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Abstract: Forest mapping provides critical observational data needed to understand the
dynamics of forest environments. Notably, tree diameter at breast height (DBH) is a metric
used to estimate forest biomass and carbon dioxide (CO2) sequestration. Manual methods
of forest mapping are labor intensive and time consuming, a bottleneck for large-scale
mapping efforts. Automated mapping relies on acquiring dense forest reconstructions,
typically in the form of point clouds. Terrestrial laser scanning (TLS) and mobile laser
scanning (MLS) generate point clouds using expensive LiDAR sensing and have been used
successfully to estimate tree diameter. Neural radiance fields (NeRFs) are an emergent tech-
nology enabling photorealistic, vision-based reconstruction by training a neural network
on a sparse set of input views. In this paper, we present a comparison of MLS and NeRF
forest reconstructions for the purpose of trunk diameter estimation in a mixed-evergreen
Redwood forest. In addition, we propose an improved DBH-estimation method using
convex-hull modeling. Using this approach, we achieved 1.68 cm RMSE (2.81%), which
consistently outperformed standard cylinder modeling approaches.

Keywords: 3D forest reconstruction; neural radiance fields (NeRF); LiDAR; Simultaneous
Localization and Mapping (SLAM); diameter at breast height (DBH); tree modeling

1. Introduction
Forests are the Earth’s largest terrestrial carbon store, holding more than three

decades worth of global CO2 emissions [1] and consuming a quarter of new anthropogenic
emissions [2]. Pressingly, climatic trends are revealing grave uncertainty for long-term
stability. According to U.S. Forest Service aerial surveys, over 200 million trees died in
California since 2010, with 62 million dead in 2016 alone [3]. The warming climate and
the consequence of longer, more severe drought cycles are the primary culprits of this
mass die-off. Significant numbers of dead and dying trees dramatically increase the risk of
wildfires; these counts do not include tree deaths caused by wildfires, which adds hundreds
of millions to the toll.

Forest management is a recognized, cost-effective approach to mitigating the effects of
the climate crisis [4]. Global carbon accounting, which is a crucial contribution to informed
climate change policies, relies on large-scale forest surveys. Tree diameter at breast height
(DBH) is a primary data point used in ecological monitoring and carbon accounting efforts;
the conventional means of determining DBH relies on a human forester with a measuring
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tape. Accurate, automated methods of DBH estimation could drastically reduce the time
and effort needed to perform surveys, opening doors for large-scale mapping efforts.

Three-dimensional (3D) reconstruction is the task of digitally representing real-world
settings, typically in the form of a point cloud. Metric reconstruction is a subclass that
preserves true scale in the recovered geometry and affords the ability to indirectly measure
scene features (e.g., volume, length). Terrestrial laser scanning (TLS) is a well-studied ap-
proach for mapping forest inventories, offering the potential for rapid ecological assessment.
However, these systems are expensive, costing 80,000–20,000 USD, and require a skilled
operator. Survey-grade TLS systems can provide centimeter-level diameter estimation in
forests with uniform tree structures and even terrain [5]. The main technical issue faced by
TLS methods is tree occlusions that require stitching many scans together from different
spatial locations, a critical step in recovering complex geometries of forests. Research
toward using mobile robot platforms in combination with Simultaneous Localization and
Mapping (SLAM) algorithms addresses this problem using optimized pose-graphs to align
thousands or millions of LiDAR scans taken along a robot’s trajectory. A 2017 paper [6]
using SLAM reports a best-case DBH estimation RMSE of 2.38 cm for well-represented trees.
A 2024 study [7] achieved 1.93 cm RMSE using a mixed Hugh-RANSAC trunk modeling
approach. However, these solutions require expensive 3D LiDAR and inertial measurement
unit (IMU) hardware (10,000–25,000 USD).

Recent advances in the fields of computer vision and deep learning offer a new
paradigm for generating 3D reconstructions. Neural Radiance Fields (NeRFs) [8] are an
emergent technology enabling the recovery of complex 3D geometry by training a neural
network on conventional imagery. NeRFs are a remarkable advance over traditional
photogrammetry, producing higher quality, photorealistic 3D reconstructions from sparser
input imagery and at an accessible efficiency. Since 2020, a community of developers has
contributed hundreds of methodological improvements, rapidly improving its performance
and accessibility. The ability to export NeRFs as point clouds lends itself as an aggressive
alternative to expensive LiDAR-based mapping.

We present an evaluation of NeRF-based forest reconstruction for the task of DBH
estimation of mixed-evergreen redwood forest located in Santa Cruz, California. This
study compares NeRF reconstructions trained on conventional mobile phone imagery to
LiDAR-inertial SLAM reconstructions sourced from a quadruped robot equipped with a
custom multi-modal sensing platform. This paper also expands the viability and accuracy
of TreeTool [9], a Python toolkit for rendering DBH estimates from forest point clouds.
Specifically, we propose a new set of features to support robust tree detection and accurate
DBH estimation. Many studies have relied on cylinder-fitting to model trunk morphology.
We observe a DBH underestimation trend with this method and propose an improved
convex-hull modeling approach. In summary, the contributions of this work are:

• Quantitative field study evaluating the performance of NeRF-based forest reconstruc-
tions compared to LiDAR-inertial SLAM with regards to DBH estimation accuracy.

• Improved DBH estimation accuracy via a trunk modeling approach using convex-hull
and density-based filtering methods.

• Open-source modeling code and forest datasets, including SLAM and NeRF recon-
structions of a mixed-evergreen Redwood forest, are freely available at
https://github.com/harelab-ucsc/RedwoodNeRF (accessed on 7 January 2025).

2. Theoretical Background
2.1. The SLAM Approach

The SLAM problem can be broken into two tasks: building a map of the environment
and simultaneously estimating the robot’s trajectory within that map. More specifically,

https://github.com/harelab-ucsc/RedwoodNeRF
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given all sensor measurements z1:T , all robot motion commands u1:T , and an initial robot
position x0, estimate the posterior probability of the complete robot trajectory x1:T and a
globally consistent map m of the explored environment [10]:

p(x1:T , m|z1:T , u1:T , x0) (1)

This Bayesian problem formulation benefits from the ability to fuse several sensing
modalities together while accounting for individual sensor noise. The modern-day solution
to SLAM formulates the problem as a factor graph [11] where each node represents a
robot pose xi (relative 3D spatial location and orientation) and each edge represents a
transformation Ti between nodes. Edges also encapsulate loop-closure constraints. Loop-
closure is the subprocess of identifying previously observed landmarks in order to correct
for drift and error accumulation in the estimated trajectory. Based on the prior pose-graph, a
global optimization is used to minimize the estimation error given the sensor measurements
and loop-closure constraints. The resulting pose corrections are back-propagated, resulting
in reduced error of scan alignment and dense scene reconstruction.

2.2. NeRF Scene Representation

NeRF [8] is a current state-of-the-art solution to the problem of novel view synthesis.
This problem involves generating an image of a 3D scene from a particular view when
the only available information is images from other views. Two pivotal ingredients to the
NeRF method are continuous volumetric representation and deep, fully-connected network
architecture. NeRFs inherit the exceptional photorealism and reconstruction fidelity of
continuous representation at a fraction of the storage cost compared to discrete approaches
using voxels or meshes [8]. The scene is modeled as a Multilayer Perceptron Network
(MLP), which takes a 5D input vector composed of spatial location X = (x, y, z) and viewing
angle d = (θ, ϕ) and learns the weights Θ to map each 5D coordinate to the corresponding
4D output vector of color c = (r, g, b) and volume density (σ). The 5D input space is sampled
using ray tracing. The network architecture is two MLPs. The first learns only volume
density based on input location. The second learns color based on location and viewing
direction as well as σ. This enables multi-view consistency, critical for non-Lambertian
lighting (lighting conditions that include high dynamic range across the scene). A positional
encoding layer is used to better represent high-frequency color-density functions. Instead of
performing volume rendering uniformly along the rays, the NeRF method uses hierarchical
volume sampling to identify relevant regions of the scene and avoid excessive calculations
in rendering free space. Figure 1 illustrates a high-level flow within the NeRF pipeline.

Figure 1. NeRF scene representation flow. Sparse images with corresponding poses are sampled
using ray-tracing to generate 5D input vector comprised of location (x, y, z) and viewing direction
(θ, ϕ). A cascaded MLP learns the weights to map this 5D vector to output color (r, g, b) and volume
density σ. Volume rendering composites the learned rays to novel views.
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Scene reconstructions are rendered from the learned color-ray space by filtering low
color-density regions to only leave surfaces. In order to extract and accurately measure
geometric features, the image poses must be metrically relevant (in real-world distance
units). Standard Structure from Motion (SfM) pipelines (such as COLMAP [12]) are not able
to maintain real-world scale since absolute depth is not available from monocular visual
odometry without additional information about the scene. Huang et al. [13] use SfM poses
to generate NeRF reconstructions of two trees. To cope with scale ambiguity, the authors
derive a scale factor from a ground truth TLS reconstruction, which is impractical in many
real-world cases where this external information is unavailable. In this paper, we directly
derive metrically accurate camera poses from visual-inertial (VI) SLAM, eliminating the
need for any prior reconstruction.

3. Design and Methods
3.1. Mobile Laser Scanning via LiDAR-Inertial SLAM

In order to perform SLAM-based reconstruction, we designed a robot based on the
Unitree B1 quadruped platform. Terrain maneuverability was a prioritized feature to cope
with rough, uneven forest terrain and complex obstacles. A custom-built multi-modal
sensor head is attached, which includes LiDAR, stereo vision, inertial, and GNSS+RTK
sensing modes. For online processing, the robot is equipped with an external ×86 mini
computer (Commell LE-37R; Taiwan), which includes a 4.5 GHz Core i7-1270pe CPU,
64 GB RAM, and 2 TB storage. The LiDAR is an Ouster OS0-128 (Ouster, Inc; San Francisco,
CA, USA) with a 90◦ vertical field-of-view and 128 horizontal channels. The IMU is an
IMX5-RUG3 (Inertial Sense, Inc; Provo, UT, USA) capable of 1 KHz output, and fused EKF
attitude estimates.

The computer runs ROS2 Iron for sensor recording and running LiDAR inertial odom-
etry smoothing and mapping (LIOSAM) [14]. This software fuses LiDAR and IMU data
together to create dense spatial reconstructions in real-time along with optimized pose
estimations. LIOSAM tightly couples LiDAR and inertial data in a joint optimization using
a factor-graph SLAM architecture. Through loop-closure factors, LIOSAM is able to achieve
minimal drift in large exploration volumes [14] (see Figure 2).

Figure 2. Quadruped robot creating a dense LiDAR-inertial reconstruction in a forest environment
(left). LIOSAM visualization of estimated trajectory (torqouise), loop-closure events (yellow), and
tightly aligned LiDAR scans (magenta) (right).

3.2. NeRF Reconstruction Pipeline
3.2.1. Training Data

Metrically relevant camera poses are needed in order to measure world features from
NeRF reconstructions, while COLMAP can perform high quality vision-based reconstruc-
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tion, it suffers scale ambiguity. The typical solution is to use VI or LiDAR-inertial SLAM
pose estimation in which the metric information is derived from IMU or LiDAR range
measurements. In this study, we use an iOS application called NeRFCapture [15] which
uses Apple ARKit to provide camera poses in real time. ARKit uses VI odometry with
multi-sensor fusion, which lends itself as a good option for metric pose estimation.

3.2.2. Software Implementation

The base NeRF method discussed in Section 2.2 has seen hundreds of proposed
improvements over the years. Nerfacto [16] is a method that draws from several other
methods [17–21] and has been shown to work well in a variety of in-the-wild settings. For
this reason, we chose the Nerfacto method for this study.

Nerfacto improves on the base method in a few key dimensions, the first of which
is pose refinement. Error in image poses results in cloudy artifacts and loss of sharpness
in the reconstructed scene. The Nerfacto method uses the back-propagated loss gradients
to optimize the poses for each training iteration. Another improvement is in the ray-
sampling. Rays of light are modeled as conical frustums, and a piece-wise sampling
step uniformly samples the rays up to a certain distance from the camera origin and then
samples subsequent sections of the conical ray at step sizes that increase with each sample.
This allows for high-detail sampling of close portions of the scene while efficiently sampling
distant objects as well. The output is fed into a proposal sampler, which consolidates
sample locations to sections of the scene that contribute most to the final 3D scene render.
The output of these sampling stages is fed into the Nerfacto field, which incorporates
appearance embedding, accounting for varying exposure among the training images.

We used the nerfstudio [22] API, which makes training and exporting NeRF recon-
structions extremely simple. Posed image data is copied to a remote desktop PC for training.
This computer hosts a 3.8 GHz AMD 3960X CPU (AMD; Taiwan), 64 GB RAM, and 2 TB
storage. The PC is also outfitted with two NVIDIA RTX-3070 (Nvidia; Taiwan) graphics
cards, which aggregate to 16 GB of VRAM. The system runs Ubuntu 22.04 with CUDA-11.8
to interface with GPU hardware.

3.3. Tree Segmentation and Modeling
3.3.1. TreeTool Framework

To process forest reconstructions and estimate tree DBH, we use TreeTool [9], a Python
library built on Point Data Abstraction Library (PDAL) and Point Cloud Library Python
(pclpy). TreeTool breaks the process down into three distinct steps covering filtering,
detection, and modeling stages.

The goal of the filtering stage is to remove all non-trunk points, mainly the ground
and foliage. The ground is segmented using an improved simple morphological filter
(SMRF) proposed by Pingel et al. [23]. This technique uses image-inpainting to accurately
model complex, uneven terrain. Once the ground points are removed, TreeTool uses a
surface-normal filter to remove foliage points. This is based on their observation that the
surfaces created by trunk points have horizontal normals. TreeTool also filters non-trunk
points by considering the curvature of surfaces. Curvature is interpreted as the percentage
of information held by the eigenvalue associated with the normal vector. High-curvature
points are discarded, which removes foliage.

The detection stage groups the filtered trunk points into individual stem sections.
TreeTool uses Euclidean-distance to perform nearest-neighbor clustering. Some points
belonging to the same trunk are inevitably grouped into separate clusters due to occlusions
and errors in the reconstruction. To cope with this, TreeTool groups same-trunk clusters
together. We add an extra clustering step using density-based clustering applications with
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noise (DBSCAN) [24], which addresses the case where points from different trunks are
grouped together. This is especially prevalent for resprouting trees like redwoods, which
commonly grow with conjoined trunk bases.

The last stage involves modeling the segmented and filtered trees to estimate diameter
and location. Tree clusters are vertically cropped such that the remaining clusters represent
the trunks between 1.0 and 1.6 m above the modeled ground surface. DBH is estimated
by taking the maximum diameter reported between cylinder and ellipse fitting methods.
Random sample consensus (RANSAC) fits a cylinder to the cropped trunk cluster. An
additional ellipse model is generated using least-squares on a 2D projection of the points.

3.3.2. Convex Hull Modeling Approach

The use of RANSAC for modeling trees as cylinders to estimate DBH is common in
the literature [6,7]. An advantage of this approach is the ability to extrapolate DBH from
partially represented tree trunks, a common occurrence since optimal scene coverage is
often not possible in complex forest terrain. These papers consider forests with uniform,
cylindrical tree structure and an absence of near-ground trunk foliage, rendering their
cylinder-approach as a viable modeling method with impressive accuracy. A downside of
this method is that for well-represented trunks, a cylinder model is prone to underfitting
the true trunk diameter. This is even more prevalent for tree species with deeply furrowed,
irregular bark texture. Another limitation of this method is the inability to model irregular,
bowed trunk shapes.

We propose a modeling approach that considers tree point clouds as stacks of convex-
hull slices, as seen in Figure 3. We relax the morphological assumption of cylinder-modeling
methods, which opens the possibility to model highly irregular trunk shapes. The trunk
is vertically partitioned into 20 cm thick slices. Each slice is extracted and rotated to be
collinear with the z-axis. By manipulating each slice independently, our method accounts
for skewed, contorted trunk structures commonly found in non-coniferous forests. A 2D xy
projection of the points is used to fit a convex-hull around the surface of the cloud, which
emulates manual DBH measurement via girth tape. To deal with noisy points, we introduce
a layer of DBSCAN that removes low-density regions. DBH is estimated by considering
the slice at 1.3 m above the ground.

Figure 3. TreeTool process applied to a forest NeRF reconstruction. (A) ground segmentation,
(B) trunk segmentation, and (C) trunk modeling. Our tree modeling approach considers trees
as stacks of convex-hull slices which outperformed other approaches by 3–4× in terms of DBH
estimation accuracy.



Forests 2025, 16, 173 7 of 12

We take the maximum value across LS, RANSAC, and convex-hull methods as the final
diameter to account for partial trunk cases. DBSCAN parameters control the maximum
distance ϵ of points to be considered in a neighborhood, and the minimum point count
(minPts) within that region to be considered a dense region. We found an ϵ range between
1 and 3 cm to have good outlier rejection on 2D trunk clouds. The minPts parameter is
dependent on the 2D surface density ρc[

points
m2 ] of the trunk cloud; we observed successful

filtering in the range of 5–40 points.

3.4. Study Area and Data Collection

To validate the precision and accuracy of the proposed NeRF-derived convex-hull
DBH method, we conducted an experiment in the Forest Ecology Research Plot (FERP) [25],
a globally recognized ForestGEO [2] site in the Santa Cruz mountains along the central
coast of California, USA. This plot spans 16 ha with over 51,000 recorded stem locations
and DBH measurements. The forest census is repeated on a 5-year cycle.

The FERP is partitioned into 400 20 × 20 m subplots denoted by Ex_Ny, where x and y
are the distance in meters from the SW corner of the FERP (37.012416, −122.074833) to the
SW corner of the subplot. This study considered sections of forest in subplots E340_N360
and E340_N380. The data collection effort was accomplished over two visits and spans two
datasets. LiDAR and IMU data were recorded at 10 Hz and 500 Hz, respectively. NeRF
training data was collected using an iPhone 14 camera (1920 × 1440) and NeRFCapture [15].
Training via nerfstudio [22] lasted 300K iterations and took 15 min for both datasets. As a
reference technique, DBH was taken manually via girth tape by a trained research assistant.
The dataset parameters, including field-work duration across methods, are listed in Table 1.

3.4.1. Dataset A

In the first dataset, the robot was teleoperated around a cluster of 11 coast redwood
trees (Sequoia sempervirens) to generate a SLAM reconstruction. The robot was also navigated
through an opening between the trees to recover additional occluded trunk and ground
geometry within the cluster. NeRF training imagery was collected by an untrained human,
traversing the tree cluster in a similar fashion. The trees had 360◦ coverage in the training
data since nearby terrain afforded easier maneuvering (Figure 4).

3.4.2. Dataset B

The second dataset is larger by area, spanning the entire E340_N360 subplot which
included more challenging terrain and foliage occlusions. This area consisted of 6 coast
redwood and 3 Douglas-fir (Pseudotsuga menziesii) trees. The robot’s obstacle-avoidance
mode enabled maneuvering in complex terrain, but at a significantly reduced pace (Table 1).
Stems less than 8 cm in diameter where not considered in this study, as robust DBH
estimation was unstable in this size range.

Table 1. Study area parameters, quantity of recorded data, and a comparison of reconstruction density
and fieldwork duration between NeRF and SLAM approaches. Duration includes field-validation of
recorded data, not post processing.

Fieldwork Duration Point Count
Dataset Area (m2) Tree Count LiDAR Frames Images NeRF SLAM Manual NeRF SLAM

A 140 11 2172 166 5 min 30 min 45 min 2.69 M 704 K
B 400 9 7498 847 8 min 40 min 52 min 26.87 M 7.83 M
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Figure 4. Forest reconstructions produced by SLAM (bottom row) and NeRF (top row) methods of
both datasets. Adjacent plots are data collection trajectories for each reconstruction. In dataset A, we
illustrate the effectiveness of segmentation between the ground points (orange) and trees (violet). We
use a z-axis color gradient to enhance the visualization of dataset B reconstructions, as this region
included more complex ground-level vegetation. The figure also compares a zoomed-in section of a
tree trunk. The NeRF reconstruction is approximately 4× denser compared to SLAM, and is of higher
surface quality.

4. Results
We assess the accuracy of DBH estimation for each dataset independently and com-

bined, using bias, which gives an idea of over/under estimation-trends), root mean squared
error (RMSE), and standard deviation, as these are commonly referenced metrics in this
domain. These are defined as:

Bias =
1
n

n

∑
i=1

(yi − yri) (2)

RMSE =

√
∑(yi − yri)2

n
(3)

where yi and yri are the estimated and reference diameters across n estimations. We also
provide relative RMSE which is obtained by dividing the RMSE from (3) by the mean of
the reference diameters.

The low bias values achieved with the NeRF convex-hull approach (−0.28 cm in
Dataset A and −0.86 cm in Dataset B; Table 2) indicate minimal systematic error, com-
pared to the significant under-estimation trends observed in RANSAC/LS (−4.35 cm and
−4.59 cm, respectively; Table 2). Furthermore, the RMSE results, with a best-case value
of 1.26 cm and an average of 1.68 cm across datasets, align well with the low bias values
observed, demonstrating the reliability and consistency of our method.

The superior performance of the NeRF convex-hull method can be attributed to its
ability to accurately model complex and irregular trunk geometries, which are prevalent
in natural forests. In contrast, RANSAC’s reliance on predefined geometric primitives,
such as cylinders and ellipses, leads to significant underfitting, particularly for trees with
non-uniform diameters or irregular bark structures (Figure 5).

Dataset B presented additional challenges due to complex terrain and darker light
conditions, which could have impacted the quality of the NeRF reconstruction. Despite
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these challenges, the convex-hull method maintained robust performance, with only a
marginal increase in RMSE from 1.26 cm in Dataset A to 2.09 cm in Dataset B.

Table 2. DBH estimation accuracy between our proposed convex-hull tree modeling approach and
RANSAC for NeRF and SLAM reconstructions.

Dataset A Dataset B
NeRF SLAM NeRF SLAM

Metric Convex-Hull RANSAC Convex-Hull RANSAC Convex-Hull RANSAC Convex-Hull RANSAC

Bias (cm) −0.28 −4.35 −1.35 −6.89 −0.86 −4.59 1.56 −3.69
RMSE (cm) 1.26 4.96 2.32 7.12 2.09 5.28 1.93 4.53
RMSE (%) 2.32 9.14 4.27 13.12 3.13 7.93 2.90 6.80
Std (cm) 1.29 2.49 1.97 1.86 2.02 2.77 0.93 2.88

Figure 5. Four comparisons of RANSAC and convex-hull modeling approaches. Deltas between
manual DBH and each modeling approach are provided on the top line. RANSAC cylinder modeling
consistently under-fits well-represented trunk projections. Convex hull DBH estimation outperformed
RANSAC by 3–4×.

The NeRF reconstructions were consistently 3–4× more dense than the SLAM recon-
structions (Table 1). The sparsity associated with LIOSAM is due to the nature of points
being registered by laser pulse returns that have a resolution of 262 k points (128 × 2048) per
LiDAR frame, a physical limitation of the hardware. NeRFs are capable of higher-density
reconstruction since the geometry is rendered by sampling the learned color-ray space and
filtering out low-density sections to only represent surfaces. This increased point density
directly translates to finer surface representations and improved DBH estimation accuracy.
This advantage is particularly pronounced in forests with intricate geometries, where the
sparse point clouds generated by LIOSAM often fail to capture key structural details. By
leveraging the ability of NeRFs to segment and filter high-density regions, our approach
overcomes these limitations, resulting in more precise trunk modeling and DBH estimation.

5. Discussion
In comparison to the existing body of literature on automated DBH estimation, several

studies provide a useful starting point for benchmarking and evaluation. Liang et al. [26]
report a RMSE of 0.82 cm (4.21%) for automated DBH measurements compared to manual
measurements obtained from TLS data. However, their analysis does not include a compari-
son of the automated estimates with ground truth stem measurements obtained using girth
tape. Pierzchała et al. [6] achieve a RMSE of 2.38 cm (9%) compared to manual ground truth
measurements using a mobile robot and LiDAR-inertial SLAM. Freißmuth et al. [7], using
a similar MLS approach, report 1.93 cm RMSE. All of these papers relied on LiDAR-based
reconstruction and applied some form of circle-fitting in their tree modeling approaches.
Additionally, the trees examined in these studies were part of human-made forest stands or
naturally occurring, spatially uniform forests characterized by consistent tree structure.
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In contrast to these studies, we investigated the potential of NeRF forest reconstruction
combined with hull-based trunk modeling for DBH estimation in challenging terrains,
featuring irregular tree structures and densely clustered tree groves. A more rigorous
comparison requires evaluating methods on the same datasets. However, the datasets used
in the other studies have not been made publicly available. To address this limitation and
facilitate future research, we openly source our datasets for benchmarking and comparison.

The forest environment consists of harsh lighting conditions that add challenges to
the use of photometric methods such as NeRFs. The dark understory created by dense
forest canopy requires appropriate exposure control; long exposure times can lead to blurry
images that are unusable for reconstruction purposes. A potential solution is offered by
RawNeRF [27], which enables reconstruction in near-darkness environments.

The NeRF method’s impressive speed-up of fieldwork time comes with the challenge
of reconstructing and modeling smaller stems and complex foliage. Without optimal
camera coverage, this geometry is poorly represented by the NeRF. Additionally, the
filtering methods used by TreeTool need to be developed to support smaller stems and
foliage. One potential avenue for improved clustering and filtering performance is to
use the color of points provided by NeRF representation to aid in complex branch and
foliage segmentation.

We show that convex-hull modeling is an improvement over cylinder approaches
for measuring tree diameters when well-represented tree clouds are available. In practice,
the presence of ground-level vegetation introduces significant occlusions in the recovered
geometry. A potential solution for partial clouds could be to interpolate the cross-section
from the set of stacked convex-hulls at known spacing along its height. This same slice-
based modeling could be used to extract additional science measurements beyond DBH.

Parameter selection is still a semi-manual process for TreeTool. Not all parameters can
be derived from density (e.g., terrain morphology dictates ground and trunk segmentation
parameters). Robust, automatic parameterization can enable real-time DBH estimation in
various rugged settings; further work is needed to understand the relationship between
the parameter selection process and the tree-species composition of the environment.

Large-scale adoption of the methods presented in this work will require further devel-
opment to support exploration volumes on the order of 100–1000 km2. The NeRF scene
reconstruction pipeline and corresponding computational resources described in Section 3.2
are designed to train on relatively small datasets (100–1000 images). Block-NeRF [28] pro-
vides a motivating solution to this issue by decomposing the scene into individually trained
NeRFs with the ability to seamlessly align NeRFs together to reconstruct city-scale en-
vironments. The authors demonstrate the largest neural scene representation made to
date, comprised of over 2.8 million training images reconstructing the neighborhoods of
San Francisco, CA.

6. Conclusions
In summary, we present a field study exploring the benefits of NeRFs for DBH es-

timation in mixed-evergreen redwood forest. We consider an MLS comparison using
LiDAR-inertial SLAM hosted on a quadruped robot. In addition, we propose a convex-
hull DBH modeling technique that considerably outperformed common cylinder-fitting
approaches by 3–4×. In a small-scale experiment, NeRF reconstructions made using mobile
phone data outperformed SLAM in terms of DBH estimation accuracy (2.81% RMSE), at
a 20× cost reduction and 5× less field-work time. In terms of relative DBH estimation
accuracy, the proposed integration of NeRF with our enhanced convex-hull trunk mod-
eling approach surpasses the performance reported in several published forest mapping
studies [6,7,13,26].
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While additional development is needed for autonomous ecological assessment in
wilderness settings, this paper motivates the ability for rapid forest data collection using
commodity mobile phone hardware. This drastic increase in accessibility has the potential
of furthering community engagement, and increasing the volume of globally mapped
forest terrain.
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