 

either strengthen or disrupt their mutual relationship.

Question 4: Please extract 

and summarize the mutual 

relationship between 

butterflies and plants from 

the perspectives of 

hydrology, climate, soil, 

and ecology.

The PaMA Cross-

Modal Forestry 

Ecology Question 

Answering Model 

Response 5:Recent studies on the symbiotic 

relationship between butterflies and plants include 

Boulton et al. (2022) in Journal of Ecological 

Research, which explores mutualistic interactions 

between butterfly species and host plants; Smith and 

Johnson (2021) in Global Ecology and 

Biogeography, examining the effects of climate 

change on these interactions; and Lee et al. (2023) in 

Ecological Applications, discussing how habitat 

fragmentation impacts butterfly-plant relationships. 

These references provide insights into various 

aspects of their mutualistic interactions and 

ecological consequences.

Question 5: Please list 

some references related to 

the symbiotic relationship 

between butterfly species 

and plants.

Response 1: The image contains a butterfly 

(Catasticta nimbice) and a flower (Ageratum 

houstonianum).

The PaMA Cross-

Modal Forestry 

Ecology Question 

Answering Model 

Question 2: Where 

does Ageratum 

houstonianum grow?

Figure 10. A human–machine question-answering instance.

As shown in Table 5, we conducted experiments on the image classification task of
the iNaturalist 2017 dataset, comparing it with the SOTA methods on the leaderboard. The
experimental results show that the image encoder trained using the momentum method
proposed in Section 3.5 achieved a top-1 accuracy higher by 1.7% to 51% compared to
similar methods, demonstrating the effectiveness of momentum encoding.

The performance of the image encoder determines whether image information can be
accurately extracted and expressed in cross-modal question-answering tasks within forestry
ecology. In other words, if the image encoder lacks sufficient accuracy in visual object
recognition and does not possess high discriminative power for species identification within
the domain of forestry ecology, it will not support the cross-modal question-answering
tasks of this study. Comparing our method with similar approaches on standardized
tasks in public datasets can more rigorously validate its effectiveness and performance
level. The results indicate that the image encoder in our proposed method can accurately
identify visual objects in images, ranking among the top methods. The selected iNaturalist
2017 dataset, which includes 5089 species, demonstrates that our proposed image encoder
can distinguish fine-grained visual species targets. In summary, the image encoder in
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our method is capable of encoding visual information for question-answering tasks in
forestry ecology.

As mentioned in Section 3, our proposed method includes a pair of encoders: an image
encoder for extracting visual features and a text encoder for extracting linguistic features.
These encoders project the extracted features from both modalities into a shared space,
aiming to bring similar features closer and push dissimilar ones further apart. To evaluate
the performance of this pair of encoders, a suitable experiment is cross-modal retrieval.
The goal of this experiment is to retrieve similar text from a text dataset given an image or
to retrieve similar images from an image dataset given a text. Higher retrieval accuracy
indicates better performance of the cross-modal encoders. Conducting standardized ex-
periments on public datasets and comparing them with similar methods can both validate
the effectiveness of the proposed method and measure its performance level. For these
reasons, we chose the cross-modal retrieval experiment on the MSCOCO dataset, which has
many comparable methods and a high degree of standardization, to verify the performance
of our proposed pair of cross-modal encoders. The experimental results are shown in
Table 6. PaMA achieved comparable performance to SOTA models on the leaderboard
in both image-to-text and text-to-image retrieval tasks, demonstrating the effectiveness
of our proposed cross-modal momentum encoder. The evaluation metric used is R@K,
which reflects the accuracy of cross-modal retrieval. A higher R@K value indicates higher
retrieval accuracy.

To more intuitively demonstrate the cross-modal retrieval capabilities of the model,
the top 3 retrieval results for conservation image data using forestry ecology descriptions
are presented in Table 7.

The experimental results indicate that the performance of the cross-modal encoders
in our proposed method ranks among the top compared to similar approaches, ensuring
the accuracy of data feature extraction in cross-modal question-answering tasks within
forestry ecology. Specifically, this pair of cross-modal encoders can effectively represent
data from their respective modalities and reflect the correlation between image and text
features through cross-modal representation space embedding. Higher performance of the
cross-modal encoders implies greater accuracy in extracting features from each modality
and in computing cross-modal similarity. As shown in Table 7, the accuracy of cross-
modal retrieval is generally high, although there are instances where errors occur, such
as mistaking Ludwigia alternifolia for Lotus corniculatus. Nevertheless, the cross-modal
alignment between the literature knowledge and the image data are semantically consistent.
In summary, the pair of cross-modal encoders in our proposed method provides robust
support for cross-modal question-answering in forestry ecology.

The experiments above indicate that using fact features within images as centroids for
cross-modal representation clustering in a shared semantic space is feasible. The results
in Table 5 demonstrate that the image encoder can effectively classify image data even
after projecting visual features into the cross-modal space, indicating that the embedding
of image features in space conforms to the distribution of similarities among individual
samples in the image set. The results in Table 6 indicate that after projecting the represen-
tations of each modality into the shared space, the image encoder and text encoder can
accurately calculate their mutual similarity, demonstrating the effectiveness of the proposed
embedding clustering method.

After validating the effectiveness of the cross-modal encoder module, we proceeded
to verify the overall effectiveness of the proposed method, specifically its performance in
executing cross-modal question-answering tasks when all modules are integrated into a
forestry ecology question-answering model. Consistent with the principles of the previous
experiments, we conducted standardized experiments on public datasets. These experi-
ments not only validated the model’s effectiveness but also assessed the performance level
of the proposed method by comparing it with similar approaches.

The scores in Table 8 represent the percentage of correct answers. The questions
in the ScienceQA dataset are divided into several categories, with the publicly available
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leaderboard mainly listing the following question categories: NAT = natural science,
SOC = social science, LAN = language science, TXT = text context, IMG = image context,
NO = no context, G1–6 = grades 1–6, G7–12 = grades 7–12, the term “Avg” represents the
average score across the aforementioned eight categories. Compared to GPT-3.5, PaMA
achieved an average score that was 16.46% higher, with a particularly notable increase
of 21.94% in the IMG category, demonstrating that the proposed method possesses the
capability for cross-modal question-answering.

The performance of PaMA on QA tasks stems from two aspects: effective encoding
and decoding of the model, as well as the effect of orthogonal information superposition.
As seen in the data transformation process illustrated in Figure 9, the raw data are first
extracted for features through an encoder, then pass through a feature fusion network, and
are finally decoded by a language generator. In this encoding–decoding process, ensuring
the effectiveness of both encoding and decoding is crucial for successfully completing the
QA task. From the experimental results, it is evident that our proposed method achieves
this. However, considering the performance of models like GPT-3.5 in the IMG category, as
shown in Table 8, there is a significant difference compared to models incorporating visual
information. What could be the reason for this? Firstly, in terms of model comparison,
our method adopts GPT-2, which is not as proficient in natural language processing as
GPT-3.5. Secondly, all comparisons are made on the same ScienceQA dataset and task; the
difference lies in our model’s incorporation of momentum visual encoding and cross-modal
feature fusion.

How does this difference enable a relatively weaker language model to exhibit better
performance? The primary reason is the effect of orthogonal information superposition.
Because GPT fundamentally involves prediction, as indicated in Equation (5), more known
information leads to lower information entropy and higher prediction accuracy. Further-
more, the information content in the same dataset remains constant. Moreover, since
GPT-3.5 outperforms GPT-2, it can extract more information to a greater extent from the
same dataset. In summary, our method’s ability to significantly surpass GPT-3.5 in the IMG
category is due to effectively introducing information gained from visual features.

From the perspective of cross-modal representation spaces, the effective superposition
of visual and linguistic information depends on two factors. Firstly, whether the encoder can
extract features from data samples to the maximum extent, and secondly, the cross-modal
shared semantic space embedding, as it determines whether the embedding positions of
feature points in the space better reflect the data distribution and their similarities. These
two aspects are precisely addressed by the cross-modal momentum encoder, also known as
cross-modal embedding clustering. In other words, the cross-modal momentum encoder is
an effective method for performing cross-modal embedding clustering.

Then, to what extent does the fusion module ResAtt play a role in the process of
cross-modal information superposition between visual and linguistic features? To address
this, we conducted two ablation experiments.

4.2. Ablation Study

In cross-modal question-answering tasks within forestry ecology, the model needs
to accurately distinguish between species with high intra- and inter-species similarity
in visual information. Additionally, it must align these fine-grained visual details with
specialized forestry ecology knowledge. To more precisely encode image and textual data
in the forestry ecology domain, we optimized the model performance using a momentum
encoder. To evaluate its optimization effect, we replaced the momentum encoder with
two widely used visual encoders and compared their performance with and without
the momentum encoder. This comparison validated the effectiveness of the momentum
encoder and its contribution to the overall model performance. Before guiding the language
model to generate answers for users, we performed cross-modal information fusion on the
input-side visual and language features. To assess its contribution to the overall model
performance, we conducted ablation experiments comparing models with and without the
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cross-modal fusion module. Our ablation experiments were conducted on 6532 samples
that include both textual and image context, and the results of the ablation experiments are
presented in Table 9.

Table 9. Accuracy (%) of different visual encoders with and without cross-modal feature fusion.

Model With ResAtt Without ResAtt

PaMA/ResNet 83.35 79.61
PaMA/CLIP 84.75 81.69

In Table 9, PaMA/ResNet represents replacing the momentum visual encoder with
ResNet [64], PaMA/CLIP represents replacing the momentum visual encoder with CLIP [31],
“with ResAtt” indicates the presence of a feature fusion network, and “without ResAtt”
indicates the absence of a feature fusion network.

Compared to the 89.37% accuracy of PaMA in the IMG column of Table 8, the models
with a feature fusion network in Table 9 experienced a decrease in accuracy of approximately
5% to 8%, while models without a feature fusion network saw a decrease of about 7% to
12%. In the “with ResAtt” column, the relatively lower performance decrease indicates that
our proposed momentum encoder performs better than ResNet and CLIP when the feature
fusion network is retained, highlighting the higher quality of visual features extracted
by momentum-based contrastive learning methods. In the “without ResAtt” column,
the relatively larger performance decrease shows that removing both the visual encoder
and the feature fusion network leads to greater performance drops, demonstrating the
indispensability of both the momentum encoder and the feature fusion network.

Moreover, the reasoning chain in the question-answering task is relatively long, result-
ing in a lengthy textual context. In such cases, our proposed feature fusion network with
visual residual connections is more suitable for integrating visual and language features
within extended textual context, thereby effectively reducing uncertainties during the
language model’s prediction process.

4.3. Qualitative Analysis of Forestry Ecological Question-Answering

A human–machine question-answering instance using PaMA, as shown in Figure 10.
The Response1 in Figure 10 illustrates the effective cross-modal alignment achieved

after projecting visual and language features into a shared space. This alignment is demon-
strated by the accurate interpretation of image-text pairs created for forestry ecology on the
NACID dataset during the inference process. Furthermore, it indicates that the embeddings
of feature points conform to the original similarity distribution of the dataset, thereby
proving the effectiveness of the image encoder and text encoder in embedding clustering.

Responses 2–5 demonstrate the process by which the model extracts knowledge from
the literature to respond to user queries. This experimental result indicates that PaMA’s
language generation module can accurately predict subsequent text based on preceding
text and output fluent natural language. On the other hand, this also demonstrates the
effectiveness of our proposed method, which utilizes factual information from images as
centroids for cross-modal embedding. In terms of PaMA’s model structure, two designs
are crucial to achieving this effectiveness. First, the ResAtt module introduces residual
connections for visual features, ensuring that visual information continually contributes
to enhancing predictions in the language module during question-answering processes,
rather than being overshadowed by increasingly lengthy language sequences. Second, the
invariant factual information contained within images ensures invariance of clustering cen-
troids in visual and language embeddings within the shared semantic space. This approach
avoids issues such as centroid drift caused by linguistic ambiguity, which could lead to
chaotic or illusory language generation in single-modality question-answering tasks due to
high uncertainty [65]. The effectiveness of our proposed cross-modal momentum encoder
ensures the quality of feature extraction and embedding in the shared semantic space,
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enabling orthogonal information superposition across modalities and reducing uncertainty
during the language generation process, thereby improving model performance.

Reference [62] proposes a two-stage framework that first infers the rationale and then
the answer, allowing the answer inference process to leverage cross-modal information
provided by the rationale, resulting in more accurate answers. Reference [46] presents a
method that first uses an image captioning model to map images to text, then employs
this text to drive a language generation model for inference. This approach leads to in-
formation loss from the image data and lacks a shared cross-modal representation space,
resulting in insufficient or inaccurate mutual information representation and computa-
tion. From the combined analysis of these two references, it is evident that cross-modal
question-answering is a reasoning process that integrates vision and language, grounded
in cross-modal representation space. These representations enable accurate and effective
mutual information computation from data of different modalities. The rationale guides
the reasoning process and plays a crucial role in enhancing the accuracy of cross-modal
question-answering, as demonstrated in Reference [62] and our proposed method. Further-
more, the experimental comparison results shown in Table 8 indicate that our proposed
cross-modal embedding clustering method performs better, demonstrating the effectiveness
of our approach.

Admittedly, our proposed method also has its limitations. From the perspective of
the model, its computations and outputs are black-box in nature, lacking interpretability.
This makes it challenging to rigorously validate the reliability of the model’s output during
practical applications. From the perspective of training data, the public datasets used for
model testing do not cover all scenarios in forestry ecology question-answering. Specifi-
cally, the datasets employed in the experiments, such as iNaturalist 2017, MSCOCO, and
ScienceQA, do not share the same distribution as the data encountered in actual forestry
ecology question-answering tasks. Even with the improvements made to the iNatural-
ist 2017 dataset by expert annotation as described in this study, it is still impossible to
cover all real-world situations. Feeding such manually annotated data into AI models
extends the subjective judgments of human experts, rather than creating universally ap-
plicable intelligent models. From the perspective of the tasks used for testing (such as
image classification tasks and cross-modal retrieval tasks mentioned earlier), the predefined
input-output relationships and evaluation standards constrain the ultimate behavior of
the model. These constraints and evaluations are difficult to align with the conditions
encountered in practical applications. The primary limitation of the multi-task perspective
is that different tasks exhibit varying degrees of data fitting. Specifically, this manifests
as the model overfitting on some tasks while underfitting on others. If a particular task
leads the model to learn noise rather than meaningful features, it can further deteriorate
model convergence. Moreover, balancing multiple tasks relies on empirical adjustments
of a limited set of hyperparameters, which further increases the model’s uncertainty.
In summary, our research has limitations and biases in terms of interpretability, dataset
distribution, and task design.

5. Discussion

We propose a method for extracting information and knowledge from forestry ecology
literature and nature conservation images through a question-answering framework. This
approach leverages cross-modal clustering, dataset construction, and chain-of-thought
techniques to train a language model that integrates species-related visual data with
forestry ecology literature, generating user-relevant answers based on logical reasoning.
Experimental results on the standardized tasks of the ScienceQA dataset demonstrate that
our method improves performance in visual question-answering tasks by 21.94 percentage
points compared to GPT-3.5, validating the effectiveness of the proposed approach. Feature
extraction and classification form the foundation of deep learning models, and to this end,
we optimized our cross-modal encoder from a multi-task perspective. We conducted image
recognition and cross-modal retrieval tasks on the iNaturalist 2017 and MSCOCO datasets,
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respectively. The experimental results show that our encoder outperforms similar methods,
further validating the effectiveness of multi-task optimization for cross-modal encoders.

The interdisciplinary nature of the model provides an advanced decision-support tool
for forestry practitioners and policymakers. Practitioners can extract relevant insights for
sustainable forestry management, while policymakers benefit from evidence-based recom-
mendations derived from complex ecological datasets. The integration of deep learning
models with traditional ecological theories elevates the accuracy of ecological modeling.
The model could be extended to estimate the value of ecosystem services (e.g., carbon
sequestration, water filtration) by mapping forest health and ecosystem functions across
diverse temporal and spatial scales. This is critical for establishing economic incentives for
conservation. The existing model relies on static datasets, meaning it cannot dynamically
update based on new data or user feedback after training. This makes it less adaptive to
evolving ecological patterns, new research findings, or shifts in user information needs.
Online learning allows the model to continuously refine its parameters in response to
real-time data and interactions [66,67]. This enables the model to stay current with the
latest ecological data and scientific literature, making its predictions and retrievals more
relevant and timely. For example, if new satellite imagery shows sudden changes in forest
cover, the model can quickly adjust its outputs to reflect these updates. The model may be
prone to biases, especially if the training data are skewed toward specific regions, species,
or ecological conditions. This limits its generalizability across diverse ecosystems and
climates. By incorporating online learning, the model can gradually incorporate diverse
datasets over time, learning from new data sources as they become available. This helps
mitigate initial biases by ensuring the model is exposed to a broader range of ecological
conditions, leading to improved generalization across different ecosystems. The static
nature of the current model may not fully align with the dynamic needs of practitioners
and policymakers, whose decisions are influenced by changing environmental, economic,
and social conditions. With the ability to learn and adjust in real-time, the model can better
support real-world decision-making. Practitioners can interact with the model, feeding
it new information or datasets specific to their local context, which allows the model to
generate more customized and actionable insights. This is particularly useful in a context
like forest management, where conditions can change rapidly due to factors like climate
variability or deforestation. The model’s predictions are based on pre-trained patterns and
may struggle to adapt to unseen or novel ecological phenomena, especially in regions with
limited historical data. Online learning will enhance the model’s predictive capabilities by
allowing it to adapt to novel data in real-time. For instance, when faced with unfamiliar
forest conditions due to unexpected environmental changes, the model can quickly adjust
its predictions as new data streams in. This leads to more accurate forecasts of forest
dynamics, species distributions, and biodiversity changes. The model lacks a mechanism
to incorporate user feedback, meaning any misclassifications or irrelevant results cannot
be corrected through interaction. The integration of reinforcement learning or other user-
centered feedback mechanisms will allow the model to learn from user interactions. This
creates a feedback loop where users can correct or guide the model’s responses, improving
the accuracy of future interactions. Over time, this leads to a more personalized and respon-
sive model that better caters to the specific needs of different stakeholders, whether they
are researchers, forest managers, or policymakers. In the domain of forestry ecology, where
environmental conditions change (e.g., due to climate change or deforestation), models that
adapt to new data through meta-learning [68] can provide more reliable and up-to-date
predictions, supporting the need for further research in this direction.

6. Conclusions

Expert knowledge in forestry ecology literature offers the most accurate interpretation
of conservation image data, while factual information contained in images naturally serves
as the clustering center for such knowledge. We first employ a pair of encoders to project
images and language into a shared vector space through cross-modal alignment. Consider-
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ing the complexity of question-answering reasoning, we organize the logical relationships
between visual information and literature knowledge from a multi-task perspective, opti-
mizing the shared vector space embeddings. Experimental results demonstrate that our
proposed cross-modal embedding clustering, which uses factual information from images
as the clustering center, is an effective cross-modal classification method for the intricate
species and complex forestry ecological knowledge. By adopting a multi-task perspective
and focusing on the quality and distribution of cross-modal embeddings, systematic op-
timization can effectively enhance the performance of cross-modal question-answering
models in forestry ecology.

Forestry ecological research is highly dependent on scale. As the statistical range of
image data expands from a single conservation area to a global scope, as the number of
literature sources grows from hundreds to millions, and as the temporal span extends
from decades to centuries, new discoveries and research findings are bound to emerge.
While researchers have limited time and energy, intelligent models empower us to leverage
large-scale data, providing new tools for conducting extensive-scale forestry ecological
studies. To this end, we attempt to integrate conservation image data with forestry ecology
literature and provide a question-answering interface for on-demand knowledge and
information retrieval, thereby exploring the infrastructure and solutions necessary for
building intelligent forestry ecological big data systems.

Through this study, we propose that parameterization based on deep learning tech-
nologies is an effective method for integrating multimodal monitoring data from forestry
ecological domains such as climate, hydrology, soil, and ecology. This method offers a
solution for merging, analyzing, and statistically processing heterogeneous data, informa-
tion, and knowledge, and is likely to become the foundation for constructing big data and
intelligent infrastructure in forestry ecology.
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Appendix A. Construction and Optimization of Datasets and Databases

Appendix A.1. Optimization of Dataset

With the assistance of ChatGPT-3.5, we crafted short descriptions for each species
object contained within the iNaturalist 2017 dataset’s images. These descriptions were
embedded into the context of the captions generated by BLIP [32] for each image. Conse-
quently, the text descriptions for each image encompass not only the relationships between
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various objects within the image but also include the Latin names of the species and forestry
ecological expertise, as illustrated in Figure 4.

For the ScienceQA dataset, we processed it using ChatGPT-3.5, as shown in Figure A1.

Look at each object. For each 
object, decide if it has that 
property. Potato chips have a 
salty taste. Both objects are 
salty. A soft object changes 
shape when you squeeze it. The 
fries are soft, but the cracker 
is not. The property that both 
objects have in common is salty.

1. Look at each object. 
2. For each object, decide if it has that 
property. 
3. Potato chips have a salty taste. Both 
objects are salty. 
4. A soft object changes shape when you squeeze 
it. The fries are soft, but the cracker is not. 
5. The property that both objects have in 
common is salty.

Rationale Ground Truth Prompts Segmented by ChatGPT-3.5

Figure A1. Rationale ground truth splitting example for the ScienceQA dataset.

The purpose of this processing is to alleviate model hallucinations [62] because natural
language expression is linear, and the semantics of words and sentences are constrained by
context. Inference tasks are inherently difficult, and if the context spans are too long, it is
inevitable that the reasoning process will become chaotic. To address this, we split longer
rationale in the ScienceQA dataset into shorter sequences of sentences. This approach
helps bridge the gap in model learning during reasoning. This step-by-step language
model-based reasoning concept is inspired by chain-of-thought methodology [35].

Appendix A.2. Forestry Ecology Question Templates

After GPT-2 has learned in a self-supervised manner from a literature dataset, it
struggles to perform question-answering tasks smoothly. It requires fine-tuning with a
curated question database to meet the demands of these tasks. Our method begins with
manually curating question-answer pairs, resulting in 1314 curated pairs. Subsequently,
an evaluation algorithm is applied to automatically assess the model’s responses. This
process requires significant effort and professional support. However, based on our current
knowledge, this step is indispensable. Although GPT-2 has assimilated information from
the literature dataset, it does not grasp the logical relationships between question and
answer contexts. It can extract information but fails to recombine internal knowledge
from the literature into new relationships unless the context of the question aligns highly
with what it has learned from the literature dataset. We constructed question templates by
combining the three questions ‘why, what, and how’ with the four keywords hydrology,
soil, climate, and ecology, to extract the knowledge learned by the model from the literature.
Some example question templates are listed as follows:

1. Why is water important in forestry ecology?
2. What are the key factors influencing soil quality in forestry ecology?
3. How does climate change impact forestry ecology?
4. Why is biodiversity crucial in forestry ecology?
5. What are the interactions between water and soil in forestry ecology?
6. How do different climates affect forest ecosystems?
7. Why is understanding soil composition essential for forestry ecology?
8. What are the effects of climate variability on forest biodiversity?
9. How does water availability affect forest regeneration in forestry ecology?
10. Why is studying ecosystem dynamics important in forestry ecology?
11. What are the roles of soil nutrients in sustaining forest ecosystems?
12. How do ecological processes contribute to forest resilience under changing climatic

conditions?
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Appendix A.3. Literature Vector Database

The main sources for downloading literature are Web of Science, Google Scholar, and
arXiv, spanning the years 1970 to 2020 and encompassing a total of 26,544 articles. Before
being input into GPT-2, the textual data undergo several preprocessing steps. These include
removing HTML tags, segmenting sentences, tokenizing words, and removing stop words
and punctuation. The keywords used to index the literature dataset are shown in Table A1.

A total of 26,544 papers were selected through manual screening, representing the
top 10 research areas. The distribution of papers in each field and their respective propor-
tions are presented in Table A2.

Table A1. The Top 50 keywords in forest ecology articles.

Keywords Sorted by Frequency, 5/Line

1–5 forest, diversity, conservation, dynamics, vegetation
6–10 biodiversity, patterns, growth, rain-forest, management

11–15 nitrogen, forests, soil, ecology, communities
16–20 carbon, climate change, ecosystems, disturbance, species richness
21–25 boreal forest, landscape, biomass, model, climate
26–30 fire, abundance, united-states, habitat, temperature
31–35 plants, organic matter, populations, decomposition, climate change
36–40 dispersa, responses, regeneration, tropical forest, land-use
41–45 habitat fragmentation, trees, fragmentation, forest soils, evolution
46–50 succession, deforestation, ecosystem, birds, population

Table A2. The top 10 research areas in forest ecology articles.

Research Areas Articles Number Ratio (%)

1 Environmental Science Ecology 9352 35.23
2 Forestry 3949 14.88
3 Agriculture 2506 9.44
4 Plant Sciences 2408 9.07
5 Zoology 1941 7.31
6 Biodiversity Conservation 1802 6.79
7 Geology 1698 6.40
8 Meteorology Atmospheric Sciences 1096 4.13
9 Physical Geography 1036 3.90

10 Water Resources 756 2.85

To provide relevant literature responses in the question-answering context, we vector-
ized all 26,544 articles and established a literature vector database, with each vector having
a dimensionality of 50,257. The process details are as follows:

1. The vocabulary of GPT-2 consists of 50,257 words;
2. We computed the TF-IDF (term frequency-inverse document frequency) [69] values

for all real words in each article;
3. These values were arranged according to the positions of the corresponding real

words in the vocabulary;
4. This process yielded the feature vectors for the respective articles.

Based on this, during human–machine questioning, literature lists can be pushed
by calculating cosine similarity between the feature vector of the current context and the
literature feature vectors in the database.

Appendix A.4. Details of the Expansion of the iNaturalist 2017 Dataset

We used the iNaturalist 2017 dataset updated on 15 February 2021. The dataset URL
is “https://github.com/visipedia/inat_comp/tree/master/2017 (accessed on 18 August
2024)”. For classification details, see Table 2, and for examples, see Table 3.

https://github.com/visipedia/inat_comp/tree/master/2017
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In order to generate text descriptions paired with images, we followed the pipeline
of Laion COCO 600 M [39] to curate our Nature Conservation Image-text Pair Dataset
(NACID) in four steps: (1) using BLIP L/14 to generate 40 captions for each image in
iNaturalist dataset; (2) ranking them using Open AI CLIP L/14 to select the best 5 captions;
(3) using Open AI RN50x64 CLIP model to select the best one; (4) using a small, fine-tuned
T0 [70] model to roughly repair the grammar and punctuation of the text.

We obtained a dataset consisting of natural images and paired text descriptions, which
are called captions. After that, we used the spaCy [71] method to recognize the predefined
span types related to the categories of animals and plants. Then we followed the pipeline
of entity name replacement [72] to further annotate the entities in captions with the fine-
grained species names supported by the image classification ground truth of the iNaturalist
dataset, such as Heterotheca subaxillar, Ageratum houstonianum, etc. . . Entity definitions are
shown in Table A3, where AML represents animals, and ANT represents plant classification.
Table 4 shows some samples of the final curated nature conservation image-text pair dataset.

Table A3. Applicable metadata for each entity type.

Entity Type Applicable Types of Perturbable Spans

AML <Animal-quantity> (e.g., a dog, two cats)
ANT <Plant-quantity> (e.g., an apple, flowers)
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