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Abstract: In the southern taiga of Siberia, periodic outbreaks of the Siberian moth Den-
drolimus sibrircus Tschetv. have been observed. The outbreaks result in the defoliation of
Siberian fir Abies sibirica Ledeb. and Siberian pine Pinus sibirica Du Tour. stands across
approximately one million hectares, leading to dieback of the affected forests. This is largely
attributable to the inability to promptly identify the onset of the pest population growth in a
timely manner, particularly in the context of expansive forest areas with limited accessibility.
It is feasible to enhance the efficacy of monitoring Siberian moth populations by discerning
stands with the highest propensity for damage and concentrating efforts on these areas.
To achieve this, we employed machine learning techniques, specifically gradient boosting,
support vector machines, and decision trees, training models on two sets of predictors.
One of the datasets was obtained through a field study conducted in forest stands during
the previous outbreak of the Siberian moth (2015–2018), while the other was derived from
the analysis of remote sensing data during the same period. In both 2015 and 2016, the
defoliation was most accurately predicted using gradient boosting (XGB algorithm), with
ROC-AUC values reaching 0.89–0.94. The most significant predictors derived from the
ground data were the proportions of Siberian fir, Siberian spruce Picea obovata Ledeb., and
Scots pine Pinus sylvestris L., phytosociological data, tree age, and site quality. Among the
predictors obtained from the analysis of remote sensing data, the distance to disturbed
forest stands was identified as the most significant, while the proportion of dark coniferous
species (A. sibirica, P. sibirica, or Picea obovata Ledeb.), the influx of solar radiation (estimated
through the CHILI index), and the position in the relief (mTPI index) were also determined
to be important.

Keywords: machine learning; forecasting; taiga; defoliation; Dendrolimus sibiricus; remote
sensing; forest characteristics

1. Introduction
Of the various ecological groups of forest insects capable of outbreaks, the greatest

danger is posed by those that are defoliators. In some cases, the damage they cause leads
to the death of a significant proportion of a forest stand, up to the death of almost all their
host trees [1–6]. The Siberian moth Dendrolimus sibiricus Tschetverikov, 1908 (Lepidoptera,
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Lasiocampidae), is one such insect species. It has been observed that 50% defoliation
of so-called dark coniferous species (including Siberian pine Pinus sibirica Du Tour and
Siberian fir Abies sibirica Ledeb.) by its caterpillars often results in the death of several tens
of percent of the tree layer. In the event of 75% or more defoliation, the forest stand will
typically undergo a complete dieback [7–11]. The outbreaks of D. sibiricus in the taiga zone
of Krasnoyarsk Krai alone affect approximately one million hectares of dark coniferous
forests [12], i.e., forests dominated by P. sibirica, A sibirica, or Picea obovata Ledeb., and have
the potential to result in their complete disappearance over areas spanning several hundred
thousand hectares [10].

In regard to the mitigation of the detrimental effects of defoliation by the Siberian
moth, the advantage of prompt identification of affected sites is evident. Nevertheless,
this is a challenging undertaking in Siberia. In the regions of Siberia that suffer the most
from damage to Siberian pine and Siberian fir forests by D. sibiricus (Krasnoyarsk Krai
and Tomsk Oblast), the areas of Siberian fir or Siberian pine reach 13.72 and 4.21 million
hectares, respectively [13]. The road density in these regions is 0.0137 and 0.0360 km−2,
respectively [14]. Notwithstanding the uneven distribution of both damaged forests and the
transport network, these data indicate that access to potential outbreak spots is extremely
difficult. This, in turn, presents a challenge to the timely detection of an increase in the pest’s
numbers. This situation results in an inadequate level of defoliating pest management in
these forests [15], thereby complicating the planning of management measures [16].

The issue can be partially addressed by identifying, in accordance with specific cri-
teria, those forest stands where the likelihood of a Siberian moth outbreak is the greatest.
Previously published theories of the population dynamics demonstrate the fundamental
possibility of this. In the primary outbreak areas (these are the areas where the population
of the pest increases most rapidly at the beginning of the outbreak and where damage
occurs first [8,17]) of the Siberian moth, which are characterized by the most favorable
habitat conditions, the population density of the pest increases due to the migration of
individuals from adjacent areas [8,10]. The primary outbreak areas are smaller than those
that D. sibiricus defoliates throughout the outbreak [12,18]. This makes the timely detection
of the beginning of an increase in numbers more challenging. However, if a risk assessment
procedure for identifying such areas is developed, it will be possible to survey a relatively
small area to confirm the threat from the Siberian moth, which can be done in a short time
and at the appropriate juncture.

Previously, efforts have been made to study the landscape-ecological confinement of
defoliators outbreak areas, with a view to understanding the influence of spatial hetero-
geneity of landscapes on their population dynamics [19]. For different insect species and
regions, the dependence of damage intensity on the confinement of outbreaks to different
relief elements [16,20–22], soil characteristics [16,21], and forest characteristics [20–22] has
been substantiated. This issue has also been studied for the Siberian moth [8,10,12,18,23–28].
However, these studies did not contribute to the development of a risk analysis system.

Among the features that could prove useful for identifying a potential primary out-
break area of D. sibiricus, the majority of authors cite the forest type. The identifica-
tion of these types is based on the methodology established by Braun-Blanquet [29] and
Sukachev [30], with the classification determined by the prevailing understory plant com-
munity [8,10,18,24–26,28], independent of dominant tree species. In the context of charac-
terizing outbreak areas in mountainous regions, the height above sea level [8,12,18,25,27],
steepness [12,18,27], slope aspect [8,10,12,18,24,27], and the confinement of the forest stand
to a certain part of the slope [8,10,23,24] are of particular significance. The soil drainage is
related to the forest type (i.e., plant community) and the location of the forest site on the
slope. Some authors [8,23] have indicated a direct connection between these factors and the
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probability of damage caused by the Siberian moth. In addition to tree species composition,
which is addressed in one form or another in the aforementioned works, the density and
age of the forest stand were found to influence the probability and extent of damage caused
by D. sibiricus [8,10,24–26,28]. Ultimately, a number of authors posit that the probability of
an outbreak is heightened in forest stands that have been subjected to disturbance (such as
logging, previous defoliation, or fire) or in proximity to such stands [23,24,26].

Despite the comprehensive description of the landscape characteristics preferred by the
Siberian moth, including those of the taiga of Krasnoyarsk Krai [10,25,26,28], the localization
of its primary outbreak areas presents a significant challenge. The first reason is that these
characteristics were considered in isolation from one another. Thus far, no attempts have
been made to construct a risk assessment model based on these characteristics, similar to
the models developed for bark beetles [31–33]. Another reason for these difficulties is that
forest stand characteristics, such as forest type and density, are commonly employed to
assess the risk of an outbreak in a given area [8,10,26]. Reliable data of this kind can typically
be obtained from a comprehensive survey of relatively limited areas [31]. Attempts to
utilize forest inventory data encompassing the entire study region to identify potential
primary outbreak areas of D. sibiricus have frequently resulted in inaccuracies (V.V. Soldatov,
personal communication).

As the most practical solution, we propose a transition from the utilization of data that
can only be obtained through comprehensive field studies to the incorporation of remote
sensing (RS) data as predictors [31]. The principal objective of this study was to evaluate
the precision of risk assessment models constructed using machine learning to predict
the location of primary outbreak areas of the Siberian moth based on RS data. In order to
ascertain whether the constructed models would be applicable across different outbreaks
or whether they were specific to a particular outbreak, it was necessary to compare the
patterns of spatial distribution of the Siberian moth outbreak with the results of previous
studies. To this end, analogous models were constructed utilizing ground survey data as
predictors, and the impact of specific forest site characteristics on the emergence of primary
outbreak areas was investigated.

2. Materials and Methods
2.1. Study Area

The study focuses on dark coniferous forests that have been partially affected by the
outbreak of the Siberian moth between 2015 and 2018 (Figure 1). These forests are situated
within the middle taiga subzone of the eastern part of the West Siberian Plain. From an
administrative perspective, the study area is located within the Yeniseysky District of
Krasnoyarsk Krai.

The study area is characterized by a continental climate, with low winter temperatures
and the stagnation of cold air in river valleys and basins. The absolute minimum air
temperature is −57 ◦C, while the absolute maximum is +37 ◦C. The period during which
the average daily temperature is below −5 ◦C lasts for approximately five months (from
November to March), while the period during which the average daily temperature is
below 0 ◦C lasts for approximately half a year. The frost-free period lasts for 103 days, with
the first frost observed as early as the beginning of September [34]. The average annual
temperature is between −1.5 and −0.6 ◦C, with a growing season average temperature of
13.5–14.5 ◦C [35,36]. The average annual precipitation is 460 mm [34].
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Figure 1. Study area (Yeniseyskoye forest district, Krasnoyarsk Krai).

The zonal vegetation type is taiga. Dark coniferous forests prefer loamy soils as
they are more demanding in terms of air humidity and constant moderate soil moisture.
Coniferous stands, dominated by Scots pine Pinus sylvestris L., occupy sandy and swampy
soils. Large areas are covered by deciduous forests (mainly dominated by birch Betula
ssp.), which usually replaced coniferous forests [37,38]. The outbreak of the Siberian moth
developed in forest stands dominated by Siberian fir and Siberian pine. The first damage
was recorded during the analysis of the RS data in 2015 [39].

2.2. Species Background

The Siberian moth D. sibiricus is one of the most destructive defoliators in Eurasia. The
modern area of this species within Russia encompasses the southern and central taiga as
well as mountain forests, extending from the Middle Volga Region to Sakhalin. Additionally,
it occupies the northern regions of Kazakhstan, Mongolia, China, and Japan [40,41]. Its
outbreaks have been documented in the southern part of the range [41]. In the study area,
pest outbreaks occur approximately once every 15 years [10,42].

Imagoes of this species are observed from late June to early August, with a peak
in numbers occurring in mid-July. The period of egg hatching begins in late July, after
which the caterpillars commence feeding [7,9,41]. The preferred food of the caterpillars
is the needles of various species of Abies, Larix, and some five-needle pines, including P.
sibirica [43,44]. However, in the study area, Siberian fir and Siberian pine forests incur the
majority of damage [10,44]. Typically, this insect species requires two years to complete one
generation [7,9,41]; however, under favorable conditions, the majority of the population
becomes monovoltine [10,41]. In October, the caterpillars embark on their annual search for
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sheltered overwintering sites, which they typically locate beneath a layer of moss or litter.
In some years, the migration to the crowns commences as early as April, with the majority
of individuals arriving in mid-May, coinciding with the melting of the snow. Pupation
occurs in the crowns between June and early July [7,41].

In studies conducted in the mid-twentieth century, the authors highlighted the influ-
ence of topography on the formation of Siberian moth outbreak areas [7,23]. The prevailing
view is that the most favorable conditions for caterpillars wintering on the soil surface
under plant cover or litter are those of good drainage. This is particularly the case in the up-
per parts of hills [7,9,10,41] or slopes [9,10,23,41]. The situation for wintering caterpillars is
significantly more adverse on relief elements where water run-off is challenging [23], which
can be ascribed to their inability to withstand low temperatures in humid conditions [45].

Notwithstanding their cold resistance, the caterpillars of the Siberian moth are
markedly thermophilic. A number of researchers [23,24,26] have highlighted the proximity
of the primary outbreak areas of this species to forest areas that have previously been
disturbed by other factors. This phenomenon may be attributed to a favorable alteration in
the microclimate, which has become warmer and drier [8].

2.3. Obtaining and Preparing Forest Inventory, Forest Cover and Orographic Data

The first set of predictors for modeling was based on ground data, comprising stand
characteristics within the study area. These were represented by a vector layer at the level
of forest compartments, which were defined as forest areas exhibiting homogeneous main
characteristics. The area of these compartments ranged from 1 to 506 ha, with a median of 18 ha.
From this, compartments covered by forest were selected for modeling. A total of fourteen
stand characteristics were identified for inclusion in the modeling procedure (Table 1).

Table 1. The characteristics of the forest compartments, as determined by ground data.

Characteristic What Does Characteristic Specify Unit of Measurement Scale of
Measurement

forest compartment area The area of forest compartments ha ratio

age Average age of dominant tree species year ratio

relative stocking Ratio of the basal area of a stand to the basal area
of a ‘normal’ stand ratio

site quality
Index of potential site productivity expressed by

average height of dominant tree species
compared with ‘normal’ stand

ordinal

soil moisture Index of long-term moisture conditions ordinal

group of forest types Dominance of some ecological group of
understory plant species nominal

share of tree species

Share of the tree species (fir, spruce, Siberian
pine, Scots pine, larch (Larix sibirica Ledeb.),

birch, aspen (Populus tremula L.) or willow (Salix
ssp.)) in the stand’s growing stock

‘unit’; each unit ≈ 10% of
the total growing stock ratio

The groups of forest types were identified based on the species composition of the un-
derstory plant community [29,46,47], which indirectly characterizes a complex of soil
conditions. The group of forest types was a categorical variable and included eight
groups (Table 2).
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Table 2. A brief description of groups of forest types. The predominant size of soil grains is specified
in accordance with ISO 14688-1:2017 [48].

Group of Forest
Types Plants Dominated in Unederstory Layers Soil Fertility Most Typical Soil Humidification

Regime and Grain Size

feather moss Hylocomiaceae poor moderately wet, coarse or medium slit

tallgrass some tall grasses, like species of Heracleum,
Aconitum, Veratrum and others very rich moderately wet, medium slit

shrub Vaccínium ssp. poor moderately wet, from sand to
medium slit

lichen Cladonia and Cetraria species extremely poor dry, sand

sedge Carex macroura Meinsh. rich moderately wet, coarse or medium slit

mixed grass a variety of typical mesophilic forest herbs
without explicit dominants very rich moderately wet, coarse or medium slit

sphagnum Sphagnum ssp. extremely poor extremely stagnant wet, from medium
slit to fine slit

grass-swamp a variety of typical hydrophilic herbs
without explicit dominants extremely poor extremely flowing wet, from medium

slit to clay

The site quality and soil moisture were ordered factors, with six classes ranging from
the most productive to the least productive and five moisture classes, from the driest to the
wettest soil. The proportion of tree species within the tree layer was assigned integer values
between 0 (indicating the absence of species) and 10 (representing absolute dominance) for
each of the eight forest-forming species.

The data were processed in the R 4.0.2 statistical computing environment [49] with the
RStudio 2022.07.1-554 graphical interface [50]. The preliminary processing of the data on
stand characteristics was conducted using the dplyr 1.0.9 [51] and sf 1.0-8 [52] packages.

The second set of predictors comprised derivatives of RS data normalized to a spatial
resolution of 270 m per pixel (EPSG:4326, WGS 84). Two indices were employed to account
for orographic conditions. The first index, the Multi-Scale Topographic Position Index
(mTPI) [53], enables the differentiation of depressions (negative values) and watersheds
(positive values). The second index, Continuous Heat-Insolation Load (CHILI) [54], esti-
mates the radiation balance of sites and takes values from 0 (representing very cold habitats)
to 255 (representing very warm habitats). The aforementioned indices were obtained from
the Google Earth Engine website [55], with a spatial resolution of 270 (mTPI) and 90 (CHILI)
m per pixel. The CHILI data were interpolated to a spatial resolution of 270 m per pixel
using a linear approach.

The sites with high amounts of the Siberian moth host tree species were identified
by remote sensing data analysis as forest stands dominated or co-dominated by dark
coniferous species (Figure 2). This was achieved by utilizing the data from vegetation
maps of Russia [56] with a spatial resolution of 230 m per pixel, which was then refined
to a spatial resolution of 270 m per pixel by the nearest neighbor interpolation method.
The woody vegetation classes that may be regarded as potential habitats for D. sibiricus
were identified as classes 1 (≥80% of the crown area is comprised of spruce, fir, or Siberian
pine) and 10 (the crown area of coniferous and deciduous tree species is represented in
approximately equal proportions). In contrast to the ground data, forests comprising other
coniferous and deciduous species were initially excluded from the processing.
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Figure 2. Schematic representation of the processing of RS data on vegetation cover [56,57].

The areas of forest disturbance from 2005 to 2014 were identified (Figure 2) using the
Hansen map of global deforestation [57], which has a spatial resolution of 30.92 m per pixel.
The data were divided into two sets: one comprising damage occurring five years prior to
the outbreak (since 2010) and the other comprising damage occurring between five and
ten years prior to the outbreak (before 2010). Both data sets were normalized to 270 m
per pixel using nearest neighbor interpolation, with the objective of matching the rest of
the data and excluding small areas of damage from the analysis. Furthermore, a window
filter was applied to the 270 m per pixel data in order to exclude single pixels within a
3 × 3 cell neighborhood. Based on this data, raster layers were constructed in which each
pixel contained the distance to the nearest disturbed forest area (for the period from 2010 to
2014 and for the period from 2005 to 2009).

All forms of interpolation were conducted utilizing the distance function from the Terra
1.6-47 package [58]. The geodata layers were limited to the territory of the Yeniseyskoye
forest district, and within this territory, to the dark coniferous and mixed dark coniferous-
deciduous stands. For the purposes of this study, stands dominated by Scots pine, larch
(Larix sbirica Ledeb.), or deciduous species were excluded from consideration when remote
sensing data were analyzed.
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2.4. Detecting Damaged Stands Using Remote Sensing Data

The dependent variable was the presence of disturbance caused by the Siberian moth
at the commencement of the peak phase of its outbreak. Models were constructed for the
end of 2015 and the end of 2016.

To identify forest areas damaged by the Siberian moth, we employed the use of the
NDVI index, which was calculated using MODIS data (Figure 2). The NDVI values were
extracted from the MOD13Q1 vegetation index product [59] with a spatial resolution of
250 m per pixel. The data set encompassed the period of highest photosynthetic activity
of vegetation (from June to September) in 2014–2018. To identify and exclude from the
analysis any changes in NDVI associated with fires, the MCD64A burned area product [60],
also formed using MODIS data, was used (Figure 2). Thematic MODIS products were
loaded using the LAADS (Level-1 and Atmosphere Archive & Distribution System) service.
A comparable issue pertaining to clear cuts was addressed through the utilization of the
global forest cover loss map [57]. The lands with non-forest vegetation were identified
using a vegetation map developed at the Russian Space Research Institute of the Russian
Academy of Sciences [56] (Figure 2). The RS data were divided into training and test
samples using Landsat images (spatial resolution of 30 m) obtained from the US Geological
Survey website [61]. Visual interpretation was used to identify areas covered with dark
coniferous stands, damaged and undamaged by the Siberian moth (Figure 2).

A comparison of the NDVI values derived from low-resolution (MODIS) and moderate-
resolution (Landsat) satellite imagery was conducted on an individual basis for forest
network plots. To perform such a comparison, the following procedure was undertaken:
(1) the subsets of MODIS/Landsat pixels located within each forest network plot were
selected using GIS tools (Quantum Geographic Information System, version 3.16.3) with
maximum likelihood estimation; (2) low-quality pixels (contaminated by cloud cover)
were excluded; and (3) the mean NDVI values for the forest network plot were calculated
(Figure 2). Consequently, composites were constructed comprising data from MODIS
channels 1 (620–670 nm) and 2 (841–876 nm), in addition to NDVI index values.

The results were exported in the form of polygonal shapefiles (Figure 2). The predictors
were represented as polygons (forest compartments) based on the stand characteristics. In
this set of predictors, the damaged forest compartments were identified by calculating the
area of intersection between the damage and the forest compartment outline for a specific
date. A forest compartment was designated as damaged if RS data indicated a defoliation
percentage of 10% or higher. The defoliated forest compartments were assigned a label of 1,
while all others were assigned a label of 0. For the RS-based dataset, the actual defoliation
data was reduced to a resolution of 270 m per pixel using nearest neighbor interpolation
and labeled similarly (Figure 2).

2.5. Application of Machine Learning Algorithms

The machine learning was conducted using the algorithms embedded in the
mlr3 0.14.1 [62] and DALEX 2.4.2 [63] packages. The ggplot2 3.3.6 package was employed
for the graphical analysis of the results [64].

The classification task was solved using three machine learning algorithms: decision
tree (DT), support vector machine (SVM), and extreme gradient boosting (XGB). The DT
algorithm is relatively straightforward to comprehend, whereas SVM and XGB algorithms
have demonstrated efficacy in addressing a diverse array of challenges, including those
pertaining to land use and language classification [65]. A forest insect damage risk assess-
ment model based on the random forest algorithm demonstrated comparable accuracy to
that of the XGB [31]. However, our preliminary study indicated that the random forest
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model requires inordinate computational resources, which ultimately led to the decision to
discontinue its testing.

The data regarding the number of observations for each year and damage class in the
ground data and RS data are presented in Table 3. To optimize the hyperparameters of the
models, this set of observations was utilized in its entirety, with the exception of SVM, for
which the data volume was reduced by half due to the high computational demands of
this algorithm. The original data set was divided into a training set and a testing set in a
ratio of 80:20. To mitigate the imbalance of classes in the training set, observations were
randomly selected from undamaged stands at a rate 10 times greater than the number of
damaged stands. Subsequently, the number of damaged stands was augmented through
repeated extraction of observations until it reached 50% of the number of undamaged
stands. Consequently, the training set comprised two times less data for damaged stands
than for undamaged ones. The ratio of classes in the test set remained unaltered (Table 3).

Table 3. The data size and class ratio in the datasets prior to upsampling.

Data Year Damage All Data Train Set Test Set

ground data 2015 0 116,545 5340 23,309
ground data 2015 1 668 2670 134
ground data 2016 0 113,615 28,780 22,723
ground data 2016 1 3598 14,390 720

RS data 2015 0 304,535 47,780 60,907
RS data 2015 1 5972 23,890 1194
RS data 2016 0 289,326 169,450 57,865
RS data 2016 1 21,181 84,725 4236

In order to facilitate the analysis, the factors were transformed by one-hot encoder and
the ordered factors were converted into integer values.

The selection of the hyperparameters of the models was conducted on the training
sample using the 4-fold cross-validation scheme. The optimization criterion was the area
under the curve (AUC). This criterion is not contingent on the cutoff threshold, thereby fa-
cilitating a more objective comparison of the accuracy of the algorithms. The optimal values
of the hyperparameters were selected within the specified limits (Table 4) by maximizing
the AUC value calculated on the test sample.

The selection of SVM and XGB hyperparameters to optimize computational efficiency
was conducted in two stages. Initially, the kernel for SVM and the number of trees (nrounds)
for XGB were identified. Subsequently, the remaining hyperparameters were tuned.

All classification algorithms utilized were of the soft variety, predicting the probability
of an observation belonging to a specific class. To transition from probability to class
prediction, a cutpoint was utilized, calculated based on the objective of maximizing the
Youden J-index, as determined by the cutpointr 1.1.2 package [66].

The importance of individual predictors was evaluated through the use of the variable
permutation method (feature_importance function from the DALEX package) [63], which
was applied 50 times for each variable (for detailed description of the procedure see [67]).
Consequently, the greater the decline in the average AUC value, the more pronounced the
impact of the predictor on the accuracy of the model’s prediction [63].
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Table 4. Optimized boundary values for the hyperparameters of three algorithms.

Hyperparameter What Does Hyperparameter Specify DT SVM XGB

Cp form The measure of minimal increasing of
prediction accuracy after splitting 0.001–1

Maxdepth, max_depth The maximum depth of the tree 3–10 3–10

Minbucket Smallest number of observations in a
terminal node 1–100

Minsplit Smallest number of observations in
the parent node 1–100

Kernel Specific algorithm of pattern analysis radial, sigmoid, polinomial
(degree 1 to 4)

Cost The measure of classification hardness 10−5–105 (log-scaled)

Gamma The measure of sample point
influence on classification 10−5–105 (log-scaled)

Nrounds The number of trees 10–600

Min_child_weight The minimum sum of weights of
observations in a child node 1–10

Subsample The fraction of observations sampled
for each tree 0.5–0.8

Colsample_bytree The subsample ratio of columns when
constructing each tree 0.5–0.9

Eta Degree of feature’s weight shrinkage
to prevent overfitting 0.1–0.6

3. Results
3.1. Best Models

The XGB algorithm-based models yielded the optimal results according to the ROC-
AUC maximization criterion. For the test data set, the AUC value ranged from 0.89 to 0.94
(Figures 3 and 4). The hyperparameter values of the best models are presented in Table 5.
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Figure 4. The results of the forecasting of defoliation of forest stands by the Siberian moth Dendrolumus
sibiricus Tschetv. using the XGB algorithm: (a,b) based on stand characteristics for 2015 and 2016,
respectively; (c,d) based on RS data for the same years.

Table 5. The best hyperparameter values for gradient boosting in the classification of forest areas
damaged by the Siberian moth Dendrolumus sibiricus Tschetv.

Hyperparameter 2015, Ground Data 2015, RS Data 2016, Ground Data 2016, RS Data

Max_depth 10 10 8 10
Nrounds 50 200 60 300
Min_child_weight 1.712 6.953 1.252 3.363
Subsample 0.6603 0.6782 0.6053 0.748
Colsample_bytree 0.6254 0.8419 0.8426 0.8021
Eta 0.1453 0.1513 0.1463 0.1063

3.2. Importance of Predictors

When both ground data and RS data are employed in a predictive model, the contri-
butions of the predictors in 2015 and 2016 are distributed in a similar manner (Figure 5).

The most significant predictors, as indicated by the ground data, were the share of
spruce, fir, and Scots pine in the stand’s growing stock, age, site quality, and group of forest
types. In the model trained on 2016 data, a notable contribution was also observed for the
share of aspen (Populus tremula L.) and birch, relative stocking, and forest compartment
area (Figure 5A,B).
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Figure 5. The role of predictors based on ground data (A,B) and RS data (C,D) in forecasting the 
emergence of primary outbreak areas for the Siberian moth Dendrolumus sibiricus Tschetv. In the RS 
data subfigures, distance_5 and distance_10 denote distances to forests that were disturbed from 
2010 to 2014 and from 2005 to 2009, respectively.

In models constructed using RS data, the distance from disturbed stands has been 
identified as the most significant predictor. The role of other predictors, including the 
woody vegetation class (the proxy of host tree species proportion), mTPI, and CHILI 
indices (Figure 5C,D), has also been determined to be noteworthy.

3.3. Distributions of Predictor Values According to the Predicted Classes

The degree of dependence of a forest stand belonging to a specific class (defoliated 
or not defoliated) is contingent upon its species composition (Figure 6). Forest stands 
comprising a minimum of one unit (equivalent to 10% of the stand�s growing stock) of 
Scots pine are rarely classified as damaged (Figure 6D). Similarly, the proportion of aspen 
and birch exceeding one unit is also an unlikely indicator of damage to the forest stand. 
Conversely, an increase in the proportion of fir in a forest stand comprising two or more 
units elevates the likelihood of the model classifying the forest stand as damaged (Figure 
6C). The interrelation between the classification of a forest stand as defoliated and the 
proportion of spruce is close to a binomial distribution, with a maximum of approximately 
four units (Figure 6B). The probability of a forest stand being classified as damaged is 
demonstrably higher within the age range of 100–250 years (Figure 6A). The classification 
outcome is clearly dependent on stand productivity. Damage is most often predicted for 
stands of the third site quality class, and to a lesser extent for the second and fourth (Figure 
6E). Notable differences are observed in the forecast results for different forest type groups 
between 2015 and 2016 (Figure 6F). If, at the outset of the outbreak, damage is predicted 

Figure 5. The role of predictors based on ground data (A,B) and RS data (C,D) in forecasting the
emergence of primary outbreak areas for the Siberian moth Dendrolumus sibiricus Tschetv. In the RS
data subfigures, distance_5 and distance_10 denote distances to forests that were disturbed from 2010
to 2014 and from 2005 to 2009, respectively.

In models constructed using RS data, the distance from disturbed stands has been
identified as the most significant predictor. The role of other predictors, including the
woody vegetation class (the proxy of host tree species proportion), mTPI, and CHILI
indices (Figure 5C,D), has also been determined to be noteworthy.

3.3. Distributions of Predictor Values According to the Predicted Classes

The degree of dependence of a forest stand belonging to a specific class (defoliated
or not defoliated) is contingent upon its species composition (Figure 6). Forest stands
comprising a minimum of one unit (equivalent to 10% of the stand’s growing stock)
of Scots pine are rarely classified as damaged (Figure 6D). Similarly, the proportion of
aspen and birch exceeding one unit is also an unlikely indicator of damage to the forest
stand. Conversely, an increase in the proportion of fir in a forest stand comprising two or
more units elevates the likelihood of the model classifying the forest stand as damaged
(Figure 6C). The interrelation between the classification of a forest stand as defoliated
and the proportion of spruce is close to a binomial distribution, with a maximum of
approximately four units (Figure 6B). The probability of a forest stand being classified as
damaged is demonstrably higher within the age range of 100–250 years (Figure 6A). The
classification outcome is clearly dependent on stand productivity. Damage is most often
predicted for stands of the third site quality class, and to a lesser extent for the second and
fourth (Figure 6E). Notable differences are observed in the forecast results for different
forest type groups between 2015 and 2016 (Figure 6F). If, at the outset of the outbreak,
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damage is predicted almost exclusively for feather moss and sedge stands, then in the
following season, the probability of damage caused by the Siberian moth increases for
forests of tallgrass, mixed grass, and grass-swamp groups of types.
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Figure 6. Distribution of predictor values obtained during the field study in relation to the model
forecast results. (A) mean age of the forest stand, (B) share of spruce Picea obovata Ledeb., (C) share of
fir Abies sibirica Ledeb., (D) share of Scots pine Pinus sylvestris L., (E) site quality, (F) forest type group.

The analysis of RS data indicates that damage is predicted with greater frequency for
areas classified as dark coniferous forests (class 1) than for mixed forest (class 10) (Figure 7A).
The dependence of the forecast outcome on the distance to the nearest disturbed forest
stand is clearly bimodal, particularly in 2016 (Figure 7D). The initial probability peak occurs
at a distance of approximately 2–3 km. The subsequent interval at which the probability of
damage caused by the Siberian moth exceeds the probability of its absence commences at a
distance of approximately 10 km. Additionally, forest sites for which the damage forecast
was positive tend to be situated in moderately warmed areas (CHILI index) on or in close
proximity to watersheds (mTPI index) (Figure 7B,C).
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Figure 7. Distribution of predictor values obtained using RS data in relation to the outcomes of the 
model forecast (A) the proportion of preferred tree species in the stand composition, where class 1 
corresponds to stands dominated by dark coniferous species and class 10 to a near-equal proportion 
of dark coniferous and deciduous tree species, (B) the CHILI index, (C) the mTPI index, and (D) the 
distance to the nearest forest stand that was disturbed five or less years before the Siberian moth 
Dendrolumus sibiricus Tschetv. outbreak).

4. Discussion
4.1. Results of Machine Learning Procedure

The machine learning algorithms employed enabled the accurate prediction of 
damage to forest stands dominated by dark coniferous species by the Siberian moth 
(Figures 3 and 4). The trained models demonstrated efficacy when utilizing both ground 
data (vector data) and RS data (raster data). Tests indicated that gradient boosting, which 
had previously exhibited favorable outcomes in addressing a range of other issues, 
yielded the most precise classification. Models constructed on this foundation can be 
employed to identify forest sites at risk in advance of an outbreak.

Figure 7. Distribution of predictor values obtained using RS data in relation to the outcomes of the
model forecast (A) the proportion of preferred tree species in the stand composition, where class 1
corresponds to stands dominated by dark coniferous species and class 10 to a near-equal proportion
of dark coniferous and deciduous tree species, (B) the CHILI index, (C) the mTPI index, and (D) the
distance to the nearest forest stand that was disturbed five or less years before the Siberian moth
Dendrolumus sibiricus Tschetv. outbreak).

4. Discussion
4.1. Results of Machine Learning Procedure

The machine learning algorithms employed enabled the accurate prediction of
damage to forest stands dominated by dark coniferous species by the Siberian moth
(Figures 3 and 4). The trained models demonstrated efficacy when utilizing both ground
data (vector data) and RS data (raster data). Tests indicated that gradient boosting, which
had previously exhibited favorable outcomes in addressing a range of other issues, yielded
the most precise classification. Models constructed on this foundation can be employed to
identify forest sites at risk in advance of an outbreak.

4.2. Food Availability Variables as Predictors

The most evident aspect pertains to the interrelation between the forecast outcomes
and the species composition of the stands. The probability of classifying a stand as damaged
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based on the proportion of fir in 2015 exhibits a distinct bimodal distribution, with maximal
risk of the damage at approximately three to ten (pure fir stands) units. In the subsequent
year, the distribution becomes more uniform, and the second maximum shifts to nine units
(Figure 6C). This phenomenon can be attributed to a complex interplay of environmental
and historical factors. As the host tree species proportion increases [21,26,68], so too does
the population density of the pest, reflecting common environmental patterns [69]. Siberian
fir is one of the preferred host species for the Siberian moth [45], and an increase in its
proportion within the stand composition results in a growth of food resource amount
for this defoliator. The results obtained are in accordance with the established patterns
for this region [26].

The aforementioned findings are in alignment with the results of the RS data predictor
analysis, which contributed to the model results. The greatest risk of an outbreak is associ-
ated with forest stands dominated by fir, spruce, and Siberian pine in varying proportions
(class 1). Conversely, the probability of classifying mixed dark coniferous-deciduous stands
(class 10) as damaged is significantly lower (Figures 5 and 7A).

The role of the shares of Siberian pine and larch, two other host species of the Siberian
moth, as a predictor is unexpectedly low (Figure 4). This can be attributed to the relatively
small share of Siberian pine (Figure 8G) and, in particular, larch (Figure 8D) within the
forest stands of the study area when compared to fir (Figure 8B). The more common species
primarily determines the amount of food resources.

One impediment to the development of the outbreak is the high proportion of non-host
species [22]. The impact of birch and aspen (Figure 9B,C) on the probability of damage
is particularly evident in 2016 (Figure 4). In addition to being the least favorable host
among the conifers of the study area [45], Scots pine also exhibits significant differences
in its soil requirements when compared to fir and Siberian pine (see Study Area). In the
Yeniseysky District, Scots pine often occurs as the dominant species in pure stands, where
the emergence of Siberian moth outbreaks is precluded (Figure 4).

It is noteworthy that the proportion of spruce, another non-host species, serves as
an effective predictor of damage caused by D. sibiricus (Figure 4), with stands that con-
tain 3–5 units of this species exhibiting the highest likelihood of defoliation (Figure 6B).
This finding is at odds with the results of previous studies [26], which indicated that the
probability of damage decreases significantly with the presence of more than one unit of
spruce in the stand. A potential causal relationship exists between the current situation
and previous Siberian moth outbreaks (see below).

The role of relative stocking as a predictor is relatively minor, yet discernible in 2016
(Figure 5). The probability of damage increases in a nearly linear manner from 0.3 to 0.9 but
reaches zero at 1.0 (Figure 9H). This distribution can be attributed to the observed increase
in needle mass with increasing density. The absence of damage to forest compartments
with a relative stocking of 1.0 is associated with their very small number (Figure 8J). The
number and area of such stands account for less than 1% of the number and area of forest
stands with sufficient food resources for the Siberian moth (the share of fir is greater than
or equal to two units).

There is a considerable discrepancy in the age of stands classified as damaged and
the age of stands that were not affected by defoliation (Figure 6A). The probability of
defoliation is elevated for stands aged 90–100 years and older that have a greater needle
biomass. This is corroborated by the findings from the previous analysis conducted during
the outbreak peak stage [26]; younger stands are primarily damaged by the Siberian moth
during the decline phase of the outbreak [28], but we assessed the risk of damage during
the rise phase.
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Figure 8. Empirical distributions of the predictors for the area under study. For the predictors 
measured on a ratio scale, the mean values are also provided. (A) mean areas of the forest 
compartments; (B) share of Siberian fir Abies sibirica Ledeb. in the stands; (C) the same for spruce 
Picea obovata Ledeb.; (D) the same for larch Larix sibirica Ledeb.; (E) the same for birch Betula ssp.; 
(F) the same for aspen Populus tremula L.; (G) the same for Siberian pine Pinus sibirica Du Tour; (H) 
the same for Scots pine Pinus sylvestris L.; (I) mean tree ages; (J) relative stockings; (K) soil 
humidities; (L) groups of forest types proportions (percents); (M) site qualities. The codes used to 
identify group of forest types: fm—feather moss, gs—grass-swamp, lich—lichen, mg—mixed grass, 
sed—sedge, sf—sfagnum, sh—shrub, tg—tall-grass.

One impediment to the development of the outbreak is the high proportion of non-
host species [22]. The impact of birch and aspen (Figure 9B,C) on the probability of 
damage is particularly evident in 2016 (Figure 4). In addition to being the least favorable 
host among the conifers of the study area [45], Scots pine also exhibits significant 

Figure 8. Empirical distributions of the predictors for the area under study. For the predictors
measured on a ratio scale, the mean values are also provided. (A) mean areas of the forest com-
partments; (B) share of Siberian fir Abies sibirica Ledeb. in the stands; (C) the same for spruce Picea
obovata Ledeb.; (D) the same for larch Larix sibirica Ledeb.; (E) the same for birch Betula ssp.; (F) the
same for aspen Populus tremula L.; (G) the same for Siberian pine Pinus sibirica Du Tour; (H) the
same for Scots pine Pinus sylvestris L.; (I) mean tree ages; (J) relative stockings; (K) soil humidities;
(L) groups of forest types proportions (percents); (M) site qualities. The codes used to identify group
of forest types: fm—feather moss, gs—grass-swamp, lich—lichen, mg—mixed grass, sed—sedge,
sf—sfagnum, sh—shrub, tg—tall-grass.
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differences in its soil requirements when compared to fir and Siberian pine (see Study 
Area). In the Yeniseysky District, Scots pine often occurs as the dominant species in pure 
stands, where the emergence of Siberian moth outbreaks is precluded (Figure 4).

Figure 9. Relationships between some variables. (A) mean age and share of fir Abies sibirica Ledeb.; 
(B) share of birch Betula ssp. and defoliation; (C) share of aspen Populus tremula L. and defoliation; 
(D) humidity and defoliation; (E) site quality and defoliation; (F) forest compartment area and 
defoliation; (G) site quality, humidity and group of forest type; (H) relative stocking of stands with 
share of fir ≥ 2 units and defoliation. Group of forest types: fm—feather moss, gs—grass-swamp, 
lich—lichen, mg—mixed grass, sed—sedge, sf—sfagnum, sh—shrub, tg—tall-grass.
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effective predictor of damage caused by D. sibiricus (Figure 4), with stands that contain 3–
5 units of this species exhibiting the highest likelihood of defoliation (Figure 6B). This 
finding is at odds with the results of previous studies [26], which indicated that the 
probability of damage decreases significantly with the presence of more than one unit of 
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and previous Siberian moth outbreaks (see below).
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Figure 9. Relationships between some variables. (A) mean age and share of fir Abies sibirica Ledeb.;
(B) share of birch Betula ssp. and defoliation; (C) share of aspen Populus tremula L. and defoliation;
(D) humidity and defoliation; (E) site quality and defoliation; (F) forest compartment area and
defoliation; (G) site quality, humidity and group of forest type; (H) relative stocking of stands with
share of fir ≥ 2 units and defoliation. Group of forest types: fm—feather moss, gs—grass-swamp,
lich—lichen, mg—mixed grass, sed—sedge, sf—sfagnum, sh—shrub, tg—tall-grass.

4.3. Possible Role of Historical Circumstances for Risk Assessment

We assume that bimodal distribution of the share of Siberian fir in the damaged stands
(Figure 6C) is associated with the presence of stands that were destroyed by the damage
caused by the Siberian moth in the 1950s and 1990s [10,42]. The occurrence of D. sibiricus
outbreaks is often associated with stands that have previously undergone some degree of
disturbance [23,24,26]. A notable proportion of the damaged stands are in aged forests,
where fir is represented by a few surviving trees that withstood previous defoliation
events, and the remainder of the stand is comprised of non-host species that emerged
during the succession process. Other damage events were identified in younger, pure fir
forests that had not previously been defoliated by the Siberian moth. This assumption is
predicated on two factors. First, the higher average age of stands in which the share of fir is
comparatively small. Second, the distinctly bimodal distribution of fir ages in a number of
cases (Figure 9A).
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A considerable proportion of spruce in the stands that were classified as damaged
(Figure 6B) necessitates interpretation. It is postulated that the results can also be explained
by previous outbreaks of the Siberian moth, which resulted in non-host and less defoliated
spruce partially replacing dead Siberian pine and fir. In the 2015–2016 period, D. sibiricus
defoliated retained or freshly emerged fir trees in these stands for a second time [28].

The risk of damage is significantly influenced by the size of the forest compartment
(Figure 5), as evidenced by the tendency for outbreaks to gravitate towards larger forest
compartments (Figure 9F). In other words, for the Siberian moth, optimal environmental
conditions are created in habitats that are more homogeneous. A similar conclusion was
previously reached for other species of eruptive defoliators – Choristoneura fumiferana
(Clemens) [70] and C. freemani Razowski (=occidentalis Freeman) [71].

The interpretation of the relationship between distance to previously disturbed stands
and defoliation (Figures 4 and 7D) is analogous to that of the forest compartment area.
The influence of these two predictors on the probability of damage caused by D. sibiricus
is partially contingent on the history of stand formation. As a consequence of mortality
during outbreaks and subsequent successions, fragmentation of stands increases [26,72].
On the one hand, conditions conducive to a growth of the Siberian moth populations are
created in more homogeneous forest sites located at a distance from former outbreak areas
with fragmented forest cover. A comparable pattern of damage caused by D. sibiricus to pre-
viously undisturbed forests was observed in the Baikal region [7]. Conversely, fragmented
stands situated in close proximity to previous outbreak areas and other disturbed sites are
conducive to the emergence of new outbreak areas, where a favorable microclimate for the
Siberian moth develops [26].

4.4. Relief- and Soil-Based Variables as Risk Factor

The group of forest types, soil moisture, and site quality index are closely related. The
feather moss and sedge forest type groups, which are most susceptible to damage caused by
the Siberian moth (Figure 6F), exhibit a near-optimal moisture regime (scores 2 or 3) and av-
erage or low productivity (site quality index 3–4) (Figure 9G). While site quality is indirectly
correlated with the habitat suitability for the Siberian moth, the moisture conditions and
ground cover directly influence the overwintering success of its caterpillars. The optimal
conditions for the moth are found in areas with minimal excess moisture [45] and a thick
moss cover [41], which is characteristic of the aforementioned forest type groups [46,73].
This establishes the relatively high predictive value of these three characteristics (Figure 5).
Additionally, it elucidates the correlation between classification results and mTPI values
(Figure 5). The distribution of mTPI values indicates that the risk of damage caused by the
Siberian moth is heightened on elevated, drained relief elements (Figure 7C).

The contribution of the CHILI index, which characterizes incoming solar radiation,
is relatively minor in comparison to other predictors derived from RS data and is only
comparable to mTPI. Nevertheless, its role as a predictor is noteworthy (Figure 5). The
distribution of CHILI values within stands classified as damaged and undamaged was
analyzed, and it was found that the probability of defoliation is somewhat higher at CHILI
values of approximately 120–130. In regions with lower (CHILI < 120) and higher (CHILI >
130) CHILI values, the risk of damage is lower (Figure 7B). This result is in accordance with
the findings of the modeling of the dependence of the occurrence of D. sibiricus outbreaks
on weather conditions. The analysis of this model demonstrated that both excess and
deficiency of heat act as impediments to the occurrence of outbreaks [74].
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5. Conclusions
Of the machine learning methods employed, gradient boosting (XGB algorithm)

demonstrated the greatest efficacy in predicting the spatial location of stands defoliated by
the Siberian moth. The ROC-AUC values of the trained model reached 0.89–0.94, depending
on the year and data set.

The work of the models is well interpreted from the perspective of the ecology of D.
sibiricus. Among the most significant are predictors that delineate the feeding grounds. In
the case of ground data, this encompasses the proportion of host and non-host tree species
(e.g., Siberian fir and Scots pine). In the case of RS data, this pertains to the vegetation class.
Other significant predictors are observed to form local conditions (position in the relief,
estimated using the mTPI index) or reflect them. Among the latter, the most significant
are the group of forest types (a simplified characteristic of the plant community) and the
site quality, which are indirectly related to the wintering conditions of the Siberian moth
caterpillars, the CHILI index, and, to a lesser extent, the distance to disturbed stands, which
characterize the microclimate. Finally, a number of predictors offer insight into the impact
of successional processes on local conditions. Among these, those associated with the
restoration of forest stands following previous damage stand out as particularly significant.
These include the proportion of spruce in a stand composition, the age of the forest stand,
and the distance to the nearest disturbed forest site.

The output of the models is a forecast map of forest stands defoliated by the Siberian moth.
The forecast results facilitate an optimized approach to D. sibiricus population monitoring.
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